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Fig. 1: Our real-time systems design approach is applied to a simulated drone autonomously navigating a forest at high speed. As interference from
non-flight-critical workloads increases, the drone’s reaction time becomes poorer, causing crashes. We apply TimeWall, our component-based real-time
framework, to isolate and prioritize time-critical software components such as obstacle detection and control, ensuring the robot maintains its reaction times
and avoids unnecessary crashes even as interference increases.

Abstract— Robot autonomy is driving an ever-increasing
demand for computational power, including on-board multi-
core CPUs and accelerators such as GPUs, to enable fast
perception, planning, control, and more. Careful scheduling
of these computational tasks on the CPU cores and GPUs
is important to prevent locking up the finite computational
capacity in ways that hinder other critical workloads; delays
in computing time-critical tasks like obstacle detection and
control can have huge negative consequences for autonomous
robots, potentially resulting in damage, substantial financial
loss, or even loss of life. In this paper, we leverage recent
advances from real-time systems research. We apply TimeWall,
a component-based real-time framework, to the computational
components of an autonomous drone and experimentally show
that the timeliness and safe operation properties of a drone
are preserved even in the presence of increasing interfering
computational processes.
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I. INTRODUCTION

The quest for robot autonomy is driving an ever-increasing
demand for computational power. As autonomous robots
tackle increasingly sophisticated tasks in dynamic environ-
ments, the on-board compute hardware enabling their auton-
omy has grown complex in equal measure. These robots are
incorporating a higher degree of heterogeneity in their com-
pute hardware by employing a mixture of general-purpose
multicore CPUs and hardware accelerators, commonly GPUs
and FPGAs [1]. Accelerators are built to speed up certain
computations, such as the linear algebra workloads required
by modern AI applications, and are instrumental in pushing
the boundaries of AI for robotics [2], [3].

Autonomous robots typically require running a variety of
tasks, such as perception, planning, control, and mapping,
on limited on-board compute hardware. Some tasks must be
executed at high-frequency, like a perception module that
detects dynamic obstacles or a controller that must generate
the next robot control input. Other tasks may have lower
frequency, like building maps or completing application-
specific tasks. On shared hardware platforms, such tasks
of varying criticality utilize the same on-board compute
hardware.



Unfortunately, naı̈ve utilization of CPU cores and GPUs
can adversely affect the timely completion of tasks, dimin-
ishing reliability [4]. Tasks can experience undue scheduling
delays when accessing busy compute hardware resources,
like an on-board GPU, which increases application response
times and creates potentially unsafe behavior. For example,
if some unrelated subsystem of the robot utilizes a GPU
required by a computer vision obstacle detection task, there
may not be enough compute time available to identify a
hazardous obstacle before the robot comes into contact with
it [5]. The resultant violation of real-world timing constraints
poses severe consequences for autonomous robots, poten-
tially resulting in damage, substantial financial loss, or even
loss of life.

In this paper, we leverage recent advances from the real-
time systems research community, where the exact prob-
lem of guaranteeing bounded response times is a first-
class concern. Such real-time systems encompass a real-
time scheduler that ensures higher-priority work is guar-
anteed progress over lower-priority work. In a soft real-
time system, code must complete within a bounded amount
of time after its deadline. Scheduling tasks in a manner
that satisfies deadlines can ensure high-frequency tasks like
perception and control are completed in time to maintain a
robot’s safety and reliability. Additionally, real-time locking
protocols ensure shared resource access is guaranteed within
bounded time. A well-built real-time system is predictable
and guarantees timeliness, ensuring that a robot’s compute
hardware completes its computational workloads on time
even when the compute hardware is saturated.

We present a real-time approach toward predictable oper-
ation which assigns groups of related processes to modular
components. We show how TimeWall [4], a component-
based real-time framework, may be applied to robotics soft-
ware executing on multicore+accelerator hardware platforms.
Through the effective isolation of components, we realize the
benefits of modularity, allowing components to be modified
without invalidating the runtime assumptions made by other
components.

We evaluate our approach on a high-speed drone navi-
gation software stack [6], which we run in simulation (see
Fig. 1). We task the drone to navigate through a forest
using (1) the baseline implementation of the software [6] and
(2) our modified implementation using a real-time scheduler
and TimeWall with component partitioning. Both implemen-
tations are evaluated in the presence of interfering object
detection workloads. We show that our modified real-time
implementation is more stable and does not lead to increased
drone collisions in the presence of increasing interference,
contrary to the baseline implementation which breaks down
and leads to many drone collisions.

II. RELATED WORK

The Robot Operating System (ROS) is a component-
based system framework widely used in robotics. Despite
its ubiquity, ROS lacks proper real-time support. While

ROS 2 has introduced features attempting to satisfy real-
time requirements (e.g., the rclc executor [7]), numerous
shortcomings remain [8], [9].

Casini et al. [9] analyzed ROS 2 under a reservation-based
scheduler and presented analysis to bound the end-to-end
response times of processing chains (i.e., source to sink).
This work presents insights into ROS 2 execution, such as
callback processing order and how executor callback ready
queues are updated. This work also contributed the first steps
towards developing an automated analysis tool compatible
with the ROS 2 single-threaded executor. Such methods were
later extended to the multi-threaded executor [10].

Blass et al. [11] proposed ROS-Llama, a user-level run-
time system that automatically reduces the latency of user-
specified processing chains. ROS-Llama inspects a ROS 2
system at runtime and dynamically adjusts scheduling param-
eters (e.g., periods and execution budgets). Their experiments
show that ROS-Llama obtains improved maximum latency
under load when compared to the Linux CFS scheduler.

Choi et al. [12] proposed PiCAS, a user-level priority-
driven scheduling method for ROS 2 which also reduces end-
to-end processing chain latency by changing the execution
order of callbacks. Some specific strategies employed are
(1) non-timer callbacks later in the chain are given higher
priority and (2) non-timer callbacks are prioritized over timer
callbacks.

One common approach to improving GPU timeliness
guarantees is the use of GPU servers, often called “inference
servers” in the AI domain, to centralize GPU access [13].
GPU servers provide managed access to the GPU by queuing
requests from clients to run GPU work. However, critical
workloads still suffer when enqueued behind ongoing lower
priority work that cannot be aborted (e.g., GPU code where
the cost of preemption may exceed the remaining compu-
tation time). As such, the application-granularity scheduling
offered by GPU servers has limits. To ensure high-priority
work can complete on time, every time, a finer degree of
control is desirable.

Prior work fails to provide hardware isolation guarantees
for ROS where concurrently running tasks cause interference
and execution delays. ROS employs a component-based
system architecture wherein software components are orga-
nized as functionally independent nodes. This component-
based structure lends itself well to the component-based
scheduling in TimeWall [4], discussed in the next section,
where isolation guarantees are achieved.

III. REAL-TIME SYSTEM MODEL

A real-time system is subject to critical real-world timing
constraints. While often misconstrued as “real-fast” sys-
tems, real-time systems must guarantee that their workloads
complete on time (i.e., meet deadlines) even in worst-case
scenarios, rather than optimizing only for average execution
times. In this section, we introduce our component-based
real-time system model which forms the core of our system
design and resource management approach.
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Fig. 2: Work running on CPUs requests time on the shared GPU, illustrated
by the rising arrows. TimeWall postpones execution that extends past
the component’s time slice (outlined in blue), ensuring proper component
isolation.

We begin by summarizing notation and terminology com-
monly used in real-time system analysis. A task is defined
as periodically invoked work, with the ith task denoted
as τi. Tasks describe recurrent work such as sensor input
processing, motion planning, and controller invocations. A
single invocation of a task is called a job. Each task τi
has three parameters, Ci, Ti, and Di, expressing the worst-
case execution time (WCET) of any of its jobs, the period
separating job releases, and the relative deadline of each job,
respectively. Each job of τi must be allowed an execution
duration of up to Ci time units.

In component-based real-time systems, tasks are grouped
into components where uncertainty is mitigated by ensuring
each component has isolated access to its compute resources.
While a divide-and-conquer approach to robot design is
not new, a real-time component differs in that it provides
analytical guarantees that the component will work reliably
even when the rest of the system design changes. Such
modularity is invaluable, as updating one component does
not invalidate the real-time guarantees established in other
components.

We define an arbitrary component Γ = (Θ,Π, τ,Υ). The
set τ contains all tasks assigned to the component. The set
Υ contains the resources utilized by τ , such as GPUs and
processor cores. The parameters Θ and Π define a periodic
component reservation (PCR) where Γ is guaranteed isolated
access to the resources in Υ for an uninterrupted time slice
duration of Θ. Lastly, Π denotes the exact time between the
start of each time slice.

This component model is adopted from TimeWall (Time-
Isolated Multicore Execution With AcceLerator Locking),
a framework for multicore+accelerator platforms proposed
by Amert et al. [4]. Such component-based frameworks
are amenable to real-world avionics specifications such as
ARINC 653 [14], which details real-time operating system
design for enabling reliable access to compute hardware
shared across tasks.

IV. METHOD

In this section, we detail how robotics software can be
designed with real-time requirements in mind. First, we
clearly describe the problems incurred by the lack of real-
time scheduling guarantees. We then describe how existing
robotics software design paradigms can be transformed to
be compatible with real-time scheduling. Our approach is
evaluated in the subsequent section by making the corre-
sponding modifications to a ROS-based autonomous drone
platform [6].

A. Problem Definition

Flight-critical functions of an autonomous drone include
(1) ensuring that the drone stays in the air and (2) main-
taining its integrity (e.g., does not damage itself by colliding
with obstacles). Such software may contain GPU code like
neural networks and CPU code to process sensor data and
output trajectory decisions. Lower-criticality features may
be included with an autonomous drone software suite, for
example, a drone performing a search or inspection task
may perform object recognition. The computational demand
of these additional tasks may result in a significant system-
wide slowdown, affecting the performance of flight-critical
components. Furthermore, the possibility of unexpected, dis-
proportional computational demand stemming from software
bugs must be accounted for.

We define all such examples beyond the core flight
and safety-critical operation of the drone as sources of
interference. Interference occurs when concurrently running
workloads contend for shared resources (such as CPU caches
or GPUs) and slow each other down. Interference can occur
even when software functions are introduced without ma-
licious intentions. Thus, any software changes may induce
new interference, requiring that the entirety of the software
stack be reevaluated to determine whether timing guarantees
will be met.

Now consider a drone whose software design is motivated
by real-time component-level isolation. Following the design
specifications of TimeWall [4], the core functionality of the
drone may be encapsulated in a component that is guaranteed
temporally isolated access to resources such as GPUs and
CPU cores while executing its flight-critical functions.

By guaranteeing an isolated runtime environment, any
added or modified components do not invalidate the correct
operation of other existing components. So long as non-
critical features are allocated an isolated component, core
functionality will remain intact due to the runtime isolation
guarantees provided by TimeWall. Overly inefficient soft-
ware that overutilizes system hardware can be detected by
simply applying a real-time schedulability test that deter-
mines whether the system can reliably meet deadlines [15].
When compared to larger, monolithic software stacks, the
critical portion of code is easier to harden against interference
due to the more modular code base.

Hence, we formulate the following problem definition.
Consider interference from f non-flight-critical processes.
As f increases, critical work such as trajectory planning may
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Fig. 3: Drone system functionality diagram. Planning functions are placed into the same component.

experience unwanted delays and subsequent failures. Using
real-time system design principles, namely the TimeWall [4]
component-scheduling framework, we wish to isolate critical
work from such interference.

B. Real-Time Parameterization

In this section, we briefly discuss how the TimeWall
framework [4] discussed in Sec. III can be integrated with
existing robotics software such as [6]. For this work, we as-
sume Global Earliest Deadline First (G-EDF) scheduling in a
component where, intuitively, jobs with earlier deadlines are
given higher priorities [16]. Additionally, we incorporate the
OMLP [17], a real-time locking protocol that guarantees jobs
exclusive access to resources, such as the GPU. Exclusive
resource access is necessary for mitigating potential sources
of interference for critical tasks [18], [19]. Such real-time
locking protocols provide a bound on the duration a process
can spend waiting to access a shared resource, denoted by
X . We denote the maximum amount of time task τi spends
holding exclusive access to a resource as Bi. The amount of
time that TimeWall may delay τi’s access to a resource (as
illustrated in Fig. 2) is given by [15]:

bi = X +

⌈
X +Bi

Θ−Bi

⌉
·Bi. (1)

A component’s task set τ may consist of various work-
loads, such as those of the drone system in Fig. 3. We define
a real-time task as a timer or subscriber callback (i.e., a
ROS subscriber callback), and a job as a callback invocation.
Let n be the number of such tasks. Each callback is now
a real-time task τi, and therefore must be characterized by
the parameters Ci, Ti, Di. The component containing these
callbacks must have a defined Θ and Π. This component
must also be assigned a number of CPU cores, denoted as
m. As long as the chosen values satisfy the following set of
constraints, TimeWall will guarantee proper execution:

Ti ≥ Ci + bi, (2)
Θ ≥ max

i
{Bi}, (3)

1 ≥ Θ

Π
≥ 1

m

n∑
i=1

Ci + bi
Ti

. (4)

The derivation of appropriate values for these parameters
is determined by the response time requirements of the
critical workload. Choosing too small of a frequency for
a timer callback may result in the system being unable to
respond to the environment, but too large of a frequency
will overload the system. Moreover, if Π − Θ is too large,
the component will experience extended intervals where it
cannot access any compute resources, creating further delays.

We have now specified all necessary parameters for a
component. Once these parameters have been set, isolation is
guaranteed as TimeWall ensures processes in one component
are unaffected by other components.

V. EVALUATION

In this section, we describe the implementation of our
proposed method in an autonomous drone software stack and
present experimental results showing that TimeWall success-
fully isolates safety-critical workloads from interference.

A. Robot System Description

We build upon an existing end-to-end drone software
stack developed by Loquercio et al. [6] which performs
high-speed navigation with obstacle avoidance in unknown
environments. The core of the navigation software is a neural
network with the following inputs: (1) a 2D depth image
generated via Semi-Global Matching (SGM) from a stereo
camera, (2) the velocity and attitude (rotation) of the drone,
and (3) a direction vector pointing to the closest point of
a reference trajectory. The reference trajectory is a global
trajectory from a start pose to a goal pose, which by default
is a straight line. The outputs of the neural network are (1)
three trajectories consisting of ten drone poses each and (2)
a collision cost for each trajectory. A filtering step follows
inference with the network. The trajectories are projected
to an order-5 polynomial space to ensure continuity and
dynamic feasibility. Then, the trajectory with the lowest
predicted collision cost and input cost [20] is selected. The
chosen trajectory is executed using an MPC controller. These
functions are illustrated in Fig. 3.

We use neural network weights provided in [6], trained by
Loquercio et al. on 90,000 samples using imitation learning,
where a “privileged expert” with ground-truth knowledge of



Fig. 4: We show representative simulations of the drone, starting at the green marker and moving along the black path toward a goal on the right while
avoiding obstacles shown in the yellow/red depth map, operating under different interference levels. When increasing f , the number of interference
processes, the drone typically crashes earlier. When using the TimeWall scheduler, the drone successfully executes its flight even under high levels of
interference.

the environment (i.e., full point cloud) predicts trajectories
with Metropolis-Hastings sampling, which the network then
learns to imitate. Training was performed in the Flight-
mare [21] simulator with custom environments containing
randomly placed obstacles (e.g., trees), the results of which
were demonstrated to be transferable to the real world
without fine-tuning [6]. Flightmare uses the Unity game
engine for rendering and Gazebo with the RotorS [22] plugin
for physics.

Our experiments were conducted on two Dell Precision
7920 2-socket motherboards with an eight-core 2.10GHz
Intel Xeon Silver 4110 processor per socket. Both machines
used LITMUSRT [23], [24], a real-time testbed based on
the Linux 5.4 kernel, with ROS 2 Humble Hawksbill. The
neural network and interference workloads were run on one
machine equipped with an NVIDIA Titan V GPU. The
Flightmare simulation was run on the other machine, which
was equipped with an NVIDIA GTX 1080 Ti GPU.

Modifications. We require all ROS nodes to be initialized
with a unique callback queue [25]. Then, each timer and
subscriber callback must be registered on its own node.
Finally, a thread is created for each node, and that thread
registers itself as a real-time task with the scheduler such

that the thread is only scheduled when a job exists (i.e., the
callback can be invoked).

When a real-time thread is scheduled, the associated
callback is serviced if it is ready in the callback queue.
Afterward, the thread suspends until the next invocation
specified by the task period Ti. In the case of a timer task,
the callback is always serviced.

Because the real-time scheduler meticulously controls the
scheduling of threads in the system, we found that Python
inhibits the ease of translation from best-effort ROS to real-
time. In rospy [26], each subscriber is given a thread that
spins on the callback queue, but there does not exist an
elegant way to convert the Python thread to a real-time task
while also using real-time locking protocols for predictable
resource access. Therefore, in our evaluation, we converted
all Python code from [6] to C++ so that real-time threads
and locks can be properly utilized.

The real-time locking protocols provided by Time-
Wall [15] are essential when working in component-based
systems. Unlike non-real-time locking, TimeWall requires
that the worst-case access duration is specified when a re-
source is locked. A job is only given access to that resource if
no other job is accessing the resource and if the resource will
be relinquished before the component is no longer scheduled,



Fig. 5: Number of crashes per hour given f , the number of interfering
processes. As interference increases, best-effort scheduling (top) does not
mitigate unnecessary crashes. TimeWall (bottom), however, ensures flight-
critical workloads meet their deadlines, preventing an increase in crashes.

as in Fig. 2. The latter requirement is necessary as GPU
access must end before the start of another component that
may require the GPU. Thus, jobs must lock a GPU before
using it to ensure isolation guarantees across components.

B. Experimental Results

We created f GPU-using processes to contend with flight-
critical workloads. Each interfering process performs infer-
ence with a separate instance of the neural network used
by the drone at 15Hz. We executed our modified drone
software alongside these interference processes. For each
f ∈ [1, 10], we performed approximately one hour of
simulated flight under best-effort scheduling with the default
Linux scheduler. These experiments were then repeated with
TimeWall enabled. Shown in Fig. 4 are representative flights
of the drone at various values of f .

If the drone travels far enough without crashing into trees,
then the flight successfully finishes. If the drone crashes into
a tree or the ground, the flight ends and a crash is recorded.
The number of crashes per hour is derived by running flights
and then normalizing the number of crashes observed to an
hour of airtime. The results are plotted in Fig. 5.
Observation 1. As f increases, under best-effort scheduling,
the drone becomes less capable of making timely decisions.
Fig. 4 shows the drone failing to react to trees as trajectory
decisions are delayed due to blocked and interrupted GPU
accesses. Such delays caused trajectory decision tasks to
miss deadlines where a deadline was implicitly defined as

the point in time the next decision needed to be computed.
The result is a marked increase in the number of crashes per
hour as seen in the top graph of Fig. 5.

Observation 2. Increasing f has little effect when TimeWall
arbitrates CPU execution and GPU access. Shown in the
bottom graph of Fig. 5, the number of crashes per hour is
stable and does not increase significantly as f increases. This
is due to interfering processes being prevented from utilizing
the GPU while the flight-critical components are guaranteed
isolated access to it.

Observation 3. Increasing reliability in high-interference
scenarios comes with a small performance cost. Because
the overhead incurred by TimeWall’s scheduling decisions
is under 10µs [4], the capacity loss is instead due to the
scheduling parameters of the component. When compared
to best-effort scheduling, the periodic component reserva-
tion reduces the time spent executing to that specified by
the reservation’s period and time slice duration (Π and Θ
respectively). The effects of such a reduction are shown
where the crashes per hour in Fig. 5 under TimeWall is
slightly higher when compared to a system under best-effort
scheduling with few interfering processes. Additionally, the
performance degradation can also be attributed to delaying
GPU work at a component’s time slice boundary, as shown
in Fig. 2.

However, these effects can be mitigated by optimizing Θ
and Π, where Θ can be increased to execute more often, and
Π can be optimized around the critical workload’s period
to avoid attempting to execute in a forbidden zone. Any
remaining capacity loss is justified given the observed bene-
fits of greatly increased reliability with TimeWall’s real-time
guarantees. Such reliable execution times are instrumental
in the quest for certifiably safe, GPU-using autonomous
systems.

VI. CONCLUSION

We have demonstrated the importance and benefits of
real-time system design principles for the safe operation
of autonomous robots. Using TimeWall as an exemplar
component-based real-time framework, we have described
how actual robotics systems, particularly those utilizing
multicore+accelerator platforms, may be modified to adhere
to such principles while also enabling certifiable, modular
system components.

We have verified the efficacy of our approach by imple-
menting the proposed modifications in an actual autonomous
drone software stack. Our experiments show that TimeWall
guarantees timely, isolated access to compute resources
for flight-critical workloads and thus prevents unnecessary
crashes where a naı̈ve implementation cannot.

Future work may explore how the modularity of TimeWall
components may be customized and further enhanced for
publish/subscribe systems commonly used in robotics. We
also hope to validate our approach with a physical drone
platform in the real world.
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