Motion Planning for Medical and Assistive Robots

Typical Current Instruments

Steerable Instruments Bladder Pubic

arch

Prostate

Rectum Prostate Brachytherapy Cancer Treatment

Steerable Needles

Bevel-tip & Highly flexible

Capable of following steering through tissue (shown in ex vivo liver)

[Webster, Okamura, Cowan, Chirikjian, Goldberg, Alterovitz, United States Patent 7,822,458, 2010]

Motion Planning as a User Interface

Physician specifies obstacles & target

Compute/update

Dlan

Execute plan

Motion Planning as a User Interface

Key challenges for real-world deployment:

- Must consider uncertainty in motion and sensing
- Tissue deformations
- Guarantee safety

Concentric Tube Robots

Capable of controllable, curved trajectories in air and tissue

Thin, pre-curved, concentric, telescoping tubes

2 DOF per tube:
insert (l_i)
rotate (θ_i)

[NIH R21 & R01, Collaboration with Robert J. Webster III]

Concentric Tube Robots

Capable of controllable, curved trajectories in air and tissue

Thin, pre-curved, concentric, telescoping tubes

 l_1

 \mathbf{X}_{start}

Planning problem: Reach a clinically relevant site while avoiding anatomical obstacles

> Challenge: Even with only 4 tubes: 8 knobs to adjust!

> > 2 DOF per tube:
> > insert (l_i)
> > rotate (θ_i)

[NIH R21 & R01, Collaboration with Robert J. Webster III]

 θ_3

 l_3

 l_2

 θ_2

Motion Planning as a User Interface

Key challenges for real-world deployment:

- Must consider uncertainty in motion & sensing
- Guarantee safety
- Interactive, real-time performance

Personal Assistance

Learn task constraints

Plan in new, cluttered environments with learned constraints

[Ye and Alterovitz, International Symposium on Robotics Research, 2011]

Objectives

- Guarantee safety
- Facilitate intuitive operation
- Enable successful performance of complex tasks

Challenges

- Compensating for uncertainty
- Real-time, near-optimal planning
- Integrating human expertise into planning

