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Abstract— Steerable needles are medical devices with the
ability to follow curvilinear paths to reach targets while
circumventing obstacles. In the deployment process, a human
operator typically places the steerable needle at its start position
on a tissue surface and then hands off control to the automation
that steers the needle to the target. Due to uncertainty in the
placement of the needle by the human operator, choosing a
start position that is robust to deviations is crucial since some
start positions may make it impossible for the steerable needle
to safely reach the target. We introduce a method to efficiently
evaluate steerable needle motion plans such that they are safe
to variation in the start position. This method can be applied to
many steerable needle planners and requires that the needle’s
orientation angle at insertion can be robotically controlled.
Specifically, we introduce a method that builds a funnel around
a given plan to determine a safe insertion surface corresponding
to insertion points from which it is guaranteed that a collision-
free motion plan to the goal can be computed. We use this
technique to evaluate multiple feasible plans and select the one
that maximizes the size of the safe insertion surface. We evaluate
our method through simulation in a lung biopsy scenario and
show that the method is able to quickly find needle plans with
a large safe insertion surface.

I. INTRODUCTION

Steerable needles are medical devices that allow for min-
imally invasive medical procedures in a variety of envi-
ronments, e.g., in the lung [1], brain [2], and liver [3].
They are able to bend and follow curvilinear paths in tissue
[4]. This feature enables obstacle avoidance, i.e., steerable
needles can circumvent critical anatomical obstacles, and
thereby mitigate patient risk. However, deploying a steerable
needle along a curved obstacle-avoiding path to a physician-
specified target is a complex process that is non-intuitive
to humans [5]. Therefore, a variety of motion planning
algorithms and control strategies have been developed to
automate the needle steering.

In a typical steerable needle deployment scenario, a mo-
tion planner determines a collision-free motion plan for the
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Fig. 1. We demonstrate our method in a lung biopsy scenario where
a steerable needle is inserted from the airways (yellow) into the lung
parenchyma (grey) and is steered towards a target (pink) while avoiding
large blood vessels (dark red). Our method constructs a funnel (blue) along
a steerable needle motion plan (green) such that the target can be reached
from any position inside the funnel. Our method computes a valid insertion
surface (orange and red) for which collision-free plans to the target can
be found. Darker coloring corresponds to a larger distance to the surface
boundary and therefore more robustness to deviations.

steerable needle, including a start position. The human opera-
tor aims to place the steerable needle at this start position for
which a path to the target is known to be possible. The start
position is typically located on an insertion surface such as
the skin or other tissue surface. Once the human operator has
placed the needle at its start position, the human hands off
control to the automation, and the steerable needle can begin
autonomously steering through tissue to the target. Accuracy
during this hand-off from the human to the automation
is critical for the success of the overall procedure. Even
a small deviation from the planned start position requires
recomputing the entire motion plan to the target, and there
is no guarantee that the target can still be reached due to
obstacles and kinematic constraints. Quantifying a level of
robustness to deviations in the hand-off position is important
to account for inevitable deviations due to operator errors or
preferences.

In this work, we introduce a new metric for steerable
needle motion planning that evaluates plans based on their
robustness with respect to deviations in their start positions.
Since there is often uncertainty in the initial placement of
the steerable needle due to human or mechanical imprecision,
selecting a position that is robust to errors has the potential to
improve the likelihood that the procedure can be successfully
performed. Our new metric aims to convey to the (human)



operator a valid insertion surface from which the target can
be reached and how much deviation in the hand-off position
the automated system can compensate for, as shown in Fig. 1.

We also describe an efficient strategy to compute the
introduced metric by determining a valid insertion surface
based on a nominal motion plan. This strategy can be used
in combination with many existing steerable needle motion
planners. Furthermore, we describe a method to efficiently
plan nominal motion plans from a surface region to a target
point using existing needle planners.

The valid insertion surface is limited by the steerable
needle’s hardware constraints and is further limited by
the presence of obstacles. We determine this surface by
constructing a funnel along the plan that we project onto
the insertion surface. The funnel starts as a point at the
target and grows in diameter as it approaches the insertion
surface, and its diameter along the nominal motion plan is
constrained such that for each position inside the funnel
we can guarantee that a collision-free plan to the target
exists. Our method assumes that the steerable needle can
be automatically rotated at its insertion point to set the
orientation of the insertion pose, which can be achieved e.g.,
with an aiming device as described in [6]. We then create
a “bullseye” visualization of the valid insertion surface, as
shown in Fig. 1, that provides visual guidance to a human
operator for aiming the steerable needle towards its desired
hand-off position.

Our main contributions in this paper are: (i) a new inser-
tion robustness metric for steerable needle plans and (ii) a
method to efficiently compute this metric – namely, a funnel
shape constructed around a needle plan – that can be applied
to many steerable needle planners.

We evaluate our method in simulation for a biopsy pro-
cedure planning scenario in a human lung. In this scenario,
a physician deploys a steerable needle through the airway
wall before a robot autonomously steers it to the biopsy
location. To demonstrate its versatility, we apply our funnel
computation method to plans computed by two different
steerable needle motion planners: the steerable needle RRT
[7] and an AO-RRT [8] adapted to steerable needles. We
also show that our funnel method is more efficient than a
previously-developed sampling-based strategy in evaluating
plans according to our proposed start position robustness
metric.

II. RELATED WORK

Robotic steerable needles are a promising approach to
reach parts of the body not safely reachable with conven-
tional instruments [9]. A variety of motion planners aim to
find safe needle plans that pose low risk to patients. These
planners employ different approaches, including search based
planning [10], fractal-based planning [2], and optimization
methods [11]. Sampling-based motion planning is another
planning approach that has been shown to be effective
in many applications with high dimensional configuration
spaces. Patil et al. [12] introduced a steerable needle motion

planner that creates a Rapidly-exploring Random Tree (RRT)
[13] from a start pose to a goal position.

Many motion planning algorithms exist for different types
or robots that plan from a specific start pose to a target region
[14], [15], [16], but few works explore planning from a start
region to a target position, as in most planning scenarios,
at least an approximate start pose of the robot is known.
Alterovitz et al. introduced a method to compute an optimal
needle plan in 2D from an insertion region [17]. Kuntz et
al. considered the automatic delivery of the robot to its initial
pose as an additional planning stage [18]. In this paper,
we use a variation of the backward planing strategy we
previously introduced [19]. The backward planner creates
multiple interleaving RRTs growing from the target position
towards a start region by sampling new target poses with a
certain probability during the planning process. This back-
ward planning process can be applied with little adaptation
to any pose-to-point steerable needle planner.

Prior work has investigated choosing a port location and
initial robot pose for minimally invasive procedures optimiz-
ing the angle of the surgical tool and reachability of the
target [20], [21], [22], [23]. Sun et al. introduce a method
to evaluate all locations on an insertion surface based on
criteria such as visibility and physician preference [24]. All
these systems use minimally invasive tools that only allow for
straight insertions and thus do not require motion planning
to determine target reachability. Niyaz et al. consider the
selection of an insertion pose of a concentric tube robot
as part of the problem setup and their method interleaves
optimizing the setup and motion planning to a target to find
the best combination of the two [25].

Beyond medical applications, the notion of hand-offs
occurs in planning scenarios as interactions between multiple
agents passing objects from one agent to another. Planning
strategies exist both for heterogeneous multi-agent systems
[26] and systems with two robot arms (e.g., for assembly
tasks) [27], [28]. These planning strategies require precise
models of the reachable workspaces of all agents. In the case
of hand-offs between humans and robots, this knowledge
is not freely available. In [29], the planner includes a trust
metric measuring the predictability of the human’s behavior,
and, in the case of unexpected human movement, leads the
robot to move more cautiously towards a hand-off. Mainprice
et al. [30] take into account human mobility and plan for
the most efficient hand-off location by estimating how fast
a human can reach it. Vahrenkamp et al. [31] define an
interaction workspace for hand-offs between humans and
robots that can be reached by both agents. However, to our
knowledge, there exists no method that evaluates hand-off
positions by their robustness to uncertainty.

In this work, we are not only interested in finding a
plan from a position within a start region, but we are also
interested in the robustness to changes in this position to
account for potential error prior to needle insertion. A related
concept is steerable needle motion planning considering
uncertainty during robot deployment [32], [33], [34], [35].
Favaro et al. introduce a steerable catheter motion planner



that plans from a fixed insertion pose and creates motion
plans optimal with respect to their robustness to control error
during deployment [36]. Tedrake integrates RRT motion
planning and LQR-based robot control [37]. This method
ensures that initial conditions able to reach the target will
stabilize to the target, but it does not provide any means to
determine these initial conditions.

III. PROBLEM DEFINITION

The planning scenario consists of a 3D workspace W ⊂
R3. The workspace contains obstacles O ⊂ W that the steer-
able needle should not collide with. The steerable needle’s
tip should reach a target position ptarget ∈ W . The steerable
needle can be inserted from any position on an insertion
surface S embedded in W .

We model the kinematics of the steerable needle using
a 3D unicycle model [32], [38]. The steerable needle is
flexible and curves in the direction of its beveled tip when
it is inserted, following a constant curvature arc in a plane.
The steerable needle’s reachable workspace is limited by its
minimum radius of curvature rmin. Arcs with larger radii
can be achieved through duty cycling [39]. Axially twisting
the steerable needle’s base changes the plane of curvature
and thereby the direction of steering. The planner also
needs to take into account additional hardware constraints,
in particular, the steerable needle’s cross-sectional diameter
dneedle and its maximum insertion length lneedle. We assume
that the steerable needle follows its tip in a follow-the-leader
manner [40]. Therefore, we can describe the configuration
of the steerable needle by the pose of its tip. We denote a
steerable needle configuration qi as a 4 × 4 homogeneous
transformation matrix:

qi =

(
Ri pi

0 1

)
,

where pi ∈ R3 is a position relative to a world coordinate
frame and Ri ∈ SO(3) is the steerable needle tip’s orien-
tation. We model the steerable needle’s movement such that
the steerable needle moves in direction Rz

i and curves into
direction −Ry

i . We assume that an aiming device rotates the
steerable needle at its insertion position toward the desired
orientation.

Based on the steerable needle’s kinematic model, constant
curvature arcs connect consecutive configurations of the
needle plan. We describe arcs by a radius of curvature r, an
insertion length l, and a rotation around the steerable needle’s
deployment direction γ ∈ [0, 2π]. We define a section of a
steerable needle motion plan as ρi = {qi, ri, li, γi}, where
the constant curvature arc described by ri, li, and γi connects
qi and the consecutive configuration qi+1. A steerable needle
motion plan is an ordered list Π = [ρ1, . . . , ρn] of n ∈ N
plan sections. Plan section ρn connects to the target ptarget.
No plan section can intersect with an obstacle in O.

We introduce a start position robustness metric R(Π, S) 7→
R that expresses the tolerance to deviations in the start
position for a nominal motion plan Π as shown in Fig. 2.
We define U ⊂ S as the valid insertion surface from which

Fig. 2. Following a nominal motion plan Π, the steerable needle is inserted
from surface S (yellow) at q1. We evaluate this start pose using robustness
metric R(Π, S). This metric is the radius of a circle on a plane tangent to
the start pose. We guarantee for all positions within this circle that a plan to
the target exists. We project the circle onto surface S to determine a valid
insertion surface U (orange).

the target can be reached. Metric R is the radius w of U
projected onto the plane tangent to start pose q1:

R(Π, S) = max w s. t. ||s′ − p1||2 > w ∀s ∈ S \ U, (1)

where s ∈ R3 represents positions on surface S not contained
in valid insertion surface U , s′ ∈ R3 is the projection of
s onto the plane tangent to q1, and p1 ∈ R3 is the start
position. This metric guarantees that for any position on U ,
a collision-free steerable needle motion plan to the target can
be found.

We aim to identify an optimal motion plan with respect
to robustness metric R(Π, S), which can be expressed as an
optimization problem:

Π∗ = argmax
Π

R(Π, S)

Subject to:
C(Π) = 0

gneedle(Π) ≥ 0

p1 ∈ S

pn = ptarget

where Π∗ is an optimal plan, C(Π) 7→ [0, 1] is a collision
detection function for which the result 0 corresponds to the
plan being collision-free and the general inequality gneedle(Π)
represents the steerable needle’s kinematic constraints.

IV. METHODS

In this section, we describe how to efficiently compute
R(Π, S) and a strategy to identify plans with a large valid
insertion surface. To determine the valid insertion surface
of a nominal motion plan Π, we construct a funnel along
the plan that guarantees for each position inside the funnel
that a collision-free motion plan to the target position qtarget
exists. A diagram of such a funnel is shown in Fig. 3.
We first define the geometry of one funnel section around
one plan section in subsection IV-A. Then, we introduce an
algorithm to compute the funnel region of a full plan in
subsection IV-B. In subsection IV-C, we describe how to
project the funnel onto the insertion surface to determine
the valid insertion surface and how to visualize this surface.
Finally, in subsection IV-D, we describe how to modify an
existing steerable needle motion planner to support planning
from a region to a target postion.



Fig. 3. We grow the funnel (blue) backward from qtarget to q1 along the
nominal steerable needle motion plan (green). The funnel is limited by the
minimum radius of curvature rmin. In the presence of obstacles (red), we
shrink the diameter of the funnel to keep it collision-free, so the diameter of
the funnel may be discontinuous with respect to distance along the nominal
motion plan.

A. Funnel Section Geometry

In our method, each configuration along a nominal motion
plan is associated with a funnel section. A funnel section
can be defined as a three-tuple ψ = (q, d, β), where q is
the configuration it is associated to, d is the distance from
the center to the funnel boundary, and β is the difference
in tangent direction between q and the funnel boundary.
From a geometry perspective, the funnel of a motion plan
is a sequence of circles that are centered along the nominal
motion plan and lie in planes perpendicular to the plan.

The funnel sections can be defined recursively. More
specifically, given a known funnel section ψi+1 =
(qi+1, di+1, βi+1) and a section of the nominal motion
plan ρi connecting qi and qi+1, we can compute the funnel
section ψi = (qi, di, βi) centered at qi.

The core idea of computing ψi is to extend the funnel
boundary at ψi+1 with maximum curvature curves, and when
such curves reach the cross section at ψi, we take the
minimum distance to pi as di. The minimum distance is
always obtained within the plane that the nominal motion
plan section lies in. The detailed geometry is shown in Fig. 4.
Recall that our goal is to compute ψi, and since qi is known,
we only need to determine di and βi. Given that funnel
section ψi+1 and minimum radius of curvature rmin are
known, we compute c′i, which is the center of the maximum
curvature arc. Similarly, the nominal motion plan section
(parameterized with qi+1, ri, and αi) is also given, and we
can compute the center of the centered motion plan section
ci. Then, we compute the chord length considering the line
passing ci and pi and the circle centered at c′i with radius
rmin. Additionally, with the distance between ci and the
projection of c′i on line (ci,pi), we subsequently get the
length of line segment (ci, fi), denoted as ∥ci − fi∥2. Given
∥ci − pi∥2 = ri, we now have

di = ri − ∥ci − fi∥2.

With fi+1 known and fi computed as above, we can then
compute α′

i. Finally, the difference in tangent direction can
be computed as

βi = βi+1 + α′
i − αi.

It can be seen that from any point gi inside the funnel sec-
tion ψi, with any orientation bounded with the orientation of
configuration qi and the orientation at the funnel boundary,
there exists a kinematically feasible curve that reaches a point
gi+1 inside the funnel section ψi+1. The orientation at gi+1

Fig. 4. The funnel along a plan section (qi+1,qi) expands from a radius
of di+1 at qi+1 to a radius of di at qi based on the steerable needle’s
minimum radius of curvature rmin. The funnel’s angular deviation from the
deployment direction of the steerable needle grows from βi+1 to βi.

is bounded with the orientation of qi+1 and the orientation
at the boundary of funnel ψi+1.

This funnel definition is a conservative one, as we limit
funnel growth to the target orientation of the nominal motion
plan. Therefore, the funnel does not contain all steerable nee-
dle configurations for which plans to ptarget exist. However,
this strategy provides us with an estimate of a plan’s start
position robustness that is computationally lightweight and
allows for a circular funnel representation.

B. Computing the Funnel

We define the funnel as an ordered list ψ = [ψ1, . . . , ψn],
where each funnel section ψi corresponds to a steerable nee-
dle plan configuration qi. We compute the funnel’s expansion
along a plan Π backwards against the steerable needle’s
deployment direction. This process is outlined in Alg. 1.

We begin at the plan’s target configuration qtarget and
follow the plan towards its start configuration q1. The
funnel section corresponding to qtarget is ψt = {qt, 0, 0}, as
the funnel converges toward the plan’s target configuration
(Alg. 1, line 2). Starting at the target, we iterate over each
plan section ρi. We take steps of size s along each plan
section of length li. For each step, we compute qc, the
current configuration along the arc represented in ρi, by
interpolating between qi+1 and qi starting at qi+1 (Alg. 1,
line 8). Then, we compute the funnel’s expansion from ψi+1

at configuration qi+1 to qc as described in subsection IV-A,
resulting in current funnel section ψc. Finally, we test ψc for
collisions with obstacles (Alg. 1, line 10).

To ensure a collision-free funnel, we compute the mini-
mum distance to the current configuration qc:

FunnelCollisionDistance(qc) = argmin
v∈O

||pc − v||2.

If the minimum distance to an obstacle for qc is smaller
than the current funnel radius dc, the funnel is considered
to be in collision. In this case, we reduce the funnel radius
to d′c = FunnelCollisionDistance(qc). We also reduce the
angular deviation β′

c to zero as our method does not provide
guarantees for specific orientations. We assume that the
steerable needle can be automatically rotated at its insertion
point through an aiming device. We add ψ′

c = {qc, d
′
c, β

′
c}

to the front of ordered list ψ (Alg. 1, lines 12 - 14). For
consistency, we modify the nominal motion plan by inserting



Algorithm 1 Funnel Computation
1: function FUNNELCOMPUTATION(Π, O,s)
2: ψ[0] ← {0, 0}
3: Π′ ← Π
4: for i = n : −1 : 1 do
5: l = li
6: for j = li : −s : 0 do
7: lc = js
8: Πc ← Interpolate(ρi, lc)
9: ψc ← FunnelParameters(ψ[0], ρc, lc)

10: d ← FunnelCollisionDistance(qc)
11: if not dc ≤ d then
12: dc = d
13: βc = 0
14: ψ.pushFront(ψc)
15: li ← li − lc
16: Π′.Insert(ρc, i)
17: ψ.pushFront(ψc)

return Π′, ψ

an additional plan section ρc: Π′ = [. . . , ρi, ρc, ρi+1, . . . ],
with ρc = {qc, ri, lc, γi}. We set the remaining length of
ρi to li − lc and we proceed to analyze the remaining plan
section (Alg. 1, lines 15 - 16).

When we reach the end of the arc at qi, we add the latest
funnel section ψc to list ψ (Alg. 1, line 17). After iterating
over all plan segments as described above, the final size of
the funnel is ψ1 around p1. A diagram of a complete funnel
is shown in Fig. 3.

C. Valid Insertion Surface

The final radius of the funnel at the nominal motion
plan’s start configuration provides a metric of how robust
the steerable needle plan is to deviations. However, we
also have to take into account which areas of the funnel
are actually reachable from the insertion surface S. To do
so, we project the funnel opening onto S to determine a
valid insertion surface U , which is a subset of S. The
valid insertion surface consists of suitable alternative start
positions from which the target can be reached. We represent
S by a triangular mesh TS , a common representation used
when modeling surfaces in 3D anatomical models. For each
triangle in TS , we determine if it represents valid insertion
positions. Beginning at triangle t1, which contains the target
insertion point p1, we perform a breadth-first search among
neighboring triangles. We evaluate each triangle based on the
criteria outlined below. If a triangle t fulfills the criteria, we
expand the search to its neighboring triangles and we add t
to TU ⊂ TS , the set of valid insertion triangles.

We evaluate each triangle t as follows: first, we test if t lies
within the funnel. We find the position pi along the plan that
is closest to g, the centroid of t. We determine rtriangle, the
radius of the smallest circle centered at g that envelops the
entire triangle. The triangle is completely inside the funnel
if

||g − pi||2 + rtriangle ≤ di,

where di is the funnel radius at pi. For those triangles that are
positioned beyond the funnel but could be within reach, we
extend the steerable needle motion plan. This occurs because

Fig. 5. a) To be part of the valid insertion surface U , triangles should
be completely inside the funnel (green) or its extension (yellow). Triangles
partially outside the funnel (purple) are not considered to be reachable. b)
Only triangles (green) whose surface normal deviates less than 90 degrees
from the plans initial deployment direction q1 are considered to be part
of TU , other triangles (purple) are not. c) We project triangle positions
onto a plane normal to n1, the surface normal at the target insertion point.
Robustness metric R(Π, TS) is the radius of the largest circle that does not
contain triangles that are not part of TU .

the surface of TS is three-dimensional and therefore does
not always perfectly coincide with the surface of the funnel.
We add an additional straight section before the original start
configuration and we compute a corresponding funnel section
as described in section IV-A. We consider all triangles within
this extension to represent valid insertion positions as well.
Fig. 5a visualizes this procedure.

Next, we test if the triangle is oriented such that the funnel
can be reached. We assume that the steerable needle can take
on any orientation on the surface by using an aiming device
[6]. Therefore, it can reach the funnel from triangle t if

cos−1

(
nt · z

||z|| · ||nt||

)
≤ π

2
,

where nt is the surface normal of triangle t and z is the
steerable needle’s deployment direction in q1 (see Fig. 5b).
This is a conservative limit as it does not take the steerable
needle’s ability to curve into consideration. If both criteria
are met, we expand the search to the triangle’s unseen neigh-
bors in TS and add t to TU . After the search is terminated, we
paint all triangles in the valid insertion surface according to
their distance to the funnel boundary as shown in Fig. 1. This
coloring scheme results in a bullseye representation centered
around the target insertion point p1.

To quantify the size of the valid insertion surface U , we
determine its radius according to Eq. 1. Therefore, we project
the centroids g of all triangles in TU onto the plane in which
the circle lies:

g′ = g − (n1 · (p1 − g)) n1), (2)

as shown in Fig. 5c. Now we determine the maximum radius
such that all triangles closer to the target insertion point than
this distance are part of the valid insertion surface:

R(Π, TS) = max w
s. t. ||g′

j − p1||2 − rtriangle > w ∀tj ∈ TS \ TU , j ∈ N

where g′
j is the projection of the centroid of triangle tj

according to Eq. 2. This metric expresses how far from the
target insertion point the initial steerable needle’s insertion
can deviate on the insertion surface such that a plan to the
target still exists.



D. Backward Planning Strategy

To create nominal motion plans that we integrate with our
new metric, we use a backward planning strategy. We previ-
ously showed that this strategy efficiently finds plans from a
region to a point [19]. Although it is geared towards sampling
based planners, this strategy can be used in combination with
any steerable needle motion planner.

Our strategy involves planning backwards from the target
toward TS . With probability p, instead of extending an
existing partial plan (e.g., by adding a new node to a tree
structure), we sample a new orientation at ptarget and start a
new planning process form this new start pose. Thereby, we
create multiple, potentially interleaving planning processes
simultaneously until the planner finds a connection from TS
to the target position. To make this strategy more efficient,
we prune nodes that cannot connect to TS . When a sampling-
based planner is used, an additional speedup can be achieved
by biasing tree growth towards TS .

We run the planner in an anytime manner, i.e., we repeat
the planning process as time permits. Over time, the planner
finds new plans and keeps a record of the plan with highest
robustness that allow for more deviation in the needle’s start
configuration. The algorithm returns the best nominal motion
plan Π according to R, the desired insertion point p1, and the
valid insertion surface specified by TU from which a motion
plan to ptarget is guaranteed to exist. For each new needle
plan found, we compute its robustness measure R(Π, TS).

V. EVALUATION

We tested our approach in a lung biopsy scenario. Lung
cancer is responsible for the most cancer-related deaths in
the United States [41]. Early diagnosis through biopsy can
increase a patient’s chances of survival. A novel approach
for safe lung nodule biopsy involves a physician navigating
a bronchoscope through the airways and piercing a steerable
needle through the airway wall into the lung parenchyma,
and then handing off control of the procedure to a robot that
autonomously steers the needle to the target [42], [4]. Using
a steerable needle in a biopsy procedure can potentially
mitigate patient risk, as the needle is able to avoid collisions
with critical obstacles.

To model this scenario, we used a CT scan of in-vivo
human lungs from the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI) image
collection [43] with a voxel size of (0.6×0.6×0.7)mm. We
segmented the anatomy relevant for the obstacle map using
the method described in [44]. We used the surface of the
segmented airways as the insertion surface for the steerable
needle. We represented the surface by a triangular mesh
that we created with 3D Slicer [45]. We classified major
blood vessels and the boundary of the lung parenchyma as
obstacles. For collision detection, we use a nearest neighbor
search structure [46] containing the positions of all voxels
classified as obstacles in O as it allows for efficient detection
of voxels inside the funnel structure. We then randomly
sampled 50 target positions in the lung with a minimum

Fig. 6. a) The planning environment consists of the area inside the
lung parenchyma (grey). Major blood vessels (red) are considered critical
obstacles that have to be avoided. For each target (pink), we attempt to find
plans from the airways (yellow). b) For each plan found, we construct a
funnel around it (dark blue) to determine its start position robustness. We
choose the most robust plan with the largest valid insertion surface (light
blue).

distance of 1mm to obstacles. The lung environment as well
as the targets are shown in Fig. 6.

We used the following steerable needle hardware pa-
rameters in this simulation: the steerable needle’s diameter
was dneedle = 1.0mm, the maximum insertion length was
lneedle = 150mm, and the minimum radius of curvature was
rmin = 100mm, which is a conservative measure suitable for
medical applications [4], [1]. All simulations were run on a
3.7GHz 20-thread Intel Core i9-10900K CPU with 16GB of
RAM.

We demonstrated the versatility of our robustness met-
ric by integrating our funnel evaluation with two different
steerable needle planning algorithms. The first one is the
steerable needle planner by Patil et al. [12], and the second
one is an Asymptotic Optimality RRT (AO-RRT) [8] adapted
to steerable needles. We ran both planners using a backward
planning strategy described in subsection IV-D to find nom-
inal motion plans. For speedup, both algorithms used goal
sampling (with random samples from the insertion surface)
and pruned new samples from which the surface could not
be reached.

We also compared our funnel evaluation with a base-
line sampling based robustness evaluation strategy. For this
sampling based evaluation, we ran the steerable needle
motion planner the same way as for our funnel evaluation,
planning from a goal position towards the insertion surface.
For each new plan found after ti seconds, we determined
all triangles closer to the start configuration than the start
configuration’s minimum distance to an obstacle. We then
re-ran the steerable needle planner, this time not terminating
after one connection to the surface is found, but extending
the search tree with the goal of reaching all of these triangles.
To make a fair comparison, we included goal biasing with
a probability of 0.1 per sample, as was done in [19]. We
also pruned samples from which none of the triangles could
be reached. We terminated the tree extension process when
either plans to all eligible triangles were found or if no new
plan to a previously not reached triangle was found in the
past 2ti seconds. Then, we determined the minimum distance
to the closest triangle to which no plan from the goal was
found.



Fig. 7. We recorded plans the largest valid insertion surface found over
time for each target and computed the average and standard deviation across
10 runs. Our funnel evaluation strategy finds plans with larger valid surfaces
faster than the sampling based evaluation strategy, both in combination with
a) the Steerable Needle RRT and b) the AO-RRT algorithm.

Our planning experiment consisted of running the planning
process 10 times for a duration of 90 seconds to each
target. During each planning process, we tracked the largest
valid insertion surface found over time. We perform this
process for four algorithms: (i) sampling-evaluated steerable
needle RRT (ii) funnel-evaluated steerable needle RRT (iii)
sampling-evaluated AO-RRT and (iv) funnel-evaluated AO-
RRT. As the sampling based evaluation depends on the used
motion planning algorithm, we implemented both a steerable
needle RRT and AO-RRT version.

Fig. 7 visualizes the simulation results for all four com-
binations of planning algorithms and evaluation strategies.
For each of the 50 targets the respective planner ran for
90 seconds. We evaluated each plan found according to
the size of its valid insertion surface, saving the best plan
found for each target over time. We repeated this process
10 times and determined the mean and standard deviation
of the largest valid insertion surface found across runs for
each target over time. The funnel evaluation in combination
with the Steerable Needle RRT algorithm is able to find a
plan with a valid insertion surface with an average radius
of 7.4 mm (2.0 mm standard deviation per target). When
applied to plans found by the AO-RRT algorithm, it finds
plans with an average radius of 4.6 (1.1 mm standard
deviation). The sampling-based evaluation strategy only finds
an average radius of 2.3 mm (1.0mm standard deviation) with
the Steerable Needle RRT and 0.6 mm (0.4 mm standard
deviation) with the AO-RRT. The Steerable Needle RRT
finds more plans in the same amount of time than the AO-
RRT and therefore finds plans with larger valid insertion
surfaces faster.

VI. CONCLUSION

In this work, we introduce a metric to evaluate steerable
needle motion plans that considers uncertainty in the planned

start position due to inherent imprecision in preceding de-
ployment stages. We then introduce a strategy to evaluate
this metric that is agnostic to the motion planner used to
derive the nominal plans. To this end, we construct a funnel
around the steerable needle motion plan based on the steer-
able needle’s non-holonomic constraints and surrounding
obstacles. We project the funnel onto the insertion surface
to determine valid insertion positions. We express the size
of this valid insertion surface through a robustness measure
and we describe a planning scheme that finds steerable needle
plans optimal with respect to this measure. In simulation, we
show that our method finds plans with larger valid insertion
surfaces faster than a sampling based method. This result
is consistent across different motion planning algorithms in
our study, always finding valid insertion surfaces at least
more than 3 times larger than the sampling based method.
More importantly, our strategy provides a guarantee that for
any position on the valid insertion surface a plan to the
target exists. We also provide a tool to visualize that surface,
providing guidance to physicians.

While our method provides guidance to the needle inser-
tion position, it assumes an aiming device to adjust the initial
orientation. However, in some scenarios the aiming device
may be limited to restricted orientations, which should be
considered by the robustness metric. We are planning to
extend the metric computation accordingly. We are hoping
to test our funnel evaluation strategy and its bullseye visual-
ization in procedures in animal tissues.
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