Real-Time Motion Planning for Uncertain Hybrid Mechanical Systems

Kevin M. Lynch

Neuroscience and Robotics Lab (NxR) Mechanical Engineering Department and Northwestern Institute on Complex Systems (NICO) Northwestern University

Ongoing Research

human motor control, functional electrical stimulation

bio-inspired sensing and control; electrosense

dynamic locomotion, legged locomotion

robot manipulation

Hybrid Locomotion

robot parkour

hybrid

mechanical

$$M(q)\ddot{q} + \dot{q}^T \Gamma(q)\dot{q} + \frac{\partial U}{\partial q}(q) = T(q)u + A_i^T(q)\lambda_i$$
$$A_i(q)\dot{q} = 0$$

uncertain

real time

Problem Statement

Given

- an uncertain dynamic model of the robot
- a well characterized environment
- a goal expressed as constraints on the state

find

- an offline hybrid sequence and nominal motion planner considering approximate models of uncertainty propagation
- a real-time gradient-based multi-step fine-tuning planner to shape the evolving belief distribution to maximize likelihood of success

Subproblems

- optimal belief filtering
- belief derivatives with respect to control actions (using structure of hybrid mechanical equations of motion)
- hybrid mechanical local belief controllability
- equivalence of mechanical and geometric curvature
- second-order effects of bio-inspiration

