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Unmanned Aerial Vehicles
Number of UAVs 10000

worldwide
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> $10B industry
® Military: Surveillance, force protection, warfare (> 75 countries)
® Civilian commercial: Transport, environment

@ Civilian private: DIY Drones

&lenn




25 SKYCATCH

3CRobotics

UAV TECHNOLOGY

TECHNOLOGIE S
“:ROBOTlCS

Penn
g 3




Micro Aerial Vehicles
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First Response

Operate indoors @and outdoors

No GPS

Small, man =M

Agile, fast




Outline

Single robot (non trivial dynamics)
® Completely known environment
® Partially known environment

® Uncertainties in state estimation

Multiple robots
® Labeled problem
® Unlabeled problem
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Control
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Inputs
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Trajectory Planning

Min. SnTap Trajectory Parameterization

min/ (all 17+ BalflF)de r) = ne

a(t) Jo
O'(O) =0y, O'(O) = é’O, . ¢des
o(T)=or, o(T)=0r,...

State/lnput constraints

f(rdes(t), deS( ) RdeS( ) deS(t)) <0

Solve
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Control Software

) 4
Planner s | Position / Motor | | Rigid body
controller Attitude controller dynamics
g Rdes M % v

controller

. ~0.001 s R, Q
71, T ~0.01 s

~0.1s

[Kraft 2003; Mellinger, Michael, and Kumar 2010;
Mellinger and Kumar 201 [] 3
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Aggressive Maneuvering

[Mellinger and Kumar, ICRA 201 1]

Minimum Snap Trajje;tory
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Real Time Planning

[Mellinger and Kumar, ICRA 201 1]
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Composition of Motion
Primitives
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Sequential
Composition
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Onboard State Estimation

IMU, Laser scanner, and camera

[Shen, Mi;:hel, and Kumar 201 1]




Known Environment

Partially Known Environment R =g

range

H horizon

characteristic

speed ‘]fl' time scale

of dynamics
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CPU: Intel Atom Processor, 1.6 GHz, | GB Ram

Sensing: 2 grayscale Matrix Vision cameras,

Weight: 740gram

s

Power: ~120 W




Vision + IMU State Estimation

Large axes: Vision-only pose

Small axes & arrow: Vision-IMU pose & velocity
Blue line: Vision-only trajectory

Yellow line: Vision-IMU trajectory

Red & blue dots: 3D features
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Fast (4 m/s), Indoor

Indoor Environment:

* Travel Distance: 190 m

* Maximum Speed: 1.5 m/s
* Average Speed: | m/s

8X

Indoor, 3-D Indoor/outdoor, visual SLAM

]

P (Shen, Mulgaonkar, Michael, and Kumar, 2013)
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Multiple robots

Outline

® Labeled problem

® Unlabeled problem
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Mixed Integer Quadratic Program

Dimensionality Binary variables
Mo
o=1

+3nyning(ng — 1)

n, no. intermediate waypoints
n, no. basis functions

n, no. quadrotors

nl(o) no. of faces for obstacle o
n, no. time points
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v(#) = [, tr] — X(2)

Safety

inf
[i#jEI,tE [to,tf]

Penn.
Engineering

0 otherwise

if robot ¢ is assigned

Optimality

% (t) — x;(2)|| — 2R] >0 ()

[Turpin et al, RSS 201 3]

= argmin
(1)

/t " L(y(0))dt
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Challenges for Agile Robots

® Uncertainty (integration over belief space and
over the set of possible measurements) and
risk

® Model predictive control or receding horizon
control with completeness and convergence
guarantees

® Ability to plan with multimodal, nested
=n.. PErception-action loops
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