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Abstract— Concentric tube robots have the potential to en-
able new minimally invasive surgical procedures by curving
around anatomical obstacles to reach difficult-to-reach sites in
body cavities. Planning motions for these devices is challenging
in part due to their complex kinematics; concentric tube robots
are composed of thin, pre-curved, telescoping tubes that can
achieve a variety of shapes via extension and rotation of each
of their constituent tubes. We introduce a new motion planner
to maneuver these devices to clinical targets while minimizing
the probability of colliding with anatomical obstacles. Unlike
prior planners for these devices, we more accurately model
device shape using mechanics-based models that consider tor-
sional interaction between the tubes. We also account for the
effects of uncertainty in actuation and predicted device shape.
We integrate these models with a sampling-based approach
based on the Rapidly-Exploring Roadmap to guarantee finding
optimal plans as computation time is allowed to increase. We
demonstrate our motion planner in simulation using a variety of
evaluation scenarios including an anatomy-based neurosurgery
case that requires maneuvering to a difficult-to-reach brain
tumor at the skull base.

I. Introduction

Concentric tube robots are needle-like devices that can be
controlled to trace curved paths through open air [1]–[3].
The ability to control the curvilinear shape of these devices
enables them to avoid obstacles and reach targets in tight
spaces. These continuum robots are composed of thin nested
tubes where each tube is pre-curved, shaped for example as
a straight transmission segment followed by a segment with
constant curvature. Each tube, typically composed of nitinol,
can be controlled independently by two degrees of free-
dom: it can be (1) rotated axially, and (2) pushed/retracted
through the containing tube. These degrees of freedom could
be robotically actuated or directly controlled by a human
operator. When rotating or telescopically extending any of
the component tubes of the robot, the device’s entire shape
changes due to interactions among the pre-curvatures of the
individual tubes.

Paired with effective motion planning algorithms, concen-
tric tube robots have the potential to enable new minimally
invasive procedures, such as endoscopic access to the brain
[4], the lung [5], [6], and the heart [2]. We illustrate in
Fig. 1 the potential of these devices for accessing tumors in
the brain near the pituitary gland via the nasal cavity while
avoiding critical blood vessels, nerves, and bones.

The power and flexibility of concentric tube robots comes
at the cost of modeling and planning complexity. The shape
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Fig. 1. Virtual simulation of a concentric tube robot executing a motion
plan for neurosurgery at the skull base. The robot is inserted through the
nostril and guided toward the pituitary gland (highlighted in green) in the
skull base while avoiding skin, bone, blood vessels, and healthy brain tissue.
The component tubes of the robot are colored gray, orange, cyan, and yellow.

of a concentric tube robot is a function of the control
inputs, which are the rotation and extension of each of the
component tubes. The shape is governed by the interplay of
beam mechanics and torsional effects among the tubes [5],
[7]. There is no known closed-form solution to the kinematics
of concentric tube robots. Because of these challenges,
prior work in motion planning for concentric tube robots
in anatomically complex environments has largely focused
on simplified kinematic models of the devices at the expense
of accuracy. Furthermore, although computationally intensive
accurate models of robot shape have been developed, their
accuracy typically decreases as the inserted length of the
robot increases [8]. In real world scenarios there is uncer-
tainty in actuation and in the kinematic model of the robot
which can result in deviations from the predicted motion; this
motion uncertainty must be considered in order to maximize
the probability of successfully performing a task.

We propose a sampling-based motion planning algorithm
that computes the control inputs that guide the robot to
a goal point while minimizing the probability of collision
with obstacles in the environment. Obstacle avoidance in a
minimally-invasive procedure is essential as critical struc-
tures like nerves and blood vessels could be damaged if



contacted by the device. Unlike prior motion planners, our
planner uses a highly accurate kinematic model of concentric
tube robots. The planner also considers the effect of uncer-
tainty in the estimated shape of the concentric tube robot;
using recent results in optimal motion planning, our planner
computes plans that minimize the estimated probability of
colliding with sensitive structures.

II. RelatedWork

Planning motions for concentric tube robots requires that
we have the ability to estimate the robot’s shape as a function
of its control inputs. Kinematic modeling of concentric tube
robots began with geometric and torsionally-rigid models [1],
[2], [9]. The model has been improved to consider torsion in
straight segments [3], [10], torsion in curved segments [7],
[11], and the effect of external loading on the tubes [8], [12].
However, increasing model complexity has also led to longer
computation times to estimate the device’s shape. In this
paper we use a highly accurate model which considers tube
bending interactions, tube material properties, and torsional
deformation in straight and curved sections of the tubes [11].

Motion planning for concentric tube robots has only
addressed special cases of the general problem. Sears et al.
formulated the inverse kinematics of concentric tube robots
with simplifying physical assumptions [2], [9]. Dupont et al.
used a Fourier approximation over a grid of precomputed
forward kinematics solutions to approach inverse kinematics
for a model of concentric tube robots that fully handles
torsional effects on the tubes [7]. Rucker et al. compute
inverse kinematics of the externally loaded model of the
device by computing the manipulator Jacobian of the robot
[13]. These previous approaches do not explicitly consider
obstacle avoidance in reaching a target.

Lyons et al. applied optimization-based motion planning
in order to find a plan to reach a target point while avoiding
obstacles [6], [14] but only considered the simpler kinematic
models of concentric tube robots that neglect torsional ef-
fects on the tubes. These models allow for the simplifying
assumption that any given collision free concentric tube robot
configuration can also serve as a collision free motion plan
if the appropriate insertion/rotation strategy is used, which
enables us to treat the device like a point robot for plan-
ning. However, these models sacrifice accuracy for model
simplicity. During medical applications, such inaccuracies
can lead to significant side effects or procedure failures. The
more accurate model we use in this paper invalidates the
assumption that inner tube movement does not affect global
device shape, which complicates the motion planning process
and eliminates the feasibility of using direct configuration
optimization methods.

Concentric tube robots with a sufficient number of tubes
can be seen as redundant manipulators, which are difficult
to plan motions for due to the lack of closed-form inverse
kinematics. Weghe et al. and Bertram et al. investigated
probabilistic sampling-based approaches in [15], [16] but
do not guarantee globally optimal solutions. Recently devel-
oped sampling-based algorithms like RRT* [17] can provide

probabilistic convergence to an optimal solution; this useful
property however is accompanied by a considerable increase
in computation time for real-world problems. We base our
motion planner on the Rapidly-Exploring Roadmap (RRM)
[18] that guarantees probabilistic convergence to the optimal
solution but saves computation time by focusing expensive
path refinement procedures on paths that can reach the goal
region.

Motion planning for a variety of needle-like devices
has been addressed for minimally invasive procedures.
Optimization-based planning has been used for stiff,
symmetric-tip needles in 2D [19] and 3D [20]. Planners
have also been developed to maneuver flexible, bevel-tip
steerable needles around obstacles in 2D soft tissue [21]–
[26]. However, needles can be approximated as a point
robot (i.e. the needle tip) moving through soft tissue since
the path of the rest of the needle shaft follows the tip.
This approximation does not hold for concentric tube robots
operating in open air cavities where robot shape can change
globally with tube rotation and extension.

Uncertainty in robot motion is significant in medical
applications because of the miniaturization of devices and
the complexity of tool/tissue interactions. The effect of un-
certainty has been well-studied for bevel-tip steerable needles
[22], [23], [26]. The planners described above, however,
cannot be directly applied to the case of concentric tube
robots. The Stochastic Motion Roadmap presented in [22]
assumes a discrete set of possible actions at any given
robot state, which is not necessarily true when planning
for concentric tube robots. The LQG-based method used in
[26] introduces an estimation of the probability of collision
during plan execution, but assumes that the robot’s tip acts
independently of the rest of the shaft. Although we cannot
directly use these planners, our goal is to maximize the same
metric: the probability of successfully reaching the target
while avoiding obstacles.

In this paper we present a motion planning method for
concentric tube robots which considers a more accurate
kinematic model than in previous work. We present a plan
quality metric which seeks to minimize the probability of
colliding with obstacles under motion uncertainy. To effi-
ciently compute a plan which optimizes this metric, we
extend the RRM with a goal bias while maintaining the
RRM’s convergence to optimality. Lastly, we demonstrate the
effectiveness of our planner by comparing its performance to
other sampling-based planners and by generating a motion
plan for an anatomy-based neurosurgery procedure.

III. Problem Formulation

A. Modeling Assumptions

We consider a concentric tube robot with N nested tubes
numbered in order of decreasing cross-sectional radius. Each
tube i consists of a straight transmission segment of length Li

followed by a pre-curved portion of length Ci, i = 1, . . . ,N.
The pre-curved portions of the tubes are curved with constant
radii of curvature of ri, i = 1, . . . ,N. We assume that the
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Fig. 2. Configuration q = (θ1, l1, θ2, l2, θ3, l3) for a concentric tube robot
with N = 3 nested tubes.

device is inserted at a point xstart in 3D space and oriented
along the vector vstart.

Each tube contributes two degrees of freedom to the entire
concentric tube robot, as shown in Fig. 2. Each tube may
be (1) inserted or retracted from the previous tube, and
(2) axially rotated. We therefore define a configuration of a
concentric tube robot as a 2N dimensional vector q = (θi, li :
i = 1, . . . ,N) where θi is the axial angle at the base of the
i’th tube and li > 0 is the length of insertion of tube i past
the tube just before it (and l1 is the length of the first tube
past the insertion point xstart).

For a given configuration qi, we define the device’s shape
using x(q, s) : R2N × R 7→ R3. The function x is a 3D space
curve parameterized by arc length s in the domain [0, t],
where t is the arc length of the innermost tube past the
insertion point (equivalent to

∑
i li). We note x(q, 0) maps

to xstart and x(q, t) maps to the 3D position of the tip of
the concentric tube robot. The space curve x defines only
the centerline of the backbone shape of the concentric tube
robot. We also define R(q, s) as the cross-sectional radius of
the tube at arc length s. To estimate the device’s shape x(q, s)
we use the mechanics-based model developed by Rucker et
al. [11].

We define environmental obstacles using a set O of size
M, O = O1,O2, . . . ,OM . Obstacles can be defined in any
geometric representation, as long as it is possible to compute
d(x,O j), the Euclidean distance between a point x in space
and the obstacle O j. In our work we consider spherical ob-
stacles as well as obstacles defined by general 3D polygonal
meshes.

B. Planning Problem Formulation

We define a path Π in configuration space as a sequence
of robot configurations (q1,q2, . . . ,qn). A collision free path
is a path where, for i = 1, . . . , n, the shape of the robot
corresponding to qi does not collide with any obstacles in
the environment.

We desire that the robot tip reach a point within a distance
of rtol of a goal point xgoal. We assume that the start location
xstart and initial orientation vstart are fixed and correspond
to the opening through which the device may be deployed
based on the constraints of the procedure. From the start
location and orientation, we can trivially determine the start
configuration q1.

Given the concentric tube robot’s properties, the start
configuration q1, the goal coordinate xgoal, and the set of

obstacles O, we formulate the motion planning problem as
a search for a path Π = (q1, . . . ,qn) where:

1) ||x(qn, t) − xgoal|| ≤ rtol;
2) Each configuration along Π is collision free;
3) Π is of maximal quality as defined in the next subsec-

tion.

C. Quantifying Plan Quality

Our motion planning method allows us to select optimal
plans based on any quality metric that is smooth and can
be represented as a summation along transitions between
configurations in Π. The choice of metric should ultimately
depend on the clinical task. In prior work, we considered
minimizing control effort as defined by the total Euclidean
distance in configuration space traveled by the path [18].

When planning motions for a physical implementation of
a robot, uncertainty in control inputs and in the kinematic
model of the robot can cause deviations from the predicted
shape. During plan execution, errors in predicted shape can
accumulate and possibly lead to the failure of a plan to be
collision free or to reach the goal. In a medical procedure,
obstacle collisions can result in significant harm to the
patient, e.g. a vital blood vessel may be punctured by the
robot. We therefore consider a metric that minimizes the
estimated probability of colliding with sensitive structures.

For a given path Π = (q1, . . . ,qn), we define its probability
of clearance Pclear(Π) as the probability that all of its config-
urations qi are collision free. We denote the probability of
configuration qi being collision free as Pclear(qi).

For a given robot configuration qi, we characterize its
probability of being collision free as the probability that the
shape of the concentric tube robot at configuration qi is free
of collision with any of the obstacles O j, j = 1, . . . ,M. A
configuration qi is collision free only if for every 3D point
x(s) on the space curve defining the robot’s shape and for
every obstacle O j, the distance between x(s) and O j is greater
than the radius of the concentric tube robot at s. We discuss
in the next section how the planner estimates the probability
of clearance for a configuration q.

IV. Motion Planning Algorithm

We use a sampling-based approach to solve the motion
planning problem formulated in Sec. III-B. Our planner
combines probabilistic completeness for finding a path that
avoids obstacles with the property that it converges to the
optimal solution (under a metric such as minimizing control
effort or maximizing estimated probability of clearance) as
computation time is allowed to increase.

A. Rapidly-Exploring Roadmaps

Our motion planner is based on the Rapidly-Exploring
Roadmaps method [18] that provides both probabilistic com-
pleteness and convergence to optimality guarantees while
efficiently only optimizing paths that can feasibly reach
the goal. The RRM algorithm generates a weighted, di-
rected graph whose vertices represent robot configurations
and weighted edges correspond to the cost associated with



moving from one configuration to another. The algorithm
begins with a vertex at the start configuration q1. It expands
in an RRT-like manner by adding vertices and edges toward
randomly sampled points in the configuration space. Once
there exists at least one sequence of connected vertices from
the start vertex to the goal region, the RRM then at each
iteration either continues random exploration or refines an
existing path to the goal to obtain a better solution. The user-
specified parameter wrefine ∈ [0, 1) weighs these two options;
the RRM algorithm will explore the configuration space
with probability (1 − wrefine) and will refine with probability
1−wrefine. The algorithm avoids wasteful refinement by only
refining paths that can feasibly reach the goal. Once the
algorithm has run for a certain number of iterations, then
the method uses Dijsktra’s shortest path algorithm to find
the path with lowest total cost from the start configuration
to a goal configuration.

B. Goal Bias

To reduce planning computation time, we extend the
RRM method by introducing a goal bias. Goal bias can
significantly speed up sampling based planners by checking
for connections to the goal rather than requiring that a
configuration be sampled inside the goal region. To introduce
a goal bias into RRM, we define another weighting parameter
wgoal so that, at each iteration of the RRM algorithm, we have
the choice of the following actions:

1) Explore: Rapidly explore with probability (1−wrefine −

wgoal).
2) Goal bias: Check for a connection to the goal with

probability wgoal.
3) Refine: Refine a feasible path with probability wrefine

To perform a goal biasing step, we need to generate configu-
rations that result in the robot tip position x(q, t) being inside
the goal region around xgoal. This is an inverse kinematics
problem, and it is made difficult because there is no known
closed-form solution to the kinematics of concentric tube
robots (using accurate beam mechanics models and torsion).
We can however utilize the robot’s manipulator Jacobian
to approximate a change in configuration inputs that will
result in the robot’s tip moving closer to the goal. The
manipulator Jacobian relates a differential change in the
robot’s configuration to a differential change in the position
of the end effector of the robot.

At each goal biasing step we select the vertex qnear
in the RRM that has a tip position closest to xgoal and
was not previously selected or created as part of a goal
bias operation. We define our desired change in robot tip
position to be ∆xtip = xgoal − x(qnear, t). We then compute
the manipulator Jacobian J(qnear) using a second-order finite
difference approximation. By taking the pseudoinverse of the
Jacobian J+ we can then get a linear approximation of the
required change in configuration ∆q which will bring the tip
of the robot closer to the goal (∆q ≈ J+∆xtip). At each goal
biasing step we iteratively apply this operation, taking small
steps in configuration space and adding these intermediate
configurations to the RRM graph until we either collide

with an obstacle or stop making positive progress toward
the goal. Our approach to the goal bias is similar to that
of the JT-RRT algorithm [15], with the exception that we
use pseudoinverses of the Jacobian instead of transposes for
better performance with concentric tube robots.

C. Computing Path Cost

As discussed in Sec. III-C, our motion planning method
can support a variety of metrics for quantifying the quality
of paths. We would like to minimize the probability that this
uncertainty results in collision with obstacles.

We first estimate the probability of a given robot configu-
ration being collision free. For a given robot configuration q
we can calculate the shape of the robot x(q, s) parameterized
by arc length s. We discretize this space curve into a finite
sequence of 3D points (x1, . . . , xn) such that x1 = x(q, 0)
and xn = x(q, t), i.e. x1 corresponds to the insertion point
xstart and xn corresponds to the position of the tip of the
robot. Uncertainty in the positions of these points xi as a
result of the factors previously described create a non-zero
probability of colliding with an obstacle and causing a failure
in the procedure. We model this uncertainty as a normal
distribution about each xi’s position in 3D space. As inspired
by [27], we define the probability of xi being in collision as
the likelihood of its 3D position varying by more than its
distance from the closest obstacle in the environment. We
therefore approximate the probability of a robot configuration
q being collision free as

Pclear(q) =
∏

i

[Pclear(xi)]
1
n (1)

where the probability Pclear(xi) of a point xi being collision
free is estimated by a chi distribution of standard deviation
σ(s) about xi’s distance from the nearest obstacle. We take
a geometric mean in (1) so as to make the probability
invariant to the discretization resolution of the robot’s shape.
The standard deviation σ(s) is dependent on the arc length
parameter of xi because uncertainty in the shape of the robot
typically increases with the arc length along the robot toward
the tip [8].

We experimentally characterized σ(s) by executing ran-
domized motion plans with Gaussian noise in actuator inputs,
material properties of the tubes, and orientation of tubes as
they exit outer tubes. The variation in 3D position due to
noise of each point xi on the cannula shaft was collected.
We fit the experimental data to a chi distribution using the
parameter estimation method in [28].

Lastly, we need to restate our problem of maximizing the
probability of clearance of a path in terms of minimizing the
summation of edge costs in the RRM graph. The estimated
probability of clearance for an entire path, Pclear(Π), can be
computed as the product of the Pclear(qi) for all configura-
tions qi in path Π. To express this product as a summation
we use a negative log transformation; we therefore assign
each edge cost as

E(qi,q j) = − log[Pclear(q j)] (2)



where E(qi,q j) is the weight of the edge connecting con-
figurations qi and q j. With edge weights defined this way,
graph paths with smaller edge weights correspond to paths
with a higher estimated probability of clearance.

D. Convergence to Optimality

Our planning algorithm always converges in the limit to a
globally optimal solution if one exists. In [18] it is shown that
a RRM will always converge to an optimal solution in the
limit as long as the RRM executes path refinement at least
as often as it randomly explores the configuration space. We
will now show that, under certain conditions, we can still
meet this convergence property with the incorporation of the
goal bias that we added in this paper.

The RRM algorithm keeps a list of vertices that still
require refinement, U. Convergence to a globally optimal
solution requires that |U | does not grow unbounded as the
number of iterations executed approaches infinity. In the
standard algorithm, at each iteration the RRM can either
explore and add a node to U or refine and remove a
node from U. With the addition of a goal biasing step,
the RRM has an additional choice of extending toward the
goal and adding up to a specified maximum number of
nodes. Depending on the likelihood of the RRM to randomly
explore, perform a goal biasing step, or perform refinement,
we can find a maximum number of nodes to allow the RRM
to add at each goal biasing step to maintain the convergence
to global optimality.

Let Xk be the number of vertices added to U and Uk be the
total number of vertices in U at the k’th iteration of the RRM.
As previously defined, the probabilities of refining, goal bias,
and exploration as wrefine, wgoal, and (1 − wrefine − wgoal),
respectively. Given a maximum number of nodes added
during the goal bias step, G, we can calculate the expected
values of Xk and Uk at the k’th iteration of the RRM:

E(Xi) = (1 − wrefine − wgoal) + wgoalG − wrefine

E(Uk) = 1 + E(X1 + X2 + . . . + Xk) = 1 +
∑

i

E(Xi)

= 1 − 2kwrefine + kwgoal(G − 1) + k (3)

Because we are interested in determining the maximum
number of vertices G to add at each goal biasing step to
make U empty in the limit, we take the limit of E(Uk) as k
approaches infinity, set it to zero, and solve for G:

G =
2wrefine − 1

wgoal
+ 1. (4)

Therefore, given values for wrefine and wgoal, we can use (4)
to calculate the maximum number of nodes to add during a
goal biasing iteration while still maintaining the theoretical
convergence to optimality afforded by the RRM.

V. Results

For our experiments we simulated a concentric tube robot
with the following tube parameters: straight tube section
lengths Li of 12.5 cm, 25 cm, and 37.5 cm; pre-curved
section lengths Ci of 5 cm, 10 cm, and 15 cm; cross-sectional
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Fig. 3. Four test environments, each containing spherical obstacles.

radii Ri of 0.125 cm, 0.0875 cm, and 0.05 cm; and radii of
curvature ri for all pre-curved sections of 10 cm. The material
properties of the tubes were defined to be equivalent to those
of nitinol. The growth of the σ(s) function described in Sec.
IV-C was found to be linear with a coefficient of 0.03559.

A. Spherical Obstacle Environment

In our first set of experiments we generated four environ-
ments with a goal region and arbitrarily dispersed spherical
obstacles to obstruct the motion of the simulated concentric
tube robot. The four environments are demonstrated in Fig. 3.
In each experiment we ran our planner for 10,000 iterations
using wexplore = 0.7 and wgoal = 0.01 (i.e. we performed
random exploration 70% of the time, biased toward the goal
1% of the time, and performed refinement 29% of the time).
For comparison, we also ran an RRT planner and an RRG
planner [17]. The RRT reflects a planner with no refinement
and the RRG eagerly performs all possible refinement at each
iteration.

As long as we employed a goal bias, our planner never
failed to find a collision free path to the goal in environ-
ments where such a path was known to exist. We also ran
experiments using a planner without a goal bias and even
after upwards of 60,000 iterations a path was never found
for any of the environments; therefore our incorporation of
a goal bias was essential to the effectiveness of our planner.
We show a comparison of the run times for RRT, RRG, and
RRM in Fig. 4.

To verify the correlation of our estimated Pclear metric with
the actual probability of clearance of a plan under uncer-
tainty, we executed each of the generated plans 100 times
with small amounts of Gaussian noise in the kinematic model
computations to test the plans’ robustness to uncertainty.
A run was considered “clear” if the robot did not collide
into any obstacles. For comparison, we also ran the above
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the four test environments with spherical obstacles. Plans were a result of
10,000 iterations of our algorithm using both the Pclear metric and a minimal
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experiments on a set of plans generated by a metric that
minimizes control effort. In Fig. 5, we compare the clearance
rates obtained by minimizing control effort to the clearance
rates of plans generated using the Pclear metric. The clearance
rate for plans computed using the Pclear metric was higher
than that of the plans that minimized control effort.

B. Neurosurgery Environment

Tumors located at the skull base (in or near the pituitary
gland) are difficult to safely access, making surgical removal
a challenge. Rather than cutting through healthy brain tissue
to access these tumors, a preferred route is through the nasal
cavity (an endonasal approach). However, current surgical
tools provide limited ability to access sites at the skull base.
Concentric tube robots have the potential to help physicians
performing these procedures by entering a nostril, curving
through the nasal cavity, drilling a small hole through bone
at the skull base, and then entering the tumor site in the brain
while avoiding critical nerves and blood vessels.

We evaluate our planner in a realistic anatomical envi-
ronment that includes the skull, critical blood vessels, and

healthy brain tissue. In our planner implementation, we
use PQP [29] for distance queries between our concentric
tube robot and obstacles in the anatomical environment.
The planner required 1077 seconds of computation time.
As shown in Fig. 6, the plan cleanly avoids bone, critical
blood vessels, and healthy brain tissue en route to the skull
base tumor. With the dexterity of concentric tube robots
and guidance by our motion planner, we can find a path
that reaches the tumor while minimizing the probability of
damaging vital structures during execution.

VI. Conclusion

We proposed a motion planning algorithm for guiding
concentric tube robots around obstacles to goal regions. Our
algorithm is based on Rapidly-Exploring Roadmaps (RRM)
and a mechanically accurate kinematic model of concentric
tube robots. Given a goal location, the starting position and
orientation, and a geometric representation of the environ-
mental obstacles, our algorithm computes a sequence of
rotation angles and insertion lengths for each tube of the
concentric tube robot such that the device follows a collision
free path to the goal. The path computed by our planner
probabilistically converges to a globally optimal solution.
We presented a metric of path optimality which is based
on the probability of safely avoiding obstacles during plan
execution. In this way we compute plans which are more
robust to uncertainty in the predicted shape of the concentric
tube robot compared to plans computed by a standard metric
that minimizes control effort.

In future work, we will investigate new difficult surgical
procedures that would benefit from the dexterity and minimal
invasiveness of concentric tube robots. Finally, we plan to
integrate our motion planner with concentric tube robot
hardware and image-guided sensing to fully evaluate the
exciting potential of these devices with integrated motion
planning software.
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