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Motivation

Robots as Remote Sensors/
Effectors

* Most applications of Robots
view them as glorified
remote sensors/effectors

* The role of planning here is
mostly limited to path and
manipulator planning
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Multiresolution Path Planning for Mobile Robots

SUBBARAO KAMBHAMPATI anp LARRY S. DAVIS, MEMBER, IEEE

Abstract—The problem of automatic collision-free path planning is

central to mobile robot applications. An approach (o automatic path

planning based on a quadtree representation is presented. Hierarchical
‘which faak

10 speed up
The applicability of this approach to mobile robot path planning is
discussed.

1. INtrRODUCTION

HE PROBLEM of automatic collision-free path planning
s central to mobile robot applications. Path planning for
mobile robots is in many ways different from the more
familiar case of path planning for manipulators [19]. Examples
of these differences are as follows.

1) A mobile robot may have only an incomplete model of its
environment, perhaps because it constructs this model using
vision and thus cannot determine what is occluded by an
object.

2) A mobile robot will ordinarily negotiate any given path
only once (as opposed to a manipulator, which might perform
the same task thousands of times). This implies that it is more
important to develop a negotiable path quickly than it is to
dmlop an “optimal” path, which is usually a costly
operatio

A mobllc robot should keep as far away from obstacles as
possible. A manipulator’s reason for doing this is mainly
collision avoidance. For a mobile robot proximity to obstacles
also gives rise to severe occlusion and reduction in the field of
view.

Conventional path-planning algorithms can be divided
broadly into two categories. In the first category are the
methods which make trivial (if any) changes to the representa-
tion of the image map before planning a path. The regular gri
search [19) and vertex graph methods [9], (18], (10] fall into
this category.

Though these methods keep the representational cost to a
minimum, their applicability to mobile robot navigation is
limited. For example, the regular grid search is [19], [20] *‘too
local”” and its path planning cost increases with grid size rather
than with the number of obstacles present. Further, both
regular grid search and vertex graph methods generate paths
which clip obstacle corners.
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The methods in the second category make elaborate
representation changes to convert to a representation, which is
easier to analyze before planning the path. Free space methods
[1), medial axis transform methods, Voronoi methods, etc.,
fall into this category. A potential practical shortcoming of
such methods for mobile robot navigation is that the path-
planning cost is still very high because of the representation
conversion process involved.

Though the above two categories by no means exhaust the
existing methods (there are configuration space methods that
use a vertex graph approach [7) and others that use a free space
approach 8] to solve the manipulator findpath problem), they
do point out that what mobile robots need may be a
compromise between these two categorics.

Itis Ihcsc consldemuons that motivated the mulumsoluuon

path-pl algorithms
described in this paper [3), (6]. Similar consldexauoms also led
to the use of
“findpath’” problems (see Section IV for a dlscussnm of
related work). In this paper, we first develop a method of path
planning for mobile robots using a hierarchical representation
based on quadtrees and then describe staged search as a way of
exploiting the hierarchical nature of the representation to gain
substantial computational savings. Throughout this paper we
restrict our attention to two~dimensional path planning without
rotation and a vehicle with circular cross-section.

Section 1T develops a quadtree-planning algorithm based on
A* search. Section III presents a staged (hierarchical) path-
planning algorithm, which has computational advantages as
compared to the pure A* search on quadirees. The staged
search involves inclusion of gray nodes in the search. Section
IV discusses related work, and Section V summarizes the
conclusions reached from this research and discusses future
directions. In the remainder of this section we define some
terms used in these discussions.

Quadtree-Related Terminology: A quaditree is a recursive
decomposition of a two-dimensional picture into uniformly
colored 2/ x 2/ blocks (e.g., see Fig. 1) [16]. A node of a
quadtree represents a 2/ X 2/ square region of the picture. A
free node of a quadtree is a node of the quadtree representing
a region of freespace. An obstacle node is a node representing
a region of obstacles. A gray node is a node representing a
region having a mixture of freespace and obstacles. A leaf
node of a quadtree is a tip node of the tree. In ordinary
quadirees, leaf nodes are always obstacle nodes or free nodes,
but in pruned quadtrees (see below), they may also be gray
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My very first planning paper was a
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M. Thompson, of the
Fm Int dom lef "Ariiheial iligonce, 1977,

File Edit View History Bookmarks Tools Help
c # (L nitpy/rakaposhi eas.asu.edu/multi-resolution-icra pdf 27 | [$8- icaps 2009
(7 Google C. MGmail - Tr... | winbox (99... | [F1TMF: Re:S... Y TMF:Re:F... 7 Program -... € Portfolio © Trade Opt... | € View Lots.... €D Daniel Bry... _ multi-
5680 + 15 qiof1n |1k &) € | ® ® 130% - | & Collaborate~ A Sign~ = @ Find -
'KAMBHAMPATI AND DAVIS: MULTIRESOLUTION PATH PLANNING FOR MOBILE ROBOTS 145
configuration space for findpath with rotation,”” in Proc. Eighth Int.  [19) C. Thorpe, **Path relaxation: path planning for a mobile robot,” in
Joml Can/' Arllf ficial Intelligence, 1983. Proc. Nat. Conf. Amﬁcml Intell., 1984.

6] iresen, R. Eastman, ams Kambhampati, **Visual  [20] R Wallace, ““Two-dimens pﬁlh pl:xmmg and collision avoidance
ulgomhmx for wwnnmous ‘navigation,” in Proc. IEEE Int. Conf. an
Robotics Automat., Mar. 1985. Pmcuwlg of Spatial Knowl:dge, (oc rep. 1275, Department of

[4] B. Faverjon, “*Obstacle avoidance using an octree in the configuration Compuw Science, University of Maryland, May 198
space of a manipulator,” in Proc. IEEE Int. Conf. Robotics, Mar.  [21] E. K. Wong and K. S. Fu, *“A hierarchical orthogonal space
1984. to mllmon free path planning,” in Proc. IEEE Im Conf Rubaucs,

(5] E. Horowitz and S. Sahni, Fundamentals of Data Structures. 1985.

Rockville, MD: Computer Scicnce, 1982, cf
(6] S. Kambhampati, **Multiresolution path planning for mobile robors,”
Mastersthesis, Department of Computer Science, University of
Maryland, College Park, 1985. Subbarao Kambhampati was born in Pedda-

[71 T. Lozano-Pérez and M. A. Wesley, “‘An algorithm for planning puram, AP, India, on August 17, 1961. He reccived
collision-free paths among polyhedral obstacles,” Commun. ACM, the B.Tech. degree in Electrical Engineering (Elec-
vol. 22, pp. 560-570, 1979. tronics) from the Indian lnshiuu of lmhnology

[8] T. Lozano-Pérez, “*Automatic planning of manipulator Imlufet move- Madras, in 1983 and the M.S.
ments,”” JEEE Trans. Syst., Man, Cybern., vol. 11, 681-698, ience from the University of Maryland Colleg:
1981. Park, in 1985.

9] H. Moravec, ‘‘Rover visual obstacle avoidance,’” in Proc. Seventh He is currently  doctoral candidate in the
Int. Joint Con/' Artificial Intell., 1981. department of Computer Scicnce ll the Umv=mly

[10) N. J. Nilsson, ile automation: an_application of artificial of Maryland. Since June, 1984,
intelligence techniques,” in Proc. First Int. Joint Conf. Artificial rescarch assistant in the Center lm Alllomulcn
Intell., 1969. Research there. His current research interests are Machine Learning and

m —, Pnnnplts of Artificial Intelligence. Palo Alto, CA: Tioga, Robotics. He has authored three papers in R
1980, chap. 2. Mr. Kambhampati is a member of the American Association for Arificial

(12] S.PuriandL.S. Dlvls, ““Navigation algorithms for a quadtree based  Intelligence and Association for Computing Machinery.

‘mobile robot system,” Center for Automation Resc.smh Umvmuy of
Maryland, Co!lcge Park. Technical Report in Preparatic

[13] H. Samet, *‘An algorithm for converting rasters 1o quzdnees," IEEE
Trans. Pat/ Analy. Mach. Intell., vol. 3, I9Rl . 93-95. Larry S. Davis ($'74-M'77) was born in New

4] ‘Distance transform of images repres Ibd by quadtrees,” York on February 26, 1949. He received the B.A.
[EEE Trans. Patt. Anal. Mach, Intell., 4, 1932 295—303 degree in mathematics from Colgate University,

[iE] “Neighbor finding techniques for images 4 by Hamilton, NY, in 1970, and the M.S. and Ph.D.

quadtrees,” Comput. Graphics Image Processing, vol 1x pp 37- degrees in computer science from the University of
57, 1982. Maryland, College Park, in 1972 and 1976, respec-

[16] ——, *“The quadtree and related hierarchical data structures,” tech. tively.

2’3 Center for Automation Research, University of Maryland, From 1977-1981 he was an Assistant Professor
Coege park, Nov 983, in the Department of Computer Science, University

07) H Samet of al, ation of hierarchical data structures to of Texas, Austin. He is currently an Associate
geographical mluml:nnnsyxmm.s Phase I11," tech. rep. 99, Center for Professor and Associate Chairman in the Depart-
Automation Research, University of Maryland, College Park, p. 59,  ment of Computer Science, University of Maryland. He is also the Head of the
Nov. 1984 Computer Vision Laboratory of the Center for Automation Research at the

18 avigation system JPL robot,” in Proc.  University of Maryland and is the Acting Director of the University of

Maryland Institute for Advanced Computer Studies




Motivation

Robots as full-fledged Team-
members

* Increasing number of
applications want the
robots to be full-fledged
team members

* Teaming significantly
broadens the roles for
planning

— Need to take high-level goals
from team members and plan
for them



Case Study
Urban Search and Rescue

* Human-~Robot Team in Urban Setting
— Find and report location of critical assets
— Human: Domain expert; removed from the scene

SEARCH AND REPORT RECONNAISSANCE
* Deliver medical supplies * Gather information
* Bonus Goal: Find and * High risk to humans
report injured humans — E.g. Bomb defusal
* Requirements * Requirements
— Updates to knowledge base — Support model changes
— Goal changes — New capabilities

[Talamadupula et. al., AAAI 2010] * E.g.: Zoom camera



Human-Robot Teaming
Scenarios

» Search and report (rescue)
» Goals incoming on the go
» World is evolving

»Model is changing

> Infer instructions from

Natural Language
» Determine goal formulation
through clarifications and

questions
[NIPS 2013; HRI 2012 AAAI 2010...]




Path/Motion
Manipulator
Planning

HUMAN




IIIIIIIIIIIIIIIIIIIII’

Intent Recognition
Activity Recognition

Belief
Modeling

lllllllll’ InStrUCtlonS

Dialog
Planning

Questions

Negotiation

Affect

‘IIIIIIIIII:

| —

v

Path/Motion
Manipulator
Planning

H

H

le-

Task Planning

—

Goals
Model Updates

Trajectory
Constraints

Hypotheticals

Reports

Replanning

Excuses
Open World

Active Planning

Model Elicitation

C—

Excuse
Generation




Human-~Robot teaming scenarios
significantly broaden the roles of
planning beyond path and motion
planning

— Task Planning
— Belief Modeling

— Dialog planning
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challenges posed by all these ERIRIZBIA LTS

planning roles Humans?
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A fully specified
problem
--Initial state
--Goals
(each non-negotiable)
--Complete Action Model

Hard problem

- Tremendous
progress has
been made in
taming the
combinatorics
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W
Planning: Traditional View

e~ Changing goals
] Open goals

g Replanning

Partial models and
partial specfications

A fully specified
problem
--Initial state
--Goals
(each non-negotiable)
--Complete Action Model

The Plan

Explanation of
Planning Failures

17



Planning for

Human-Robot Teaming

* Planner is an intermediary

— between Human and Robot

e Two main tasks

— Process Information

* Changes to the world / state: Replanning
* Changes to the goals: Open World Quantified Goals
* Changes to the model: Run-time Model Updates

— Elicit Information

* Ask for advice / clarification
* Explain plans and make excuses / hypotheticals



HRT System Schematic
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HRT System Schematic
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Planning

Goal Management

* Human-Robot Teaming
— Utility stems from delegation of goals

* Support different types of goals
— Temporal Goals: Deadlines

— Priorities: Rewards and Penalties
* Bonus Goals: Partial Satisfaction

— Trajectory Goals

— Conditional Goals

* Changes to goals on the fly

— Open World Quantified Goals
[Talamadupula et al., AAAI 2010]



Planning

Model Management

 One true model of the world - |

_ Robot —> MODEL '<—

* High + Low Level models

— Human User
* Symbolic model + Additional knowledge <
— Planner must take this gap into account

* Model Maintenance v. Model Revision Rebet  Human
— Usability v. Consistency issues
— Use the human user’ s deep knowledge

e Distinct Models

— Using two (or more) models
* Higher level: Task-oriented model
 Lower level: Robot’ s capabilities
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Excuses & Hypotheticals

 Excuse Generation
— Make “excuses” if task unsolvable

— Changes to planning task

* Initial State [Goebelbecker et al. 2010]
* Goal Specification
* Planning Operators [Cantrell, Talamadupula et al. 2011]

* Hypotheticals

— Goal “opportunities”

— Conditional Goals |[Talamadupula, Benton et al. 2010]



Explanations

* Asking for help
— Proactively request humans for help
— Take navigation paths into account

* Explanations
— Returning a plan is not enough

— Human must be informed “why” the robot is
doing something

* May result in more elaboration /information
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HRT System Schematic
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Dialog Planning

e Most natural form of communication
between Human and Robot: NL Dialog
 Human-to-Robot
— Instructions: Model updates [Cantrell et al. 2011]

— Objectives: Goal changes

* Robot-to~-Human
— Questions
— Negotiation
— Affect
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HRT System Schematic
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Belief Modeling

* Humans communicate via task-based dialog
— For team situations, model team members
— Expect robots to do the same

* Example:

* When Commander Y interrupts Cindy the robot with a
directive for later, Cindy must model Commander Y’s
mental state in order to define that goal

 Belief Updates

— Take utterances from humans and update
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Position Statement

* Human-Robot teaming scenarios significantly
broaden the roles of planning beyond path
and motion planning

— Task Planning
— Belief Modeling
— Dialog planning

* We advocate investigating the challenges
posed by all these planning roles



