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Abstract— We introduce a method for task-oriented design
of concentric tube robots, which are highly modular, tentacle-
like robots with the potential to enable new minimally invasive
surgical procedures. Our objective is to create a robot design
on a patient-specific and surgery-specific basis to enable the
robot to reach multiple clinically relevant sites while avoiding
anatomical obstacles. Our method uses a mechanically accurate
model of concentric tube robot kinematics that considers a
robot’s time-varying shape throughout the performance of a
task. Our method combines a search over a robot’s design space
with sampling-based motion planning over its configuration
space to compute a design under which the robot can feasibly
perform a specified task without damaging surrounding tissues.
To accelerate the algorithm, we leverage design coherence, the
observation that collision-free configuration spaces of robots of
similar designs are similar. If a solution exists, our method is
guaranteed, as time is allowed to increase, to find a design
and corresponding feasible motion plan. We provide examples
illustrating the importance of using mechanically accurate
models during design and motion planning and demonstrating
our method’s effectiveness in a medically motivated simulated
scenario involving navigation through the lung.

I. INTRODUCTION

A robot’s effectiveness at performing a task depends
largely on its design. A robot’s design can be seen as a set of
parameters that are fixed throughout the robot’s use. Given
the tasks we wish the robot to perform, we can design the
robot to most ably perform the tasks while ensuring that the
robot does not damage itself or its environment.

In this paper we investigate task-oriented design of con-
centric tube robots, which are minimally invasive medical
devices capable of following curved paths through body
cavities. These robots may enable physicians to perform
new surgical tasks requiring greater dexterity than possible
with current instruments, including skull-base surgery [3],
neurosurgery [1], operation on a fetus in the womb [8], and
lung procedures [18]. In Fig. 1 we show by simulation how, if
designed correctly, a single concentric tube robot can access
multiple surgical sites in the bronchial tubes while avoiding
damage to sensitive structures in the lung.

Concentric tube robots are composed of nested, pre-curved
tubes, usually shaped with a straight section followed by a
constant-curvature section. As each of the robot’s component
tubes is independently rotated or extended, the entire device
can change shape and trace intricate paths through open air
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Fig. 1. Simulation of a single concentric tube robot reaching two pre-
specified clinical targets in the bronchial tubes of a human lung. The robot
is inserted through a bronchoscope (in cyan) and guided toward the specified
targets while avoiding contact with the bronchial tube walls. The three
component tubes of the robot are colored green, orange, and yellow.

or tissues. The pre-curvatures and lengths of the tubes have
a significant impact on the set of clinical targets reachable
by the device, so proper selection of design parameters for
a patient’s anatomy is critical to the success of a surgical
procedure.

Our goal is to computationally optimize the design of
a concentric tube robot on a patient- and surgery-specific
basis to enable a single robot inserted into the patient to
reach multiple clinically relevant sites. Prior to the procedure,
we assume that a volumetric image (e.g. CT scan or MRI)
is available, from which we can extract the geometry of
the anatomical environment through which the robot will
navigate, including free space and anatomical obstacles such
as nerves, vessels, sensitive organs, and bones.

Designing these robots to perform specific tasks is made
challenging by their complex kinematics; unlike most ma-
nipulators, concentric tube robots cannot be separated into
kinematically independent links because rotating or extend-
ing any tube affects the shape of the entire robot. Simpli-
fied kinematic models which assume telescoping dominant
stiffness (meaning that each tube is assumed to be infinitely
stiff compared to all within it, and all tubes are assumed
to be infinitely torsionally stiff) have been used to mitigate
modeling complexity for motion planning and design [17],
[2], [1]. While these models’ computational simplicity allow
for a good starting point, more advanced models are required
to accurately describe these robots’ kinematics [6], [22], as
shown in Fig. 2. Model accuracy has a significant impact



Fig. 2. Two overlaid time frames of a concentric tube robot. As the inner
tube is extended past the outer tube, the inner tube interacts with the outer
tube’s curvature, causing the entire robot’s shape to change. This illustrates
that the tubes cannot necessarily be treated as kinematically independent
during the design and control of these robots.

on the quality of motion plans and designs, as discussed
in Sec. VI. Due to the importance of high quality motion
plans and designs in minimally invasive surgery, the design
process introduced in this paper uses one of the most accurate
kinematic models available.

To create designs in a manner that considers the time-
varying shape of the robot during deployment, we simul-
taneously compute both the design of the robot and time-
sequences of control inputs that will feasibly guide the
robot to the user-specified goal sites. The latter requires
solving a motion planning problem from the robot’s start
location to the goal sites while avoiding anatomical obstacles.
Motion planning for complex robots such as concentric
tube robots is PSPACE-hard and computationally intractable
to completely solve [21], so like most practical motion
planners, we use a sampling-based approach. We build on
a previously developed motion planner for concentric tube
robots [26], which searches for feasible trajectories in the
robot’s configuration space, and augment it to also search
for designs in the robot’s design space. By properly blending
motion planning and design, we retain one of the key
features of sampling based motion planners: probabilistic
completeness [13]. Extending probabilistic completeness to
design of concentric tube robots, we guarantee that if a task-
feasible design exists, as computation time is allowed to
increase, the probability of our algorithm finding a task-
feasible design for performing a given task approaches 100%.

To accelerate the algorithm, we leverage design coherence,
the observation that collision-free configuration spaces of
robots of similar designs are similar. This coherence implies
that information gained about the free configuration space
of a robot under one design can be partially re-used for a
similar robot design.

We demonstrate our method’s effectiveness for concentric
tube robot design by (1) showing that we can successfully
design a robot for scenarios where prior concentric tube
robot design techniques would fail, and (2) applying our
new method to a medically motivated simulated scenario
involving navigation through bronchial anatomy to reach
several points of clinical interest in the lung.

II. RELATED WORK

The task-oriented design of concentric tube robots was
first investigated in the work of Bedell et al. [2] and Anor
et al. [1]. They both used an optimization-based approach:
they formulate an objective function that codifies a design’s

fitness for performing a particular task, and then optimize
this function using a global pattern search. These approaches
make the significant assumption of telescoping dominant
stiffness, which limits their applicability to designs that
satisfy this assumption. With this assumption, a design can be
quickly evaluated by considering only its final configuration.
The assumption ensures the shape of the device up to the
tip does not change when the tip is advanced using a
sequential tube insertion strategy: the tubes are first rotated
to their final orientations and then deployed such that inner
tubes do not protrude from outer tubes until the outer tubes
have reached their final insertion lengths [17]. To consider
a broader class of concentric tube robots for which this
assumption does not hold, motion planning will be required
to consider the device’s time-varying shape changes during
task performance.

Our approach to blending task-oriented design with motion
planning requires that we have an accurate model of the
time-varying curve of a concentric tube robot as a task
is performed. Early geometric models assumed torsional
rigidity [7], [25]; later models considered torsion in straight
transmission segments [28], [5], full torsional compliance
[6], [23], external loading [22], [16], and frictional effects
[15]. The model used in this paper considers torsional effects
in all sections of the tube [23]; we do not consider external
loading since our designs are intended to avoid collisions
with obstacles.

Our design approach also requires a motion planner that
can plan sequences of tube rotations and insertions that will
maneuver the robot from a start location to a target while
avoiding obstacles. Prior motion planning methods have used
improved kinematic models as they have been developed:
from optimization-based motion planning using a simplified
kinematic model [17], [18] to a sampling-based method
using the fully torsionally compliant kinematic model [26].
The planner from the latter paper is incorporated into our
design method in order to provide probabilistic completeness
guarantees and solution accuracy.

Optimization approaches have been applied to the design
of other types of robots. A sampling-based approach was
applied to optimizing the base location of a robot manipulator
[9], but this approach requires an initial collision-free plan.
Merlet used interval analysis to find robot designs which
fulfill a set of requirements [19]. Methods such as Synergy
[11] and Darwin2k [14] rely on genetic algorithms to perform
multiple simulations to optimize the structure of a robot
for various metrics. This methodology has been applied to
the design of manipulators [4] and surgical robots [24].
However, these approaches provide no guarantees on perfor-
mance. Other methods aim to optimize structural properties
of robots for specific problem domains, including geomet-
ric methods for planar manipulators [27], and grid-based
methods for manipulators [20]. In contrast to these methods,
our sampling-based approach is applicable to the complex
kinematics of concentric tube robots, accounts for obstacles
in the workspace, and provides probabilistic completeness
guarantees.



III. PROBLEM DEFINITION

We define the design of a concentric tube robot as a set
of parameters that are selected before its use and cannot be
changed once it begins to perform a task. Specifically, we
define a design d of an n-tube concentric tube robot as a
vector of 3n real-valued parameters where we associate with
each tube the following three parameters:
• Ls

i : length of tube i’s straight transmission section
• Lc

i : length of tube i’s pre-curved section
• κi: curvature of tube i’s pre-curved section

We assume that the design space D ⊂ R3n is a bounded set.
We only consider design parameters which do not modify the
size or topology of the robot’s configuration space, e.g. we
do not consider the number of tubes as a design parameter
(although this could be addressed by running our method for
various numbers of tubes and selecting the best option). We
also do not consider pre-curved sections with non-constant
curvatures, which will be considered in future work.

Each tube of a concentric tube robot provides two degrees
of freedom to the robot, as each tube can be independently
rotated or inserted. For an n-tube concentric tube robot with
design d, let Q ⊂ (S1)

n×Rn be its bounded, 2n-dimensional
configuration space and let q ∈ Q denote a configuration.
While the configuration space of any robot in the design
space is the same, the collision-free subset Qd

free ⊆ Q of the
configuration space will vary based on the robot design d.
Given a workspace goal region R we can define for a design
d the subspace of configurations Qd

goal which correspond to
the robot’s end-effector lying in R. Similar to Qd

free, the goal
region Qd

goal can vary depending on d (a given design d may
not even be able to reach the goal region, meaning Qd

goal =
∅).

We will consider the task of reaching a goal region with a
concentric tube robot’s end-effector while avoiding collisions
between the robot and its environment. For this task, we must
consider paths in configuration space for particular robot
designs. A path in Q is a continuous function Π : [0, s]→ Q
where s is the length of the path. A collision-free path under
a design d is a path which lies entirely in Qd

free. Given a start
configuration q0 and a workspace goal region R, a feasible
path under a design d is a collision-free path Π which begins
at q0 and ends at a configuration corresponding to the robot
reaching R. To simplify method exposition, we assume that
q0 is collision-free for all d ∈ D.

Formally, given R as a workspace goal region, D as the
design space of a concentric tube robot, and q0 as the robot’s
start configuration, our objective is to compute a task-feasible
design: a design d ∈ D for which there exists a feasible path
Π from configuration q0 to a configuration that reaches R.

IV. METHOD FOR TASK-ORIENTED DESIGN

Our task-oriented design method searches for a robot de-
sign in design space and simultaneously searches for motion
plans in configuration space. The method explores a set
D̂ ⊆ D of designs. We compute a motion plan for design d
in Qd

free using a sampling-based approach based on a rapidly-
exploring random tree (RRT) [13], which produces a motion

planning graph that incrementally explores the configuration
space. We achieve probabilistic completeness guarantees on
finding a task-feasible design by properly interleaving the
searches of the design and configuration spaces.

To accelerate the algorithm, we leverage design coherence,
the observation that collision-free configuration spaces of
robots of similar designs are similar. Our design method can
be seen as an “RRT of RRTs,” where the former RRT is
in design space and the latter are in configuration space. We
explore design space using an RRT that utilizes configuration
space information from nearby design samples to accelerate
configuration space exploration at new design samples.

A. Method Inputs

Our method requires as input a specification of the
environment geometry (i.e. anatomical obstacles) and the
location of the goal region. The environment geom-
etry is implicitly defined by a user-defined function
collision free(q1, q2, d), which returns false if under
design d the path linearly interpolated from configuration
q1 to configuration q2 collides with an obstacle. We define
the goal regions with a function is in goal(q, d) which
returns true if the end effector of a robot of design d at
configuration q lies within the goal region. The user must
also specify the number of tubes and the allowable ranges
for each of the design parameters defined in Sec. III.

B. Concentric Tube Robot Design Algorithm

As described in Alg. 1, our method begins by adding a
random initial design d0 to its set of design samples D̂. At
each method iteration, we perform one of the following two
functions, where the probability of invoking the former is
user-specified weight pdesign:
• generate new design: Generate a new design space

sample d′ and use a nearby design’s motion planning
graph to populate the graph of d′ (Alg. 2).

• explore prior design: Expand the motion planning
graph of a previously considered design sample (Alg.
3).

C. Generating New Designs

We associate a distinct motion planning graph with each
design sample because the collision-free configuration space
of a robot is dependent on its design. For a design d, the
sampling-based motion planning graph Gdi = (V di , Edi)
contains vertices V di corresponding to sampled configu-
rations qi ∈ Q which were found to be collision-free
under design di, and edges E representing a collision-free
connection between pairs of configurations.

In generate new design, we add new design space
samples as in an RRT: using a Voronoi bias. We generate
a random sample dsample ∈ D and use nearestD(D̂, dsample)
to select the configuration dnear ∈ D̂ that is nearest to dsample
in design space. We then use extendD(dnear, dsample, α) to
generate a new design dnew such that dnew has a more similar
design to dsample than dnear. This α value is analogous to
RRT’s maximum stepsize parameter. We choose α to be



Alg. 1 CTRDesign main: Compute the free configuration
spaces of designs in D.
Input:

q0: initial configuration
pdesign: weight for exploring design space relative

to configuration space at each algorithm iteration
α: maximum size of extend step in D
β: maximum size of extend step in Q
n: number of iterations to perform

Output:
Set of graphs {Gdi = (V di , Edi)}, one graph for each

considered design di ∈ D̂

1 d0 ← random design in D
2 D̂ ← {d0}, V d0 ← {q0}, Ed0 ← ∅
3 for i = 1 . . . n
4 if (random number in [0, 1]) < pdesign
5 generate new design()
6 else
7 explore prior design()

Alg. 2 generate new design: Generate a new design sam-
ple and populate its motion planning graph.
Input:

Global variables {V di}, {Edi}, D̂, α, is checked

from CTRDesign main

Output:
Global variables {V di}, {Edi}, is checked,

and D̂ are updated

1 dsample ← random design in D
2 dnear ← nearestD(D̂, dsample)
3 dnew ← extendD(dnear, dsample, α)

4 D̂ ← D̂ ∪ {dnew}
5 V dnew ← V dnear , Ednew ← Ednear

6 for each (q1, q2) ∈ Ednew

7 is checked[dnew, q1, q2]← false

large enough to gain new and useful information about D,
but small enough so that we can exploit design coherence
between dnear and dnew. We add dnew to D̂.

We then utilize design coherence to populate the empty
motion planning graph of dnew with information from dnear.
Because dnew, by construction, is a similar design to dnear,
we can expect many of the vertices and edges in Gdnear to
be valid in Gdnew . So, we optimistically copy all of Gdnear

into Gdnew . Instead of collision-checking all of the edges
under the new design, we take a lazy approach: we tag them
all as “unchecked” edges in dnew using the hash structure
is checked. We only collision check an unchecked edge if it
is expanded upon in explore prior design, thus speeding
exploration while reducing unnecessary checks.

Alg. 3 explore prior design: Explore motion planning
graphs of a previously considered design.
Input:

Global variables {V di}, {Edi}, D̂, β,
is checked from CTRDesign main

Output:
Global variables {V di}, {Edi}, D̂, is checked

are updated

1 d← random design in D̂
2 qsample ← random sample from Qd

3 qnear ← nearestQ(V d, qsample)
4 qnew ← extendQ(qnear, qsample, β)
5 V d ← V d ∪ {qnew}, Ed ← Ed ∪ {(qnear, qnew)}
6 for each edge (q1, q2) on path from q0 to qnew

where is checked[d, q1, q2] = false

7 if collision free(q1, q2, d)
8 is checked[d, q1, q2]← true

9 else
10 Delete subtree of (V d, Ed) rooted at q2

D. Exploring Previously Considered Designs
In explore prior design, we gain more information

about the free configuration spaces of the set of designs D̂
we have already considered. First, we uniformly sample a
design d from the set of previously considered designs D̂.
Next, we expand the motion planning graph of d. This would
be identical to RRT expansion except that there may be edges
in Gd which are “unchecked” due to the lazy heuristic. So,
we begin by adding a new configuration qnew (generated
by extendQ) to Gd without collision-checking the new
edge. Then, we ensure that there exists a collision-free path
from q0 to qnew by collision-checking any unchecked edges
between q0 and qnew in Gd. If the path is found to be
collision-free, qnew remains in the tree. If not, we delete the
entire subtree of configurations rooted at the first in-collision
configuration found when checking the path from q0. In
this way we combine configuration space exploration with
validation of the information we imported from neighboring
designs’ motion planning graphs.

V. METHOD ANALYSIS

A. Probabilistic Completeness
We now prove probabilistic completeness for design: as

the number of iterations n → ∞, the probability of our
design method finding a design which feasibly reaches a
goal region R, given one exists, approaches one. We define
p[returns d ∈ Dgoal] as the probability that the method returns
a robot design d ∈ Dgoal, where Dgoal ⊆ D is the set of
designs capable of reaching a point in the workspace goal
region R. We assume the set Dgoal is a measurable set.

To simplify analysis, we consider a weaker form
of the method which does not use design coherence
and performs one generate new design step and one
explore prior design step at each iteration. These simpli-
fications do not modify the algorithm’s asymptotic behavior.



To show probabilistic completeness, we must show that as
n → ∞: (1) a design will be sampled in Dgoal, and (2) the
motion planning graph for a design d ∈ Dgoal will explore the
configuration space sufficiently to determine that d reaches
the goal region R. To prove the former point, we use the fact
that, in the limit, our RRT-like sampling approach in design
space will approximate a uniform distribution. Since Dgoal is
a measurable set, we guarantee that some d ∈ Dgoal will be
sampled. To prove the latter point, we use the fact that we
are building an RRT for design d in d’s configuration space.
To guarantee that the RRT will find a path to a point in R,
we require the number of samples in this RRT to approach
infinity, which is non-trivial since our method samples in
both design space and in the configuration space of each
design. For a design di created in iteration i, the number of
configuration samples |V di | created as n→∞ is:

lim
n→∞

E[|V di |] =

∞∑
j=i

E

[
# of samples added
to di at iteration j

]
=

∞∑
j=i

1

j
.

This is a harmonic series whose limit approaches∞. Hence,
the configuration space of a design created at iteration i of
our method is fully explored, proving probabilistic complete-
ness of our design method for concentric tube robots.

B. Computational Complexity

For the simplified version of the design method described
in Sec. V-A, the dominating asymptotic factors are the
nearest neighbor searches. When implemented efficiently,
these calls are logarithmic in complexity to the number of
elements searched over [10]. At iteration i, our method will
have created at most i samples, so the complexity of iteration
i of the simplified method is O(log i). We note that our
integrated design and motion planning method is no worse
asymptotically than RRT for motion planning alone. The
heuristics in our full method add computational complexity:
copying configuration samples from one motion planning
graph to another of a similar design requires, in the worst
case, O(i) time at iteration i. Therefore, the complexity of
iteration i of our full method is O(i).

Although our full method is asymptotically slower per
iteration than the simplified method, it adds far more nodes
to the designs’ motion planning graphs than the simplified
method and therefore comes to solutions in fewer iterations.
This results in a significant speed-up: averaged over 40
executions in the twisted half torus environment described
in Sec. VI-A, the full method computes task-feasible de-
signs approximately 94% faster than the simplified method,
and 20% faster than a method with the same pdesign-based
exploration but without design coherence.

VI. RESULTS

We experimentally demonstrated the effectiveness of our
concentric tube robot design method by considering two
tasks: (1) navigating through a twisted half-torus, and (2)
reaching two specified points of interest in the bronchial
anatomy, where in both cases we wish to avoid collisions
between the robot and the surrounding environment.

A. Comparison with Prior Methods

In our first experiment, we consider a 2-tube concentric
tube robot maneuvering through a simple tubular environ-
ment as shown in Fig. 3. The environment consists of a half-
torus for which one half is rotated by 45 degrees such that
the environment is non-planar. The robot starts at the center
of the proximal end of the environment and the goal is to
reach a point at the distal end of the environment.

We applied four different design methodologies to the
problem of designing a robot to navigate this environment:

1) Dominant stiffness with sequential insertion: We ana-
lytically derive a design ddom and configuration qseq for
which qseq is collision free and reaches the goal under
the assumption of telescoping dominant stiffness using
the insertion strategy described in Sec. II.

2) Dominant stiffness with motion planning: Given ddom
and qseq from above, we execute a motion planner that
considers an accurate mechanics-based model of the
robot kinematics in order to compute a plan to reach
the goal.

3) Our method with sequential insertion: We use our
proposed method which computes a design d∗ that can
navigate the environment without the assumption of
telescoping dominant stiffness, but perform the task
using the sequential insertion strategy.

4) Our method with motion planning: We use our pro-
posed method to compute a design d∗ and a motion
plan that can navigate the environment.

In this simple environment we can analytically derive
a design ddom which would allow the robot to navigate
the passage under the assumption of telescoping dominant
stiffness: both tubes would have radii of curvature κi equal to
that of the torus from which the environment was generated
and the curved section lengths would each have to be at
least as long as half the environment’s center-line length. A
collision-free configuration qseq which would reach the goal
can also be analytically defined: have the outer tube’s plane
of curvature coincide with that of the first portion of the
torus, and the inner tube’s plane of curvature coincide with
that of the rotated portion. The insertion length of the outer
tube would be the length of the first part of the environment
and the insertion length of the inner tube would be the length
of the entire passage.

Under the telescoping dominant stiffness assumption, a
concentric tube robot of design ddom should be able to
reach the goal while avoiding collisions by following a
sequential insertion strategy ending in configuration qseq. To
best approximate a real-world concentric tube robot which
may exhibit the telescoping dominant stiffness property, we
simulated a robot with both the thickest outer tube and the
thinnest inner tube found in prior literature [6], [23], with the
inner tube having an inner radius large enough to still allow
for passing tools through. We chose the inner tube’s inner
and outer radii to be 0.824 mm and 0.924 mm respectively
(for a thickness of 0.1 mm), and the outer tube’s inner and
outer radii to be 0.925 mm and 1.1175 mm respectively (for
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Fig. 3. Three mechanically accurate simulations of the insertion of a 2-tube concentric tube robot through a red twisted torus environment with varying
designs and insertion strategies. The robot’s outer tube is pictured in yellow and the inner tube in light blue. The top row shows a robot under design ddom
which collides with the environment because it was designed and inserted under the assumption of telescoping dominant stiffness, which does not hold
under a mechanically accurate kinematic model of concentric tube robots. When motion planning was applied to this design, a collision-free path through
the tube under design ddom could not be found (not pictured). The middle row shows a robot design d∗ computed by our design method, but it is inserted
with a sequential insertion strategy which does not require motion planning; when simulated under realistic robot kinematics, the insertion collides with
the environment and fails. The bottom row shows a robot of our computed design d∗ successfully navigating the environment without collisions because
it combines an accurate kinematic model of concentric tube robots with motion planning to enable collision-free performance of the task.

a thickness of 0.25 mm). In order to realistically simulate the
robot’s behavior, we use a highly accurate, mechanics-based
kinematic model of the robot [23].

Under design ddom and using a sequential insertion strategy
ending at qseq, the robot failed to navigate the passage as
shown in Fig. 3 (top row). We also ran a motion planner [26]
to see if there existed some other motion plan which, under
design ddom, could still navigate the passage. The planner
failed to find such a plan, even when allowed 10 hours of
computation time. A design deemed task-feasible under the
telescoping dominant stiffness assumption is unlikely to fully
avoid the obstacle wall for real-world concentric tube robots.

Next, we applied our new design method to this problem,
which incorporates motion planning under the realistic, tor-
sionally compliant kinematic model. Using pdesign = 0.0001,
we found a robotic design d∗ which allows for collision-
free navigation through the environment when simulated
with the realistic kinematic model. The inner and outer tube
curvatures of d∗ were 0.00525mm−1 and 0.00885mm−1,
respectively; the inner and outer tube curved segment lengths
were 351mm and 205mm; the inner and outer tube straight
segment lengths were 659mm and 240mm. Averaged over 20
executions, the method required 24 minutes on a 2.40 GHz
Intel R©Xeon Quad-Core PC with 12 GB RAM. The design
d∗ and collision-free path are shown in Fig. 3 (bottom row).

We also simulated a sequential insertion of the robot
under design d∗ that ended in the final configuration of
the collision-free path yielded by our method. This failed
to navigate the passage as shown in Fig. 3 (middle row).
This demonstrates that motion planning is indeed vital to
the design process of concentric tube robots under realistic

kinematics.

B. Bronchial Anatomy Scenario

Biopsy is required for a definitive diagnosis of lung cancer.
However, many sites within the lung currently cannot be
safely accessed for biopsy without highly invasive procedures
[12], which makes early definitive diagnosis and treatment of
lung cancer impossible for many patients who cannot tolerate
highly invasive procedures. A properly designed concentric
tube robot may have the dexterity to safely reach sites deep
within the lung that currently available medical instruments
cannot.

We apply our presented method to design a 3-tube concen-
tric tube robot that can access two sites in distinct bronchi
without damaging (e.g. colliding with or piercing) the walls
of the bronchial tubes. Irregularity of the bronchial tubes’
shapes combined with very narrow passageways make this a
difficult problem. A simulation of one of the resulting designs
is pictured in Fig. 4 with two configurations reaching the
specified points with the robot’s end-effector. Averaged over
50 runs, our method took 174 seconds to compute designs
which can reach these two points without colliding with the
surrounding environment. Since pre-operative CT scans are
typically obtained at least a day before an actual biopsy, this
is a clinically acceptable computation time.

VII. CONCLUSION

We develped a task-oriented design method for concentric
tube robots which combines a search of the robot’s design
space and sampling-based motion planning of the robot’s
configuration space in order to find a task-feasible design for
performing a given task without colliding with anatomical



(a) Target 1 in Lung

(b) Target 2 in Lung

Fig. 4. Sequential snapshots of virtual simulations of two concentric tube
robot motion plans. Both simulations are of one robot design computed by
our design method in order to navigate to two specified points in narrow
bronchial anatomy without colliding with the bronchial walls.

obstacles. Our method relaxes assumptions made in prior
work in order to consider a broader class of concentric tube
robots and generalizes probabilistic completeness to design
space.

In future work, we will extend the scope of our design
method to other modular robots. Our method is easily gen-
eralizable because its formulation makes almost no assump-
tions about the robot’s kinematics. Specifically concerning
concentric tube robots, we plan to consider cases in which
the robot is allowed to make contact with some tissues
subject to constraints on forces. We also will evaluate our
computed designs on concentric tube robots operating in
tissue phantoms.
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