Real-Time Motion Planning for Uncertain Hybrid Mechanical Systems

Kevin M. Lynch

Neuroscience and Robotics Lab (NxR)
Mechanical Engineering Department
and
Northwestern Institute on Complex Systems (NICO)
Northwestern University
Ongoing Research

human motor control, functional electrical stimulation

dynamic locomotion, legged locomotion

swarms and self-organization

bio-inspired sensing and control; electrosense

robot manipulation
Hybrid Locomotion
robot parkour
hybrid

Mechanical

\[M(q)\ddot{q} + \dot{q}^T \Gamma(q) \dot{q} + \frac{\partial U}{\partial q}(q) = T(q)u + A_i^T(q)\lambda_i \]

\[A_i(q)\dot{\lambda} = 0 \]

uncertain

real time
Problem Statement

Given

- an uncertain dynamic model of the robot
- a well characterized environment
- a goal expressed as constraints on the state

find

- an offline hybrid sequence and nominal motion planner considering approximate models of uncertainty propagation
- a real-time gradient-based multi-step fine-tuning planner to shape the evolving belief distribution to maximize likelihood of success
Subproblems

- optimal belief filtering
- belief derivatives with respect to control actions (using structure of hybrid mechanical equations of motion)
- hybrid mechanical local belief controllability
- equivalence of mechanical and geometric curvature
- second-order effects of bio-inspiration