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Abstract

Local photometric descriptors are a crucial low level
component of numerous computer vision algorithms. In
practice, these descriptors are constructed to be invariant
to a class of transformations. However, the development
of a descriptor that is simultaneously robust to noise and
invariant under general deformation has proven difficult.
In this paper, we introduce the Topological-Attributed Re-
lational Graph (T-ARG), a new local photometric descrip-
tor constructed from homology that is provably invariant to
locally bounded deformation. This new robust topological
descriptor is backed by a formal mathematical framework.
We apply T-ARG to a set of benchmark images to evaluate
its performance. Results indicate that T-ARG significantly
outperforms traditional descriptors for noisy, deformingim-
ages.

1. Introduction

Local photometric descriptors have found successful ap-
plication in numerous areas such as object recognition [8],
wide baseline matching [13], and image retrieval [10]. Tra-
ditionally these descriptors have been constructed in order
to be invariant to a specific class of transformations while
remaining robust to noise. In practice, most have focused
on the development of descriptors that are invariant under
affine transformations as this is what occurs when a view-
point changes relative to a rigid object with locally planar
regions. Unfortunately, this class of transformations is un-
able to encapsulate the class of continuous deformations
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Figure 1. Sample Results. The image on the right is constructed af-
ter deforming the left image by30% and the red circles connected
by red lines correspond to matches according to the algorithm pre-
sented in this paper.

that describe how non-rigid objects transform, such as an
animal moving its body or a cloth being folded. Observe
that outside of occluding points, the class of continuous de-
formations is able to describe the transformation between
pairs of views of the same scene or the evolution of a de-
forming object seen from the same view. Under deforma-
tion, it is well known that the appropriate invariant is a topo-
logical one, i.e. the number of connected components or
holes. However, such invariants have two principal short-
comings: (1) they are not resilient to the presence of noise
and (2) they tend not to be distinct.

In this paper, we propose a novel framework for build-
ing a topological descriptor that is invariant under locally
bounded deformations and that addresses these two short-
comings. First, we make the topological invariants robust
to noise by defining them in a local region over several
inter-level sets of the intensity image. Second, we make the
topological invariants distinct by describing the relational
structure of nearby topological invariants. In so doing, we
define a robust, distinct descriptor called the Topological-
Attributed Relational Graph orT-ARG. Fig. 1 illustrates the
performance of our descriptor on a typical pair of images.
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1.1. Related Work

Due to space constraints, we refer the reader requiring
an introduction to local descriptors to the comprehensive
survey of the field by Mikolajczyk et al. [11]. They also
provide a useful performance evaluation of several local de-
scriptors including complex filters [12], gradient location
and orientation histograms (GLOH) [11], shape context [1],
scale invariant feature transform (SIFT) [9], spin image [4],
and steerable filters [2]. In particular, SIFT and GLOH out-
perform all other descriptors. Our method can be loosely
categorized with the so-called distribution based descrip-
tors, like GLOH and SIFT, which use histograms to capture
local image information. Importantly our method differs
from these aforementioned approaches since it is invariant
to all locally bounded deformations.

Others have attempted to develop local descriptors that
are deformation invariant. The most promising such de-
scriptor was developed by Ling et al. [5] who treat an in-
tensity image as a surface embedded in 3D space, with in-
tensity weighted relative to distance in thex, y plane. They
show that as this weight increases, geodesic distances on
the embedded surface are less affected by image deforma-
tion. They use geodesic sampling to construct a descriptor
called the geodesic-intensity histogram (GIH). The method,
though interesting, is not resilient to the presence of noise,
since noise in either image does not scale well with respect
to the weighting parameter. Our method on the other hand
is provably robust to the presence of noise since it operates
over several inter-level sets of the intensity image simulta-
neously. Our new descriptor T-ARG is motivated by our
recent work that defines a topological description of occlu-
sions during deformation [7].

1.2. Overview

Our principal contributions are two-fold. First, in Sec-
tion 3 we develop a notion of topological invariance under
the assumption of locally bounded deformation. Second, in
Section4 we show how these topological invariants can be
combined locally to define a descriptor that is distinct. The
rest of the paper is organized as follows: Section2 describes
our imaging model and describes the type of properties we
wish our descriptor to satisfy; Section5 describes explicitly
how to employ T-ARG to compare descriptors; Section6
compares the performance of T-ARG to SIFT and GLOH
using a precision versus recall metric; and Section7 con-
cludes the paper.

2. Image Model

In this section we introduce our imaging model and for-
malize the objectives of our work. Our analysis is done on
grayscale images, but can be generalized to a multi-channel
imaging modality in a straightforward manner. Suppose we

are given two grayscale imagesI0, I1 : Ω → R defined over
an image domainΩ ⊂ R

2 and related by:

I1(x) = I0 ◦ f(x) + p(x), (1)

wherep : Ω → R is a scalar-valued function andf : Ω →
Ω is a homeomorphism that satisfies:

|p(x)| ≤ Kp,
hL(||x− x′||) ≤ ||f(x)− f(x′)||, and

||f(x)− f(x′)|| ≤ hU (||x − x′||)
(2)

for all x, x′ ∈ Ω, wherehL, hU : R+ → R
+ are monotonic

increasing functions withhL(ρ) ≤ hU (ρ) for all ρ ∈ R
+,

and||·|| is the Euclidean norm. The functionsp andf can be
thought of as a bounded perturbation and a locally bounded
deformation, respectively. The constantKp is a perturba-
tion bound, and the functionshL andhU bound the amount
of local deformation. Observe that outside of points of oc-
clusion, this model is able to describe the transformation
between pairs of views of the same scene or the evolution
of a deforming object. An example of such deformation
functions are:

hL(ρ) = (1 −Kd)ρ and hU (ρ) = (1 +Kd)ρ (3)

which corresponds to aLipschitz deformation model with
deformation constantKd. This bounding function requires
that deformations are bounded linearly with respect to the
distance between points in an image. Throughout the rest
of the paper, we assume that the imagesI0 andI1 satisfy
the deformation model specified in Equations (1) and (2),
where the perturbation boundKp and the bounding defor-
mation functionshL, hU are known. However, the actual
perturbationp(x) and deformationf(x) functions are un-
known.

Next, we describe explicitly the two problems we at-
tempt to address using our descriptor.

Problem 1. Given an arbitrary pointx0 ∈ Ω and a set of
pointsΛ̄1 ⊂ Ω, find the pointx1 ∈ Λ̄1 such that:

||f−1(x0)− x1|| = min
x∈Λ̄1

||f−1(x0)− x||. (4)

The solution to this problem has direct implications for wide
baseline matching and image retrieval. WhenΛ̄1 is taken as
uniform grid of points, we call the solution to Problem1 a
grid matching point . Denoting the area of the setE by
|E| and definingB(x, r) = {y ∈ Ω | ||x − y|| ≤ r}, our
second problem is related to the first but attempts to explic-
itly identify neighborhoods rather than points with sufficient
overlap:

Problem 2. Given a thresholdτ ∈ [0, 1], called theoverlap
threshold, neighborhoodsB(x,R0) ⊂ Ω andB(x′, R1) ⊂
Ω for somex, x′ ∈ Ω andR0, R1 > 0, is

|f−1(B(x,R0)) ∩B(x′, R1)|
|f−1(B(x,R0)) ∪B(x′, R1)|

> τ? (5)



Note that the above quantity corresponds to the ratio be-
tween the area in the intersection and the union of the pair
of neighborhood after mapping to the domain ofI1. This
quantity is directly related to determining region correspon-
dences which has important applications for object recogni-
tion and registration.

3. Set Filtrations

In this section, we introduce the results necessary to ro-
bustly characterize a neighborhood of a point in terms of
topology. We begin by describing several results from alge-
braic topology, most importantly the homology group of a
set. We then describe how our deformation model dictates
the allowed transformations of the homologies for the pair
of images. We conclude the section by strengthening the re-
sults on the transformation of homologies to local neighbor-
hoods of the image. The proofs of all of the results included
in this section can be found in a technical report [6].

3.1. Background

The objective of this section is to give a brief overview of
algebraic topology. A comprehensive introduction to these
ideas can be found in Chapter2 of [3]. Algebraic topology
explicitly characterizes the properties of spaces that arepre-
served under continuous deformation in terms of algebraic
objects. Homology theory in particular transforms the study
of topological invariants into the study of groups. If, for ex-
ample, one wants to determine whether a pair of spaces are
homeomorphic, one can transform the problem into deter-
mining whether a pair of groups are equivalent. In fact, by
comparing the rank of the pair of groups, which is equal to
the number of basis elements required to generate the group,
one can effectively determine whether the pair of spaces are
homeomorphic.

Naı̈vely comparing pairs of homology is generally insuf-
ficient to perform matching between pairs of images trans-
forming under a homeomorphism for two reasons. First,
though pairs of images maybe transforming under a homeo-
morphism the effect of digitization (especially along edges)
can ruin the applicability of homology. To address this de-
ficiency, we define conditions on the homology over pro-
cessed images. Second, homology is too coarse a construct.
This is due to the fact that comparison between the homolo-
gies of different spaces is done via a counting argument and
because homology is generally defined over entire spaces.
We address homologies coarseness by localizing homology
over intensity and space.

To understand these various extensions of homology, we
must begin by describing homology more explicitly. The
0-homology, denotedH0(E), is a group whose rank is
equal to the number of connected components in the space
E. Whereas, the1-homology, denotedH1(E), is a group
whose rank is equal to the number of distinct cycles in the

spaceE that cannot be shrunk via continuous deformation
to a single point. Generalizing this notion let each of thek-
homologygroups of the spaceE be denotedHk(E). Sup-
pose that one is given a mapσ : E1 → E2 between two
spaces, we can in fact determine how topological proper-
ties transform underσ by considering the homomorphism
(this generalizes the notion of a linear map to groups) in-
duced byσ denotedσ∗ : Hk(E1) → Hk(E2). The case
whenE1 ⊂ E2 andσ is the inclusion map is called afil-
tration and is particularly important. To illustrate its utility
consider the following result:

Lemma 1. Given the filtrationE1 ⊂ E2 ⊂ E3 ⊂ E4 and
inclusion mapsσi,j : Ei → Ej wherei < j, then

rank

(

Hk(E1)

ker σ1,4∗

)

≤ rank

(

Hk(E2)

ker σ2,3∗

)

, ∀k ≥ 0,

(6)
whereker computes the kernel of its argument.

This result gives a straightforward method to quantify
the topological structure that must by carried fromE2 to
E3 by analyzing the structure carried fromE1 to E4. Im-
portantly, notice that neither of the mappings fromE1 toE2

or fromE3 to E4 are needed in this result. In the next few
subsections, we describe how this result can be used to ex-
tend homology to address its aforementioned deficiencies.

3.2. Global Filtration

Let us begin by defining a set of pre-processed images.

Definition 1. Let thepre-processed imagesbe defined as:

Ii−−(x) = infy∈B(x,gi(ρ)) Ii(y)
Ii−(x) = infy∈B(x,ρ) Ii(y)
Ii+(x) = supy∈B(x,ρ) Ii(y)

Ii++(x) = supy∈B(x,gi(ρ)) Ii(y)

(7)

for i ∈ {0, 1}, whereρ ≥ 0 and

gi(ρ) =

{

hU (ρ) if i = 0
h−1
L (ρ) if i = 1

(8)

We define the followinginter-level sets:

Ei−− = I−1
i−−

[a+Kp,∞) ∩ I−1
i++(−∞, b−Kp]

Ei− = I−1
i− [a,∞) ∩ I−1

i+ (−∞, b]
Ei+ = I−1

i+ [a,∞) ∩ I−1
i− (−∞, b]

Ei++ = I−1
i++[a−Kp,∞) ∩ I−1

i−−
(−∞, b+Kp]

(9)

for constantsa andb such thatb− a > 2Kp.

The inter-level sets are the objects upon which we per-
form homology computation and help us localize homology
over each image’s intensity space. Fig.2 illustrates these
pre-processed images. Their corresponding inter-level sets
are drawn in Fig.3. The inter-level sets satisfy certain prop-
erties:
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Figure 2. Pre-processed Images. Original imagesI0 (left) and
I1 (right). Illustration of several pre-processed images (middle).
These pre-processed images are defined to compensate for digiti-
zation effects along edges.

Lemma 2. The inter-level sets for anya and b such that
b− a > 2Kp satisfy:

E0−− ⊂ f(E1−) ⊂ f(E1+) ⊂ E0++

f(E1−−) ⊂ E0− ⊂ E0+ ⊂ f(E1−−)
. (10)

The result of the previous lemma ensures our choice of
pre-processed images allows us to define a filtration be-
tween sets in images0 and1. As a result of Lemma1, we
obtain the following result:

Theorem 1. Given imagesI0 and I1, and constantsa, b
such thatb− a > 2Kp, then

rank

(

Hk(Ei−−)

ker σi−−,i++∗

)

≤ rank

(

Hk(Ej−)

ker σj−,j+∗

)

(11)

where i, j ∈ {0, 1} such thatj 6= i, and σi−−,i++ :
Ei−− → Ei++ andσj−,j+ : Ej− → Ej+ are the inclusion
maps.

This theorem gives a computable condition in terms of the
ranks of homologies that must be satisfied by the corre-
sponding inter-level sets defined by image0 and1. To un-
derstand this result, observe that the rank ofH0(Ei−)

kerσi−,i+∗
is

equal to the number of connected components inEi+ that
have a non-empty intersection withEi−. This can be under-
stood as the number of components that persist fromEi− to
Ei+. Hence, this theorem tells us that the number of con-
nected components that persist fromE1−− to E1++ is less
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Figure 3. Inter-level sets for images0 and1 from Fig. 2. The
left panel shows the setE0−− in white, and the setE0++ in gray.
The other plots follow the same labeling convention. As stated
by Theorem1, rank( H0(E1−−

)

kerσ1−−,1++∗
) = 3 (i.e. the number of

connected components that persist fromE1−− toE1++) which is
less thanrank( H0(E0−)

kerσ0−,0+∗
) = 5.

than the number of components that persist fromE0− to
E0+. If this condition is violated for a pair of correspond-
ing inter-level sets, then the pair of images that were used
to construct these inter-level sets do not satisfy our image
model. Observe that by defining the inter-level sets on pre-
processed images, we avoid the problem of digitization ef-
fects along edges. An example illustrating an application of
this theorem can be found in Fig.3.

3.3. Spatially Localized Filtrations

The previous subsection gave a topological method to ro-
bustly determine whether entire images satisfied our defor-
mation model. In this subsection, we define a spatial local-
ization of this result. In order to obtain a localized charac-
terization of an image, we begin by lettingΛ1 = {x1,ij} ⊂
Ω denote a uniform grid of points spaceds1 units apart. Our
objective in this subsection is to construct a local set of con-
ditions similar to those described in Theorem1 that must be
satisfied by a point inΛ1 that is a solution to Problem1, i.e.
a grid matching point.

First, we obtain neighborhoods around a pointx0 and
its grid matching pointx1 ∈ Λ1 that satisfy a sequence of
inclusions.

Lemma 3. Given a pointx0 ∈ Ω, a corresponding grid
matching pointx1, radius r0 > hU (s1/

√
2), and radius

r1 > h−1
L (hU (s1/

√
2)), then

B(x0, r0−) ⊂ f(B(x1, r1)) ⊂ B(x0, r0+) (12)

and

B(x1, r1−) ⊂ f−1(B(x0, r0)) ⊂ B(x1, r1+) (13)

where
r1− = h−1

U (r0 − hU (s1/
√
2))

r0− = hL(r1)− hU (s1/
√
2)

r0+ = hU (r1) + hU (s1/
√
2)

r1+ = h−1
L (r0 + hU (s1/

√
2))

. (14)

As before, the inclusions in the previous lemma define a
filtration in terms of inter-level sets.

Definition 2. Let the(r0, r1)-localized inter-level setsbe-
tween a pointx0 ∈ Ω and its grid matching pointx1 be
defined as

Ei−−(xi) = Ei−− ∩B(xi, ri−)
Ei−(xi) = Ei− ∩B(xi, ri)
Ei+(xi) = Ei+ ∩B(xi, ri)

Ei++(xi) = Ei++ ∩B(xi, ri+)

(15)

for i ∈ {0, 1}, r0 > hU (s1/
√
2), r1 > h−1

L (hU (s1/
√
2)).

The radiiri− andri+ are given as in Lemma3.



Note that the(r0, r1)-localized inter-level sets satisfy inclu-
sion relations similar to the ones stated in Lemma2 by con-
struction. Hence, we have the following localized counter-
part to Theorem1:

Theorem 2. Given imagesI0 and I1, constantsa, b such
that b − a > 2Kp, and radii r0 > hU (s1/

√
2) and r1 >

h−1
L (hU (s1/

√
2)), then for anyx0 ∈ Ω and grid matching

pointx1 ∈ Λ1 we have that

rank

(

Hk(Ei−−(xi))

ker σi−−,i++∗

)

≤ rank

(

Hk(Ej−(xj))

ker σj−,j+∗

)

(16)
where i, j ∈ {0, 1} such thatj 6= i, and σi−−,i++ :
Ei−−(xi) → Ei++(xi) and σj−,j+ : Ej−(xj) →
Ej+(xj) are the natural inclusion maps.

This result gives a way to identify the existence of a local
homeomorphismbetween neighborhoodsaroundx0 andx1.
That is, if these conditions are not satisfied, thenx1 cannot
be a point that corresponds tox0 under our image model.

4. Topological Attributed Relational Graph

At this point, we in fact have a robust localized topolog-
ical descriptor that could be used to perform matching. In
this section, we describe how to construct a graphical repre-
sentation that integrates the localized topological character-
ization developed so far to render the constructed descriptor
more distinct.

Suppose as in the previous section, we have a grid of
pointsΛ1 placeds1 units apart, a set of radii and constants
{(r0,λ, aλ, bλ)}λ∈Γ that satisfy the conditions in Theorem
2 whereΓ is some indexing set, and let

r1,λ = (h−1
L (r0,λ) + h−1

U (r0,λ))/2. (17)

Let us also assume a uniform grid of pointsΛ0 = {x0,γ} ⊂
Ω spaceds0 > 2hU (s1/

√
2) units apart, and let{x1,γ} ⊂

Λ1, be the set of corresponding grid matching points. The
following theorem gives a set of bounds between the dis-
tance of points inΛ0 and grid matching points inΛ1:

Theorem 3. Given the pair of point(x0,α, x0,β) ∈ Λ0×Λ0

and corresponding matching points(x1,α, x1,β) ∈ Λ1×Λ1,
then

h−1
U (||x0,α−x0,β||−2hU(s1/

√
2)) ≤ ||x1,α−x1,β|| (18)

and

||x1,α−x1,β|| ≤ h−1
L (||x0,α−x0,β||+2hU(s1/

√
2)). (19)

For each of the pointsx0,γ and corresponding grid matching
pointsx1,γ , the conditions specified by Theorem2 must be
satisfied by all tuples(r0,λ, r1,λ, aλ, bλ). Additionally, for

each pair(x0,α, x0,β) ∈ Λ0 × Λ0 and corresponding grid
matching pair(x1,α, x1,β) ∈ Λ1 × Λ1 the distance bounds
in Theorem3 must be satisfied.

To check the simultaneous satisfaction of all of these
conditions, we can recast our problem by constructing a
Topological-Attributed Relational Graph or T-ARG , G0

as follows: let the nodes of this graph represent the points
x0,γ and label these nodes with the rank conditions defined
in Theorem2 and let the edges of this graph represent the
distance between points and be labeled using the distance
bounds from Theorem3. We can construct a similar T-
ARG, G1, using the pointsx1,γ . In fact, we can define
a T-ARG Ĝ1 using all the points inΛ1, the results of the
Theorems2 and3 give constraints to determine a subgraph
isomorphism fromG0 to G1 ⊂ Ĝ1. More explicitly a cor-
respondence between the graphG0 and a subgraph in̂G1 is
defined by the satisfaction of Theorems2 and3. Hence, the
identification ofG1 turns into the matching of Attributed
Relational Graphs for which the attributes are topological
rank conditions and distance bounds.

5. Implementation

In this section, we begin by explicitly describing how we
can solve the problems defined in Section2 using the T-
ARG. We also describe how we implement our algorithm.
The executables used to perform this implementation can be
found online1.

Solution 1. Given an arbitrary set of points̄Λ1, we can first
construct a grid of pointsΛ1 placeds1 units apart such that
Λ̄1 ⊂ Λ1. Then given a pointx ∈ Ω and another pointx′ ∈
Λ1, we identifyx′ as a possible grid matching point if there
is a subgraph isomorphism from a graphG0 into a graphĜ1.
G0 is constructed using the points inΛ0∩B(x,R0), andĜ1

uses the points inΛ1 ∩ B(x′, R1), whereR1 = h−1
L (R0 +

2hU (s1/
√
2)) andR0 > 0. It is then straightforward to

re-project the solution inΛ1 to the solution in̄Λ1.

Note thatR1 is defined using Theorem3 andR0 is set arbi-
trarily based on how large of a neighborhood aroundx we
are interested in considering.

To solve Problem2, we are interested in determining the
overlap ratio between setsf−1(B(x,R0)) andB(x′, R1).
Note that ifx1 is a grid matching point tox, then:

B(x1, R1−) ⊂ f−1(B(x,R0)) ⊂ B(x1, R1+) (20)

whereR1− andR1+ are defined as in Lemma3. Using So-
lution 1, we obtain a set of possible grid matching points to
x. An upper bound to the overlap ratio betweenB(x,R0)
andB(x′, R1) can be computed by considering the maxi-
mum of the bounds using all possible grid matches.

1http://people.engr.ncsu.edu/ejlobato/Research/
2011/FeatureMatching/

http://people.engr.ncsu.edu/ejlobato /Research/
2011/FeatureMatching/


Parameter Description
Kp Perturbation bound. A value of5 is used.
Kd Deformation constant. A value of0.1 is

used unless otherwise specified.
Table 1. Image Model Parameters

Solution 2. Given neighborhoodsB(x,R0) andB(x′, R1)
wherex, x′ ∈ Ω, we identify a possible matching set with
overlap greater thanτ if

|B(x1, R1+) ∩B(x′, R1)|
|B(x1, R1−) ∪B(x′, R1)|

> τ, (21)

wherex1 is the possible grid matching point tox that is
closest tox′.

In our implementation we construct our topological de-
scriptors using the rank of the0-homology group. Recall
that the0-homology corresponds to the connected compo-
nents. For example, the rank ofHk(Ei−)

kerσi−,i+∗
is equal to the

number of connected components inEi+ that have a non-
empty intersection withEi−. In our implementation we as-
sume the Lipschitz deformation model defined in Equation
3. All the parameters required for our method are outlined
in Tables1 and2. Note that the image model parameters
are the only pieces of information required about the image.
The algorithmic parameters (i.e. Table2) on the other hand
represent parameters in our algorithm and do not affect the
validity of the approach.

6. Results

In this section, we describe our performance on a dataset
constructed from standard benchmark images. We analyze
the performance of our descriptor by computing its preci-
sion and recall as in [11]. To determine a ground truth, two

Parameter Description
ρ Radius of morphological operator for pre-

processing. Value set to2.
s0 Spacing for gridΛ0. Value set to6.
s1 Spacing for gridΛ1. Value set to2.
(r0,λ, aλ, bλ) Radii and constant used to define the

topological rank descriptors. We use
all combination such thatr0,λ ∈
{2, 3, 4, 6, 9, 14, 19, 24, 30}, and [aλ, bλ]
corresponds to any of the intervals ob-
tained from partitioning the range[0, 255]
into 4, 8 and16 evenly spaced intervals.

R0 Radius of neighborhood aroundx0 used
to construct graphG0 in Solution 1. A
value of30 is used.

Table 2. Algorithmic Parameters

regions are said to match if their overlap ratio is greater than
a specified thresholdτ . Precision and recall are defined as:

Precision=
# of correct matches by algorithm
# of total detections by algorithm

(22)

and

Recall=
# of correct matches by algorithm

# of total true matches
. (23)

In contrast to other descriptors, T-ARG does not employ
a distance function to compare feature vectors. Rather, ei-
ther a feature satisfies the conditions of Theorems2 and3,
in which case it matches, or it does not satisfy those con-
ditions, in which case it does not match. However, as de-
scribed in Section5, we construct bounds for the overlap
given our choice of parameters. By thresholding our es-
timated bounds on the overlap using a parameterτtop, we
can get a precision/recall curve parameterized by the value
of this parameter as other descriptors do with their appropri-
ately defined distance function. The time required to con-
struct a descriptor for a single region is approximately20s
on a2.2 Dual-Core i7 CPU with8 GB of memory. For our
method, we set the parameters as described in Tables1 and
2.

6.1. General Deformation Images

In order to analyze the performance of our approach in
the presence of deformations we construct two synthetic
datasets:Graffiti andBoat. TheGraffiti images are of size
800×640 and theBoatimages are850×680. We consider a
controlled perturbation using the functionf : Ω → Ω given
by:

f−1

(

z1
z2

)

=

(

z1 + 0.5 c cos(0.02z2)
z2 + 0.5 c cos(0.02z1)

)

, (24)

where the factorc specifies a maximum deformation factor
(e.g. c = 10 indicates a maximum deformation of10%).
We also study the effect of noise by adding a random uni-
form perturbation to the images with magnitude equal to10.
Examples from our dataset are illustrated in Fig.1 and4. A
subset of regions from the images to be matched are chosen

Figure 4. Point Matching Samples: The base image from theBoat
dataset (left) with corresponding neighborhoodsB(x,R0). Corre-
sponding matches found on an image showing a30% deformation,
i.e. c = 30 in Equation24 (right).
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Figure 5. Precision and Recall (τ = 0.5): Results for theGraffiti
(left) andBoat(right) datasets. Results for image with30% defor-
mation (top),30% deformation and uniform random noise in the
interval [−10, 10] (middle), and40% deformation (bottom).

to test. We select circular regions of radius30 from both im-
ages centered around points from a uniform grid of points
spaced12 units from each other while removing the points
that are60 units from the boundary of the image. This gives
around2500 regions for each image in the datasets.

Fig. 5 shows the comparison of our approach to SIFT
and GLOH for a ground truth threshold ofτ = 0.5. The
first row corresponds to comparing the base images from
the Graffiti andBoat datasets against an image with30%
deformation and no noise. The second row corresponds to
the base image being matched to an image with30% de-
formation and with uniform noise in the interval[−10, 10]
added to each pixel. The final row corresponds to the base
image being matched to an image constructed with40% de-
formation and no noise. As expected from our method, we
obtain a very high recall rate since our derivations attempt
to avoid false-negatives. Observe that these results are ob-
tained using an estimated deformation value of10% (i.e.
Kd = 10) which is far less than the actual maximal defor-
mation for the images. Note that adding uniform random
noise to an image (as shown in the middle row) and increas-
ing the deformation (as shown in the bottom row) have little
effect on the performance of our approach.

Fig. 6 illustrates similar results for a ground truth thresh-
old of τ = 0.2. In terms of the overlap ratio, this corre-
sponds to treating pairs with less actual overlap as potential
matches. In this case, the performance of our algorithm im-
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Figure 6. Precision and Recall (τ = 0.2): Results for theGraffiti
(left) andBoat(right) datasets. Results for image with30% defor-
mation (top),30% deformation and uniform random noise in the
interval [−10, 10] (middle), and40% deformation (bottom).

proves even though the performance of the SIFT and GLOH
descriptors decreases. Finally, Fig.7 illustrates the depen-
dency of our approach on the choice of parameterKd for
the images with30% deformation. We choose a ground
truth threshold ofτ = 0.5 and an overlap threshold for our
algorithm ofτtop = τ/3. The plot illustrates the precision
and recall for our algorithm against SIFT and GLOH as we
change the value ofKd from 0.05 to 0.20.

6.2. Homography Images

Next, we analyze the performance of our approach by
constructing a new dataset, called theHomography Graf-
fiti Dataset, by applying a homography to the left image
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Figure 7. Dependency on deformation boundKd. Results for
Graffiti (left) andBoat(right) datasets as we changeKd from 0.05
to 0.20. The ground truth overlap threshold is set toτ = 0.5. The
overlap threshold for our algorithm is set toτtop = τ/3.
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Figure 8. Precision and Recall (τ = 0.5): Results for theHomog-
raphy Graffiti Dataset. Results for image with10◦ change in view-
ing angle (top left),30◦ change in viewing angle (top right),50◦

change in viewing angle (bottom left), and30◦ change in viewing
angle and uniform random noise in the interval[−10, 10] (bottom
right).

of Fig. 1 corresponding to a change in viewing angle by
10◦, 30◦, 50◦, and 30◦ with uniform noise in the interval
[−10, 10] added to each pixel.

In order to give SIFT and GLOH an advantage we se-
lect200 regions by using the Harris Affine Region Detector
with a threshold of80, 000 [11]. We determine the over-
lap estimate between two regions by first normalizing each
detected region into a circular region of radius 30 and then
apply our algorithm. Fig.8 shows the comparison for a
ground truth threshold ofτ = 0.5. Notice that regardless of
choosing regions specifically preferred by SIFT and GLOH
upon which to compare the performance of our matching
approach on, our method still outperforms the traditional
methods.

7. Conclusion

In this paper, we introduced T-ARG, a new local photo-
metric descriptor that can effectively perform deformation
invariant image matching. T-ARG is a robust topological
descriptor backed by a formal mathematical framework. We
applied T-ARG to a set of standard benchmark images with
applied deformations and perturbations and demonstrated
that T-ARG significantly outperforms traditional descrip-
tors. In the immediate future we plan to apply the method
to naturally deforming scenes such as animals, cloth, and
medical images.

The utility of our approach is that it generalizes in
a straightforward manner the comparison of multidimen-
sional datasets undergoing bounded deformations. There
is a deep relationship between the bounds on the rank of
homology presented in Section3 and the theory of Persis-

tent Topology [14]. In the future we look forward to being
able to employ the computational tools available to compute
persistence to speed up our implementation and help build
an even more powerful topological descriptor. Other poten-
tial extensions of this work include: (1) its generalization
to account for larger lighting variations present in natural
images, and (2) the development of a region detector to de-
termine proper choice of scale for regions of interest.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape Match-
ing and Object Recognition Using Shape Contexts.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
24(4):509–522, 2002.2

[2] W. Freeman and E. Adelson. The design and use of steerable
filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(9):891–906, 2002.2

[3] A. Hatcher. Algebraic Topology. Cambridge University,
2002.3

[4] A. Johnson and M. Hebert. Using Spin Images for Effi-
cient Object Recognition in Cluttered 3D Scenes.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
21(5):433–449, 2002.2

[5] H. Ling and D. Jacobs. Deformation Invariant Image Match-
ing. In International Conference on Computer Vision 2005,
pages 1466–1473, 2005.2

[6] E. Lobaton, R. Vasudevan, R. Alterovitz, and R. Bajcsy. Ro-
bust Topological Features for Deformation Invariant Image
Matching. Technical Report UCB/EECS-2011-89, EECS
Department, University of California, Berkeley, Aug 2011.
3

[7] E. Lobaton, R. Vasudevan, R. Bajcsy, and R. Alterovitz. Lo-
cal Occlusion Detection under Deformations Using Topolog-
ical Invariants. InEuropean Conference on Computer Vision
2010, pages 101–114, 2010.2

[8] D. Lowe. Object Recognition from Local Scale-Invariant
Features. InInternational Conference on Computer Vision
1999, pages 1150–1157, 1999.1

[9] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.2

[10] K. Mikolajczyk and C. Schmid. Indexing Based on Scale In-
variant Interest Points. InInternational Conference on Com-
puter Vision 2001, pages 525–531, 2002.1

[11] K. Mikolajczyk and C. Schmid. A Performance Evaluation
of Local Descriptors.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(10):1615–1630, 2005.2, 6, 8

[12] F. Schaffalitzky and A. Zisserman. Multi-View Matching for
Unordered Image Sets.European Conference on Computer
Vision 2002, pages 414–431, 2002.2

[13] T. Tuytelaars and L. Van Gool. Matching Widely Sepa-
rated Views Based on Affine Invariant Regions.Interna-
tional Journal of Computer Vision, 59(1):61–85, 2004.1

[14] A. Zomorodian and G. Carlsson. Computing Persistent Ho-
mology. Discrete and Computational Geometry, 33(2):249–
274, 2005.8


