
Parallel Sampling-Based Motion Planning with Superlinear Speedup

Jeffrey Ichnowski and Ron Alterovitz

Abstract— We present PRRT (Parallel RRT) and PRRT*
(Parallel RRT*), sampling-based methods for feasible and
optimal motion planning that are tailored to execute on modern
multi-core CPUs. Our algorithmic improvements enable PRRT
and PRRT* to achieve a superlinear speedup: when p proces-
sor cores are used instead of 1 processor core, computation
time is sped up by a factor greater than p. To achieve
this superlinear speedup, our algorithms utilize three key
features: (1) lock-free parallelism using atomic operations to
eliminate slowdowns caused by lock overhead and contention,
(2) partition-based sampling to reduce the size of each processor
core’s working data set to improve cache efficiency, and (3)
parallel backtracking to reduce the number of rewiring steps
performed in PRRT*. Our parallel algorithms retain the ability
to integrate with existing CPU-based libraries and algorithms.
We demonstrate fast performance and superlinear speedups in
two scenarios: (1) a holonomic disc-shaped robot moving in a
planar environment and (2) an Aldebaran Nao small humanoid
robot performing a 2-handed manipulation task using 10 DOF.

I. INTRODUCTION

Incremental sampling-based motion planners, such as the
Rapidly-exploring Random Tree (RRT) and RRT*, are used
in a variety of robotics applications including manipulation,
computational biology, and autonomous vehicles to find
paths through the robot’s free configuration space from a
start location to a goal location [1], [2]. We introduce PRRT
(Parallel RRT) and PRRT* (Parallel RRT*), parallelized
versions of RRT and RRT* that are tailored to execute on
modern multi-core CPUs.

Most modern PCs and mobile devices have between 2
and 32 processing cores, and this number is increasing. We
leverage these parallel architectures to introduce substantial
speedups in motion planning. Our algorithmic improvements
enable PRRT and PRRT* to achieve a superlinear speedup:
when p processor cores are used instead of 1 processor core,
computation time is sped up by a factor greater than p.

Our focus is on challenging motion planning scenarios
for which a large number (tens or hundreds of thousands)
of configuration samples is necessary to find a path or to
achieve the desired closeness to optimality. In RRT and
RRT*, the time spent computing nearest neighbors grows
logarithmically with each iteration as the number of samples
rises, whereas the time spent on collision detection decreases
as the expected distance between samples shrinks. Collision
detection typically dominates computation time in the early
iterations. But as the number of iterations rises and the
number of samples increases, nearest neighbor search will
dominate the overall computation.

J. Ichnowski and R. Alterovitz are with the Department of Com-
puter Science at the University of North Carolina at Chapel Hill, USA
{jeffi,ron}@cs.unc.edu

(a) The scenario (b) 1 core

(c) 4 cores (d) 32 cores

Fig. 1. We ran PRRT* for a 2D holonomic motion planning problem for
a disc-shaped robot for 10 ms on 1, 4, and 32 processor cores. The red line
shows the optimal path found. With the same wall clock time, adding more
processor cores increases the size of the tree, enabling fast computation of
higher quality motion plans on modern multi-core computers.

To enable speedup regardless of the computational bottle-
neck (e.g. collision detection or nearest neighbor searching),
we parallelize the outer loop of RRT(*): we create multiple
threads that each generate samples and incrementally extend
the graph data structure based on those samples. To paral-
lelize at this level, independently working threads must share
access to a common nearest neighbor search and motion
planning graph.

Traditionally, shared access might be controlled using
locks. In the lock-based approach, when a thread must access
a shared data structure, it first locks the data structure, then
accesses it, and finally unlocks it. When another thread
attempts to access a locked data structure it waits (i.e. is
blocked) until the data structure is unlocked. If the lock
covers a large data structure, then one thread may unnec-
essarily block other threads. If instead many locks are used
to cover smaller data structures, then threads will repeatedly
lock data structures unnecessarily, leading to high overhead.
As the number of processor cores increases and as the
number of samples grows to handle more complex motion
planning problems, more computation time must be spent on
nearest neighbor checking and lock contention rises, causing

sublinear speedup.
To achieve superlinear speedup, PRRT and PRRT* intro-

duce three key algorithmic features:
1) Lock-free parallelism using atomic operations: To

eliminate slowdowns caused by lock overhead and
contention, PRRT(*) uses lock-free shared data struc-
tures that are updated using an atomic compare-and-
swap (CAS) operation, a universal primitive [3]. A
CAS operation compares a single variable to a given
value and, only if they are the same, modifies the
variable to the given value. If the comparison fails
due to an update made by another thread, the update
is reformulated with the new information, and tried
again until it succeeds or is no longer necessary. In
PRRT(*) we observe that as the number of samples
n increases, the probability that any of the p threads
are updating the same part of the motion planning tree
decreases (limn→∞O(p/n) = 0). As a consequence,
CAS operations rarely fail and we avoid the unneces-
sary blocking and high overhead associated with locks,
giving us the expectation of at least linear speedup.

2) Partition-based sampling: To reduce the size of each
thread’s working data set, we partition the configura-
tion space into non-overlapping regions and assign a
partition to each thread. Partitioning has two benefits.
First, it reduces the likelihood that two threads will
simultaneously attempt to modify the same part of the
shared data structures, reducing CAS failures. Second,
as each processor core is expected to work in a smaller
subset of the nearest neighbor data structure, more of
the relevant structure can reside in each core’s cache,
thus creating an opportunity for superlinear speedup.

3) Parallel backtracking: During the rewiring phase of
RRT*, the algorithm evaluates the costs of paths to
nearby nodes, rewires them through the new node
if such routing would produce a shorter path, and
percolates updates up the tree. To reduce the number
of rewiring operations in RRT*, we ensure that when
multiple threads attempt to rewire the same portion of
the tree, only the one with the better update continues.
This frees the other threads to continue expanding the
RRT*, effectively reducing computation effort relative
to single-threaded RRT* for percolating rewiring up
the tree.

A key advantage of creating a parallel motion planner for
a standard shared-memory CPU-based computing platform
(rather than, for example, a GPU) is that it enables direct
integration with existing libraries for collision detection,
robot kinematics, and physics-based simulation. We evaluate
our method in 2 scenarios: (1) a 2-DOF disc-shaped robot
in a planar environment, and (2) an Aldebaran Nao small
humanoid robot performing a 2-handed manipulation task
using 10 DOF. The latter scenario requires a large number
of samples (tens to hundreds of thousands) to obtain a high
quality solution. Our results confirm the superlinear speedup:
computation time for the Nao robot is reduced by a factor
of 36x when using 32 processor cores instead of 1 core.

II. RELATED WORK

Sampling-based motion planners include several compo-
nents that can naturally be parallelized, and prior work
has taken multiple avenues to exploit this parallelism using
multiple CPUs and GPUs.

Amato et al. [4] observed that sampling-based motion
planning using probabilistic roadmaps (PRMs) is “embar-
rassingly parallel.” With their CPU-based approach, they
generate millions of samples and connect 1500. Computation
time is ostensibly dominated by computing samples and
collisions. Their results however exhibit sublinear speedup,
with lock contention possibly slowing it down.

Several approaches to parallelizing motion planning across
multiple cores/processors have utilized multiple tree-like data
structures. Carpin et al. [5] introduced two approaches for
shared-memory CPU-based platforms: (1) running several
RRT computations in parallel and choosing the best, and
(2) utilizing locked structures to synchronize updates to the
shared data structures between parallel computations. They
use a linear nearest neighbor search, and their results taper
off at 3500 samples. Plaku et al. [6] introduced the Sampling-
based Roadmap of Trees (SRT) algorithm, which distributes
computation on a cluster to solve high-dimensional planning
problems. SRT subdivides the motion planning problem into
“milestones” solved by another planner, e.g. RRT, and then
connects the milestones together using a bi-directional algo-
rithm. SRT achieves near-linear speedup that slightly tapers
at higher processor counts. Otte et al. [7] also distribute the
generation of independent random path-planning trees among
several threads and share information between threads about
the best known path, allowing threads to reduce computation
(and thus gain a speedup) by not introducing samples that
are worse than the best known.

GPU-based parallel computation is increasingly being
used to parallelize and accelerate different components of
sampling-based motion planners. G-Planner [8] uses GPUs to
accelerate all components of a PRM motion planner. Lengel
et al. [9] use GPU hardware to accelerate path planning for
low DOF robots using rasterization techniques. Hoff et al.
[10] and Kenneth et al. [11] use GPUs to accelerate sampling
via Voronoi diagrams to bias probabilistic roadmaps. Foskey
et al. also used GPUs to accelerate hybrid planners based
on sampling and Voronoi diagrams [12]. Kider et al. [13]
created a GPU-based planner for R*, a randomized version
of A*, that retains the theoretical properties of R* but with
improved experimental results.

Although GPUs are a powerful tool for some applica-
tions, their single-instruction-multiple-data (SIMD) execu-
tion model constrains algorithm design. When each thread
needs to do something different (inherently divergent), such
as traversing a space partitioning tree, the SIMD model loses
nearly all ability to parallelize [14]. Another challenge with
GPU approaches is that, while they typically gain the benefit
of higher computational throughput associated with GPUs,
they sacrifice some interoperability with standard systems
and libraries based upon CPUs.

Bialkowski et al. [15] parallelize RRT* and related meth-
ods by improving the rate of collision detection. This
approach results in substantial speedups for environments
where collision detection dominates processing time. But due
to Amdahl’s law [16], parallel performance will taper as the
number of samples increases and nearest neighbor checks
begin to dominate as discussed in Sec. I.

III. PROBLEM FORMULATION

A. Parallel Computing Environment

Our target computing environment is the one avail-
able in almost every modern computer: a multi-core/multi-
processor concurrent-read-exclusive-write (CREW) shared-
memory system with atomic operations that synchronize
views of memory between threads running on different cores.
This is the model in current generation of x86-64 multi-core
processors as well as many other CPU architectures.

In this environment we use core to mean a single hardware
based execution unit. A processor may have one or more
cores, and a computer may have one or more processors.
Each core is capable of executing an independent thread
simultaneous to all other cores. The total number of cores
p is maximum number of simultaneously executing threads.
Speedup Sp = T1/Tp is the ratio of the sequential (single-
threaded) execution time T1 to parallel execution time Tp
with p cores. Linear speedup means Sp = p, superlinear
means Sp > p.

Multi-core processors typically have a cache memory
hierarchy that includes one or more small but fast caches
local to each core (L1 and L2) and a larger and slower cache
shared among cores (L3). When the data set in use by a core
is smaller, the core uses the faster local caches more often
and gains a proportional speed benefit. CPU caches can be
leveraged to gain superlinear speedups by distributing the
working dataset into smaller chunks across multiple cores.

B. Problem Definition

Let C ∈ Rd be the configuration space of the robot and
Cfree ⊆ C denote the subspace of the configuration space
for which the robot is not in collision with an obstacle. Let
q ∈ C denote a configuration of the robot. The PRRT(*)
planner requires as input the start configuration qinit of the
robot and a set of goal configurations Qgoal ⊆ Cfree.

The objective of PRRT (feasible motion planning) is to
find a path Π : (q0, q1, q2, . . . , qend) such that q0 = qinit and
qend ∈ Qgoal and Π lies in Cfree. The objective of PRRT*
(optimal motion planning) is to find a feasible path such that
the cost of the path is minimized, where the cost of a path is
defined to be the summation of the costs of sequential pairs
of configurations along the path Π.

C. Algorithm Inputs

Similar to their sequential motion planning counterparts
RRT and RRT*, PRRT(*) requires as input the definition of
the problem-specific functions. Given a set of configurations
V and any two configurations q1, q2 ∈ V , FEASIBLE(q1, q2)
returns false if the path (computed by a local planner

[1]) from q1 to q2 collides with an obstacle or violates
some motion constraint, and true otherwise. The function
STEER(q1, q2) returns a new configuration that would be
reached if taking a trajectory from q1 heading toward q2
up to some maximum user-specified distance. For PRRT*,
the function COST(q1, q2) specifies the cost associated with
moving between two configurations q1 and q2, which can
equal control effort, Euclidean distance, or any problem-
specific user-specified metric. PRRT* has the same additional
constraints on the cost function as RRT*. We also require a
function GOAL(q) that returns true if q ∈ Qgoal and false

otherwise.
The above functions are standard in RRT and RRT*,

allowing existing systems based on these implementations
to remain largely unchanged yet benefit from parallelism.
For the algorithm we present here, the only additional re-
quirement we add is that the problem-specific functions must
be either (1) thread-safe and non-blocking or (2) capable of
having multiple non-shared instances in the same program.

IV. THE PRRT AND PRRT* ALGORITHMS

The PRRT and PRRT* algorithms each maintain shared
data structures for nearest neighbor checks, the RRT or RRT*
graph τ , the approximate iteration number, and the best path
to goal found by any of the threads. PRRT and PRRT*,
shown in Algorithm 1, begin by partitioning the configu-
ration space into non-overlapping regions and launching an
independent thread for each partition. For peak performance,
each thread runs on a dedicated core.

Algorithm 1 PRRT and PRRT*
1: initialize τ
2: for i = 1 . . . thread count do
3: s← partition(i, thread count)
4: wi ← start new thread PRRT(*) Thread(τ, s)

A. Partition-based Sampling

PRRT(*) partitions the configuration space into non-
overlapping regions for random sampling in order to localize
each thread’s operations to a smaller portion of configuration
space, and thus a smaller portion of the kd-tree and RRT(*)
graph. The result is that each core’s working data set
on average shrinks allowing for more effective use of its
caches and enabling superlinear performance. In our results
presented in Sec. V, we partition by evenly subdividing
along one dimension of the configuration space. The best
choice of partitioning scheme may vary based on the robot’s
environment.

B. PRRT

Lock-free parallel RRT, shown in Algorithm 2, is nearly
identical to standard RRT except that each thread only sam-
ples in a partition, and it uses a lock-free nearest-neighbor
data structure (introduced in Sec. IV-E). Additionally before
adding newly initialized RRT path nodes to the nearest-
neighbor data structure (and thus becoming “visible” to other
threads), a suitable memory fence operation is issued to

prevent other threads from seeing a partially initialized view
of the newly added path node.

Algorithm 2 PRRT Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: qnear ← nearest(τ, qrand)
4: qnew ← STEER(qnear, qrand)
5: if FEASIBLE(qnear, qnew) then
6: PRRT Insert(τ, qnear, qnew)
7: if GOAL(qnew) then
8: done ← true

C. PRRT* Overview

The parallel lock-free version of RRT* expands the tree
much like RRT with the additional step of “rewiring” a
small neighborhood of the tree to more optimal paths.
PRRT* Thread, shown in Algorithm 3, is the main loop
of a thread running PRRT*. It works much like standard
RRT* with four notable differences: (1) sampling is done
within a partition of the configuration space (line 2), (2)
nearest-neighbor search is performed using a lock-free kd-
tree (lines 3 and 6), (3) new configurations are added to the
RRT(*) tree in a manner that accounts for parallelism (lines
15–18)—specifically they are fully initialized before being
added to the nearest-neighbor structure, and (4) rewiring is
accomplished entirely via lock-free operations.

Algorithm 3 PRRT* Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: nnearest ← nearest(τ, qrand)
4: qnew ← STEER(qnearest, qrand)
5: if FEASIBLE(nnearest.config, qnew) then
6: Nnear ← NEAR(τ, qnew, |τ |)
7: cmin ←∞
8: for all nnear ∈ Nnear do
9: if FEASIBLE(nnear.config, qnew) then

10: clink ← COST(nnear.config, qnew)
11: cpath ← nnear.edge.cost +clink
12: if cpath < cmin then
13: nmin ← nnear
14: cmin ← cpath
15: nnew.config ← qnew
16: enew ← (nnew, cmin, nmin)
17: nnew.edge ← enew
18: LockFreeKDInsert(nnew)
19: if enew is expired then
20: PRRT* Update(nnew.edge, enew)
21: if GOAL(enew) then
22: record goal
23: for all nnear ∈ Nnear \ {nmin} do
24: RRT* Rewire(τ, nnear, nnew)

D. PRRT* Rewiring

During the rewiring phase of the algorithm, RRT* eval-
uates the costs of paths to nearby nodes and rewires them

through the new sample if such routing is both FEASIBLE

and results in a shorter path. One approach caches the path
cost with the node, and pushes updates down the tree when
a node is rewired.

To rewire in parallel, PRRT* formulates rewiring (Algo-
rithm 4) into a CAS operation that guarantees the above
conditions hold true, even if another thread is updating
the same node. If the CAS update fails, it means that the
assertion about the new trajectory being shorter may now be
incorrect, and the update is re-evaluated and tried again if it
would still be shorter.

Algorithm 4 PRRT* Rewire(τ , nnear, nnew): conditionally
rewires a near node through a newly created node, if doing
so creates a short path

1: enew ← nnew.edge
2: enear ← nnear.edge
3: clink ← COST(nnew.config, nnear.config)
4: c′near ← enew.cost +clink
5: if c′near ≥ enear.cost or

not FEASIBLE(nnew.config, nnear.config) then
6: return
7: repeat
8: e′near ← (nnear, c

′
near, nnew)

9: if CAS(nnear.edge, enear, e′near) then
10: add e′near to enew.children
11: PRRT* Update(e′near, enear)
12: if enew is expired then
13: PRRT* Update(nnew.edge, enew)
14: remove enear from enear.parent.children
15: return
16: enear ← nnear.edge
17: until c′near ≥ enear.cost

CAS operations only work on single memory operands.
The rewiring assertion however is made about two pieces of
information: the trajectory and the cost of that trajectory. We
thus modify the data structures to encapsulate both trajectory
and cost into a single unit making it suitable for a CAS.
The data structures we define are nodes, representing reach-
able valid configurations, and edges, representing trajectories
from one node to another. The edges form a linked tree
structure that represents known trajectories to any nodes. To
get from the initial configuration to any node’s configuration,
the edge structure is followed (in reverse) from the node
back to the root of the tree where the initial configuration
is stored. An edge’s path to root never changes, and thus
its computed trajectory cost never changes. When a PRRT*
finds a shorter path to a node, the node’s edge is CAS with
the better edge. The old edge will still essentially be present
in the edge tree, but is no longer referenced from the node.
We call an edge in this state “expired”, and detect it when
edge.node.edge 6= edge. (Expired edges can be “garbage
collected” and reused, but care must be taken to avoid the
ABA problem [3].)

By computing CAS operations around an edge, PRRT*
guarantees that any update it makes results in an equal or

Algorithm 5 PRRT* Update(enew, eold): Moves all the
active children from a now expired parent edge to the new
parent edge.

1: nparent ← enew.parent
2: done ← false
3: repeat
4: echild ← remove first eold.children
5: if echild = ∅ then
6: if enew is expired then
7: PRRT* Update(enew.node.edge, enew)
8: done ← true
9: else if echild is not expired then

10: nchild ← echild.node
11: cchild ← enew.cost +COST(nchild, nparent)
12: e′child ← (nchild, c

′
child, enew)

13: if CAS(nchild.link, echild, e′child) then
14: add e′child to enew.children
15: PRRT* Update(e′child, echild)
16: until done

better path, and thus the solution converges towards opti-
mality. After rewiring a node through a better path, the new
shorter path is recursively percolated to the nodes that link
in to the rewired node. This update process (Algorithm 5)
atomically replaces edges to the expired parent with shorter
ones.

In the case of single-threaded execution, PRRT* runs
exactly like sequential RRT*. When multiple threads are
executing simultaneously, however, some rewiring decisions
will be made without the information available from a
simultaneous update of another thread. In such a case, a
rewiring that would occur under sequential execution would
be missed. The probability of such a missed update increases
with the number of processors p but decreases with the size
of the PRRT* graph n. As time progresses, a previously
missed update will be fixed with a future sample with
increasing probability. When viewed from the perspective
of one of the running threads, the thread is executing RRT*
with additional information from other threads occasionally
being added, which can only improve the solution. Thus the
asymptotic optimality of RRT* holds for PRRT*.

E. Lock-Free KD-Tree

PRRT(*) performs nearest-neighbor searches using a kd-
tree [17] split on mid-points [18] and is adapted to to allow
concurrent inserts using CAS. A kd-tree successively divides
space with splitting hyperplanes at each level of the tree.

LockFreeKDInsert (Algorithm 6) repeatedly bisects the
region for insertion by a different dimension (line 7, 8)
until if finds a region that does not contain a kd-node. Once
found, it performs a CAS (lines 9, 14) to change the pointer
from null to the new kd-tree node. If the CAS succeeds, the
node is inserted and the algorithm returns. If instead another
thread already updated the pointer, the CAS will fail, and
the algorithm will continue to walk down the tree until it
can attempt another insert.

Algorithm 6 LockFreeKDInsert(nnew)
1: qnew ← nnew.config
2: knew.rrt node ← nnew
3: cmin ← Cmin

4: cmax ← Cmax

5: k ← kd root
6: for a = 0→∞ do
7: p← (cmin[a mod κ] + cmax[a mod κ])÷ 2
8: if qa < p then
9: if (k.lt = ∅) and CAS(k.lt, ∅, knew) then

10: return
11: cmax[a mod κ]← p
12: k ← k.lt
13: else
14: if (k.gt = ∅) and CAS(k.gt, ∅, knew) then
15: return
16: cmin[a mod κ]← p
17: k ← k.gt

The implementations of NEAREST and NEAR based
upon this kd-tree implementation do not change from their
standard version. When they encounter a null branch, they
terminate their traversal as with the sequential version.
The parallel nature of the inserts and queries changes the
semantics to mean that they return a snapshot in time of the
nearest node and near nodes respectively.

The kd-tree can be used for any number of dimensions,
but may become inefficient in very high dimensional spaces
[19]. Even in such cases, kd-trees distribute random updates
throughout the tree, leading to low contention over insertion
points. In brute-force approaches based upon arrays or lists,
inserts at a single insertion point (e.g. the tail of the list/array)
may result in contention.

In practice PRRT(*) could be used with other nearest-
neighbor search approaches that allow for non-blocking
searches, allow low-contention updates, and provide parti-
tioned locality properties.

V. RESULTS

We evaluate our method with two scenarios: (1) a holo-
nomic disc-shaped robot moving in a planar environment,
and (2) an Aldebaran Nao small humanoid robot performing
a 2-handed manipulation task using 10 DOF. Results are
computed on a system with four Intel x7550 2.0GHz 8-
core Nehalem-EX processors for a total of 32 cores. Each
processor has an 18MB shared L3 cache and each core
has a private 256KB L2 cache as well as 32KB L1 data
and instruction caches. Although the x7550 supports Hyper-
Threading (Intel’s simultaneous multithreading technology),
this facility is turned off in the BIOS.

A. 2D Holonomic Disc-shaped Robot

We executed our PRRT* implementation for a 2D holo-
nomic disc-shaped robot that must move to the goal in the
environment shown in Fig. 1(a). To demonstrate PRRT*’s
ability to compute higher quality paths per given time than

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. An example motion plan created for the Nao robot. The robot carries an effervescent antacid in one hand and places it over a glass of water held
in the other hand, all while avoiding the bottles on the table and not spilling the water (i.e. FEASIBLE is constrained to keep the glass mostly level). In
the last frame, after the robot reaches the goal configuration, it drops the antacid into the water.

RRT* on a multi-core PC, we executed the algorithms on
1, 4, and 32 cores for 10 ms of wall clock time. As shown
in Fig. 1, with more cores the size of the constructed tree
in the 10 ms increases substantially, visibly improving the
quality of the computed motion plan. More space is explored
and more narrow passages are discovered. The best path is
improved from 6.92% above optimal with 1 core to 1.62%
above optimal with 4 cores and to 0.98% above optimal with
32 cores.

B. 2-handed Aldebaran Nao task (10 DOF)

We executed our PRRT* implementation on an Aldebaran
Nao robot with the task of dropping an object held in one
hand into a cup held in the other while avoiding obstacles.
Each arm has 5 degrees of freedom—shoulder pitch/roll,
elbow yaw/roll and wrist yaw. All joints are bounded revolute
joints, and we define COST as a Euclidian distance. The robot
must avoid obstacles on the table in front of it while keeping
the cup upright throughout its motion. We define GOAL

to return true for configurations that satisfy the following
constraints (subject to a tolerance): (1) the (x, y) coordinate
for the left hand and the right hand is the same, (2) the left
hand’s z coordinate is higher than the right hand, (3) the
object in the left hand is pointing down, and (4) the cup
in the right hand is held upright. The function FEASIBLE

tests not only for collisions of the robot and objects in the
environment but also requires that the cup be upright.

To demonstrate PRRT*’s ability to compute high quality
solutions faster on multiple cores, we executed the Nao
scenario for n = 100, 000 samples with varying core counts
and averaging over 10 runs. As shown in Fig. 3, we observe
superlinear speedup with PRRT*. Executing PRRT* on 1
core (thus making it equivalent to standard RRT*) requires
420 seconds. On 32 cores, PRRT* required only 11.6 seconds
for the same number of samples. PRRT* was 36x faster with

Fig. 3. PRRT* run on the Nao 10 DOF task for 100,000 samples at
varying core counts. At 100,000 samples and high core counts, PRRT*
experiences superlinear speedup, whereas a lock-based approach cannot
exceed 4x speedup.

no significant difference in the quality of the computed paths.
We also executed the Nao scenario using other paralleliza-

tion approaches. When we use the lock-free approach of
PRRT* but without partition-based sampling, we see linear
speedup. We also executed RRT* parallelized by locking
the kd-tree: at 100,000 samples, nearest neighbor searches
dominate the computation time and threads spend most of
their time waiting for access to the kd-tree. However, we
note that when the size of the tree τ is smaller, collision-
detection dominates computation time and the lock-based
approach achieves a more reasonable speedup. At 2,000
samples on 32 cores, we observe a 16.4x speedup with
locked kd-trees, although PRRT* still outperforms with a
28.9x speedup. The locked version’s speedup diminishes as
more samples are added. In contrast, the lock-free PRRT*
overcomes thread startup overhead and reaches 32x speedup
by the 20,000th sample before increasing to 36x speedup by
100,000 samples.

To demonstrate how PRRT* can be used to produce better

Fig. 4. PRRT* run for 3 seconds on the Nao scenario. The graph shows
increasing processor counts generating more samples, resulting in better
solutions.

results per unit time, we also ran the Nao scenario 50 times
for 3 seconds at various processor core counts. As shown
in Fig. 4, increasing the number of processor cores enables
us to build trees with more samples per second and find
better solutions. The path cost from the initial configuration
to the goal shows convergence to an optimal solution as the
number of samples increases, as expected with RRT*. We
also observed that RRT* would find paths to the goal in only
80% of the 3-second runs on 1 core. With 2 cores, PRRT*
found solutions in 98% of the runs. At higher core counts,
PRRT* found solutions in all runs.

VI. CONCLUSION

We presented PRRT (Parallel RRT) and PRRT* (Parallel
RRT*), sampling-based methods for feasible and optimal
motion planning that are tailored to execute on modern
multi-core CPUs. Using atomic updates and lock-free data
structures, PRRT and PRRT* remove barriers to scaling to
higher processor core counts, enabling linear speedup. We
further show how using a non-overlapping partition-based
sampling strategy effectively localizes a thread’s computation
to a region of memory, increasing the overall cache efficiency
and enabling superlinear speedup.

Our method is best suited for challenging motion planning
problems in which a large number of samples is required to
find a feasible or near optimal solution. As the number of
samples increases, computation time gradually changes from
being dominated by collision detection to being dominated
by nearest neighbor search. PRRT and PRRT* parallelize
the entire computation of the motion planning tree and
thus maintain speedup ratios regardless of which portion
of the computation is dominating. We demonstrated fast
performance and superlinear speedups in 2 scenarios: (1)
a holonomic disc-shaped robot moving in a planar envi-
ronment, and (2) the Aldebaran Nao small humanoid robot
performing a 2-handed, 10-DOF manipulation task.

In future work, we will investigate adaptive approaches
for distributing sampling partitions between threads, and
additional nearest neighbor approaches that may allow for
even more effective use of cache locality. We will also
leverage the CPU-based nature of PRRT(*) to integrate with
OMPL [20] and ROS [21].

VII. ACKNOWLEDGMENT

The authors thank Allan Porterfield at the North Carolina
Renaissance Computing Institute (RENCI) for providing
access to computation hardware and Jan Prins and Stephen
Olivier for their input on parallel algorithms and platforms.
This research was supported in part by the National Sci-
ence Foundation (NSF) through awards #IIS-0905344, #IIS-
1117127, and #IIS-1149965 and by the National Institutes
of Health (NIH) under award #R21EB011628.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, June 2011.

[3] J. D. Valois, “Lock-free linked lists using compare-and-swap,” in Proc.
ACM Symp. Principles of Distributed Computing, 1995, pp. 214–222.

[4] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), May 1999, pp. 688–694.

[5] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proc. 8th Conf. Italian Association for Artificial Intelligence, 2002,
pp. 834–841.

[6] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap
of trees for large-scale motion planning,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), April 2005, pp. 3879–3884.

[7] M. Otte and N. Correll, “Path planning with forests of random trees:
Parallelization with super linear speedup,” Department of Computer
Science University of Colorado at Boulder, Tech. Rep. CU-CS 1079-
11, Apr. 2011.

[8] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time motion
planning and global navigation using GPUs,” in AAAI Conference on
Artificial Intelligence (AAAI), July 2010, pp. 1245–1251.

[9] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-
time robot motion planning using rasterizing computer graphics hard-
ware,” in Proc. ACM SIGGRAPH, 1990, pp. 327–335.

[10] K. Hoff III, T. Culver, J. Keyser, M. C. Lin, and D. Manocha,
“Interactive motion planning using hardware-accelerated computation
of generalized Voronoi diagrams,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), Apr. 2000, pp. 2931–2937.

[11] C. P. Kenneth, K. H. Iii, M. C. Lin, and D. Manocha, “Randomized
path planning for a rigid body based on hardware accelerated voronoi
sampling,” in Proc. Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2000.

[12] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A Voronoi-
based hybrid motion planner,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Oct. 2001, pp. 55–60.

[13] J. T. Kider Jr., M. Henderson, M. Likhachev, and A. Safonova, “High-
dimensional planning on the GPU,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2010, pp. 2515–2522.

[14] W. Hwu, GPU Computing Gems Jade Edition, ser. Applications of
GPU Computing Series. Elsevier Science & Technology, 2011.

[15] J. J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT*,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Sept. 2011, pp. 3513–3518.

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 3rd ed. Morgan Kaufmann, 2003.

[17] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sept.
1975.

[18] S. Maneewongvatana and D. M. Mount, “It’s okay to be skinny, if
your friends are fat,” in Center for Geometric Computing 4th Annual
Workshop on Computational Geometry, 1999.

[19] A. Yershova and S. M. LaValle, “Improving motion-planning algo-
rithms by efficient nearest-neighbor searching,” IEEE Trans. Robotics,
vol. 23, no. 1, pp. 151–157, 2007.

[20] The Open Motion Planning Library (OMPL), “The Open Motion
Planning Library (OMPL),” http://ompl.kavrakilab.org, 2010.

[21] Willow Garage, “Willow Garage Robot Operating System (ROS),”
http://ros.org, 2010.

