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Abstract

We develop a new motion planning algorithm for a vari-
ant of a Dubins car with binary left/right steering and
apply it to steerable needles, a new class of flexible bevel-
tip medical needles that physicians can steer through soft
tissue to reach clinical targets inaccessible to traditional
stiff needles. Our method explicitly considers uncertainty
in needle motion due to patient differences and the diffi-
culty in predicting needle/tissue interaction. The planner
computes optimal steering actions to maximize the prob-
ability that the needle will reach the desired target. Given
a medical image with segmented obstacles and target, our
method formulates the planning problem as a Markov De-
cision Process based on an efficient discretization of the
state space, models motion uncertainty using probability
distributions, and computes optimal steering actions us-
ing Dynamic Programming. This approach only requires
parameters that can be directly extracted from images, al-
lows fast computation of the optimal needle entry point,
and enables intra-operative optimal steering of the nee-
dle using the pre-computed dynamic programming look-
up table. We apply the method to generate motion plans
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for steerable needles to reach targets inaccessible to stiff
needles, and we illustrate the importance of considering
uncertainty during motion plan optimization.

KEYWORDS: motion planning, medical robotics, uncer-
tainty, needle steering, dynamic programming, Markov
Decision Process, image-guided medical procedure

1 Introduction

Advances in medical imaging modalities such as MRI,
ultrasound, and X-ray fluoroscopy are now providing
physicians with real-time, patient-specific information as
they perform medical procedures such as extracting tis-
sue samples for biopsies, injecting drugs for anesthesia,
or implanting radioactive seeds for brachytherapy can-
cer treatment. These diagnostic and therapeutic medical
procedures require insertion of a needle to a specific lo-
cation in soft tissue. We are developing motion planning
algorithms for medical needle insertion procedures that
can utilize the information obtained by real-time imaging
to accurately reach desired locations.

We consider a new class of medical needles, composed
of a flexible material and with a bevel-tip, that can be
steered to targets in soft tissue that are inaccessible to
traditional stiff needles (Webster III et al., 2006a, 2005a;
Alterovitz et al., 2005a,b). Steerable needles are con-



(a) Minimize
path length,
ps = 36.7%

(b) Maximize
probability of success,
ps = 73.7%

Figure 1: Our motion planner computes actions (inser-
tions and direction changes, indicated by dots) to steer
the needle from an insertion entry region (vertical line on
left between the solid squares) to the target (open circle)
inside soft tissue, without touching critical areas indicated
by polygonal obstacles in the imaging plane. The motion
of the needle is not known with certainty; the needle tip
may be deflected during insertion due to tissue inhomo-
geneities or other unpredictable soft tissue interactions.
We explicitly consider this uncertainty to generate mo-
tion plans to maximize the probability of success, ps, the
probability that the needle will reach the target without
colliding with an obstacle or exiting the workspace bound-
ary. Relative to a planner that minimizes path length,
our planner considering uncertainty may generate longer
paths with greater clearance from obstacles to maximize
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trolled by 2 degrees of freedom actuated at the needle
base: insertion distance and bevel direction. Webster 111
et al. (2006a) experimentally demonstrated that, under
ideal conditions, a flexible bevel-tip needle cuts a path of
constant curvature in the direction of the bevel, and the
needle shaft bends to follow the path cut by the bevel
tip. In a plane, a needle subject to this nonholonomic
constraint based on bevel direction is equivalent to a Du-
bins car that can only steer its wheels far left or far right
but cannot go straight.

The steerable needle motion planning problem is to de-
termine a sequence of actions (insertions and direction
changes) so the needle tip reaches the specified target
while avoiding obstacles and staying inside the workspace.
Given a segmented medical image of the target, obstacles,
and starting location, the feasible workspace for motion
planning is defined by the soft tissues through which the
needle can be steered. Obstacles represent tissues that
cannot be cut by the needle, such as bone, or sensitive
tissues that should not be damaged, such as nerves or
arteries.

We consider motion planning for steerable needles in

the context of an image-guided procedure: real-time
imaging and computer vision algorithms are used to track
the position and orientation of the needle tip in the tissue.
Recently developed methods can provide this information
for a variety of imaging modalities (Cleary et al., 2003;
DiMaio et al., 2006a). In this paper, we consider mo-
tion plans in an imaging plane since the speed/resolution
trade-off of 3-D imaging modalities is generally poor for
3-D real-time interventional applications. With imaging
modalities continuing to improve, we will explore the nat-
ural extension of our planning approach to 3-D in future
work.

Whereas many traditional motion planners assume
a robot’s motions are perfectly deterministic and pre-
dictable, a needle’s motion through soft tissue cannot be
predicted with certainty due to patient differences and the
difficulty in predicting needle/tissue interaction. These
sources of uncertainty may result in deflections of the nee-
dle’s orientation, which is a type of slip in the motion of a
Dubins car. Real-time imaging in the operating room can
measure the needle’s current position and orientation, but
this measurement by itself provides no information about
the effect of future deflections during insertion. Since the
motion response of the needle is not deterministic, success
of the procedure can rarely be guaranteed.

We develop a new motion planning approach for steer-
ing flexible needles through soft tissue that explicitly con-
siders uncertainty in needle motion. To define optimality
for a needle steering plan, we introduce a new objective
for image-guided motion planning: maximizing the prob-
ability of success. In the case of needle steering, the nee-
dle insertion procedure continues until the needle reaches
the target (success) or until failure occurs, where fail-
ure is defined as hitting an obstacle, exiting the feasible
workspace, or reaching a state in which it is impossible
to prevent the former two outcomes. Our method formu-
lates the planning problem as a Markov Decision Process
(MDP) based on an efficient discretization of the state
space, models motion uncertainty using probability dis-
tributions, and computes optimal actions (within error
due to discretization) for a set of feasible states using in-
finite horizon Dynamic Programming (DP).

Our motion planner is designed to run inside a feed-
back loop. After the feasible workspace, start region, and
target are defined from a pre-procedure image, the mo-
tion planner is executed to compute the optimal action for
each state. After the image-guided procedure begins, an
image is acquired, the needle’s current state (tip position
and orientation) is extracted from the image, the motion
planner (quickly) returns the optimal action to perform
for that state, the action is executed and the needle may
deflect due to motion uncertainty, and the cycle repeats.

In Fig. 1, we apply our motion planner in simulation
to prostate brachytherapy, a medical procedure to treat



prostate cancer in which physicians implant radioactive
seeds at precise locations inside the prostate under ultra-
sound image guidance. In this ultrasound image of the
prostate (segmented by a dotted line), obstacles corre-
spond to bones, the rectum, the bladder, the urethra, and
previously implanted seeds. Brachytherapy is currently
performed in medical practice using rigid needles; here
we consider steerable needles capable of obstacle avoid-
ance. We compare the output of our new method, which
explicitly considers motion uncertainty, to the output of
a shortest-path planner that assumes the needles follow
ideal deterministic motion. Our new method improves
the expected probability of success by over 30% compared
to shortest path planning, illustrating the importance of
explicitly considering uncertainty in needle motion.

1.1 Related Work

Nonholonomic motion planning has a long history in
robotics and related fields (Latombe, 1991, 1999; Choset
et al., 2005; LaValle, 2006). Past work has addressed de-
terministic curvature-constrained path planning where a
mobile robot’s path is, like a car, constrained by a min-
imum turning radius. Dubins showed that the optimal
curvature-constrained trajectory in open space from a
start pose to a target pose can be described using a dis-
crete set of canonical trajectories composed of straight
line segments and arcs of the minimum radius of curva-
ture (Dubins, 1957). Jacobs and Canny (1989) consid-
ered polygonal obstacles and constructed a configuration
space for a set of canonical trajectories, and Agarwal et al.
(2002) developed a fast algorithm to compute a shortest
path inside a convex polygon. For Reeds-Shepp cars with
reverse, Laumond et al. (1994) developed a nonholonomic
planner using recursive subdivision of collision-free paths
generated by a lower-level geometric planner, and Bicchi
et al. (1996) proposed a technique that provides the short-
est path for circular unicycles. Sellen (1998) developed a
discrete state-space approach; his discrete representation
of orientation using a unit circle inspired our discretiza-
tion approach.

Our planning problem considers steerable needles, a
new type of needle currently being developed jointly by
researchers at The Johns Hopkins University and The
University of California, Berkeley (Webster III et al.,
2005b). Unlike traditional Dubins cars that are subject to
a minimum turning radius, steerable needles are subject
to a constant turning radius. Webster et al. showed exper-
imentally that, under ideal conditions, steerable bevel-tip
needles follow paths of constant curvature in the direction
of the bevel tip (Webster III et al., 2006a), and that the
radius of curvature of the needle path is not significantly
affected by insertion velocity (Webster 11T et al., 2005a).

Park et al. (2005) formulated the planning problem

for steerable bevel-tip needles in stiff tissue as a non-
holonomic kinematics problem based on a 3-D exten-
sion of a unicycle model and used a diffusion-based mo-
tion planning algorithm to numerically compute a path.
The approach is based on recent advances by Zhou and
Chirikjian in nonholonomic motion planning including
stochastic model-based motion planning to compensate
for noise bias (Zhou and Chirikjian, 2004) and proba-
bilistic models of dead-reckoning error in nonholonomic
robots (Zhou and Chirikjian, 2003). Park’s method
searches for a feasible path in full 3-D space using contin-
uous control, but it does not consider obstacle avoidance
or the uncertainty of the response of the needle to inser-
tion or direction changes, both of which are emphasized
in our method.

In preliminary work on motion planning for bevel-tip
steerable needles, we proposed an MDP formulation for
2-D needle steering (Alterovitz et al., 2005b) to find a
stochastic shortest path from a start position to a target,
subject to user-specified “cost” parameters for direction
changes, insertion distance, and obstacle collisions. How-
ever, the formulation was not targeted at image-guided
procedures, did not include insertion point optimization,
and optimized an objective function that has no phys-
ical meaning. In this paper, we develop a 2-D motion
planning approach for image-guided needle steering that
explicitly considers motion uncertainty to maximize the
probability of success based on parameters that can be
extracted from medical imaging without requiring user-
specified “cost” parameters that may be difficult to de-
termine.

MDP’s and dynamic programming are ideally suited
for medical planning problems because of the variance in
characteristics between patients and the necessity for clin-
icians to make decisions at discrete time intervals based
on limited known information. In the context of medical
procedure planning, MDP’s have been developed to assist
in decisions such as timing for liver transplants (Alagoz
et al., 2005), discharge times for severe sepsis cases (Kreke
et al., 2005), and start dates for HIV drug cocktail treat-
ment (Shechter et al., 2005). MDP’s and dynamic pro-
gramming have also been used in a variety of robotics
applications, including planning paths for mobile robots
(Dean et al., 1995; LaValle and Hutchinson, 1998; Fergu-
son and Stentz, 2004; LaValle, 2006).

Past work has investigated needle insertion planning
in situations where soft tissue deformations are signifi-
cant and can be modeled. Several groups have estimated
tissue material properties and needle/tissue interaction
parameters using tissue phantoms (DiMaio and Salcud-
ean, 2003a; Crouch et al., 2005) and animal experiments
(Kataoka et al., 2002; Simone and Okamura, 2002; Oka-
mura et al., 2004; Kobayashi et al., 2005; Heverly et al.,
2005; Hing et al., 2007). Our past work addressed plan-



ning optimal insertion location and insertion distance for
rigid symmetric-tip needles to compensate for 2-D tissue
deformations predicted using a finite element model (Al-
terovitz et al., 2003a,b,c). We previously also developed
a different 2-D planner for bevel-tip steerable needles to
explicitly compensate for the effects of tissue deforma-
tion by combining finite element simulation with numeric
optimization (Alterovitz et al., 2005a). This previous ap-
proach assumed that bevel direction can only be set once
prior to insertion and employed local optimization that
can fail to find a globally optimal solution in the presence
of obstacles.

Past work has also considered insertion planning for
needles and related devices capable of following curved
paths through tissues using different mechanisms. One
such approach uses slightly flexible symmetric-tip nee-
dles that are guided by translating and orienting the nee-
dle base to explicitly deform surrounding tissue, caus-
ing the needle to follow a curved path (DiMaio and Sal-
cudean, 2003b; Glozman and Shoham, 2007). DiMaio
and Salcudean (2003b) developed a planning approach
that guides this type of needle around point obstacles
with oval-shaped potential fields. Glozman and Shoham
(2007) also addressed symmetric-tip needles and approx-
imated the tissue using springs. Another steering ap-
proach utilizes a standard biopsy cannula (hollow tube
needle) and adds steering capability with an embedded
pre-bent stylet that is controlled by a hand-held, motor-
ized device (Okazawa et al., 2005). A recently developed
“active cannula” device is composed of concentric, pre-
curved tubes and is capable of following curved paths in
a “snake-like” manner in soft tissue or open space (Web-
ster IIT et al., 2006b).

Integrating motion planning for needle insertion with
intra-operative medical imaging requires real-time local-
ization of the needle in the images. Methods are avail-
able for this purpose for a variety of imaging modalities
(Cleary et al., 2003; DiMaio et al., 2006a). X-ray fluo-
roscopy, a relatively low-cost imaging modality capable
of obtaining images at regular discrete time intervals, is
ideally suited for our application because it generates 2-D
projection images from which the needle can be cleanly
segmented (Cleary et al., 2003).

Medical needle insertion procedures may also bene-
fit from the more precise control of needle position and
velocity made possible through robotic surgical assis-
tants (Howe and Matsuoka, 1999; Taylor and Stoianovici,
2003). Dedicated robotic hardware for needle inser-
tion is being developed for a variety of medical appli-
cations, including stereotactic neurosurgery (Masamune
et al., 1998), CT-guided procedures (Maurin et al., 2005),
MR compatible surgical assistance (Chinzei et al., 2000;
DiMaio et al., 2006b), thermotherapy cancer treatment
(Hata et al., 2005), and prostate biopsy and therapeu-

tic interventions (Fichtinger et al., 2002; Schneider et al.,
2004).

1.2 Our Contributions

In Sec. 3, we first introduce a motion planner for Dubins
cars with binary left/right steering subject to a constant
turning radius rather than the typical minimum turn-
ing radius. This model applies to an idealized steerable
needle whose motion is deterministic: the needle exactly
follows arcs of constant curvature in response to inser-
tion actions. Our planning method utilizes an efficient
discretization of the state space for which error due to
discretization can be tightly bounded. Since any feasible
plan will succeed with 100% probability under the de-
terministic motion assumption, we apply the traditional
motion planning objective of computing a shortest path
plan from the current state to the target.

In Sec. 4, we extend the deterministic motion planner to
consider uncertainty in motion and introduce a new plan-
ning objective: maximize the probability of success. Un-
like the objective function value of previous methods that
consider motion uncertainty, the value of this new objec-
tive function has physical meaning: it is the probability
that the needle tip will successfully reach the target dur-
ing the insertion procedure. In addition to this intuitive
meaning of the objective, our problem formulation has a
secondary benefit: all data required for planning can be
measured directly from imaging data without requiring
tweaking of user-specified parameters. Rather than as-
signing costs to insertion distance, needle rotation, etc.,
which are difficult to estimate or quantify, our method
only requires the probability distributions of the needle
response to each feasible action, which can be estimated
from previously obtained images.

Our method formulates the planning problem as a
Markov Decision Process (MDP) and computes actions
to maximize the probability of success using infinite hori-
zon Dynamic Programming (DP). Solving the MDP us-
ing DP has key benefits particularly relevant for medical
planning problems where feedback is provided at regu-
lar time intervals using medical imaging or other sensor
modalities. Like a well-constructed navigation field, the
DP solver provides an optimal action for any state in
the workspace. We use the DP look-up table to auto-
matically optimize the needle insertion point. Integrated
with intra-operative medical imaging, this DP look-up ta-
ble can also be used to optimally steer the needle in the
operating room without requiring costly intra-operative
re-planning. Hence, the planning solution can serve as a
means of control when integrated with real-time medical
imaging.

Throughout the description of the motion planning
method, we focus on the needle steering application.



However, the method is generally applicable to any car-
like robot with binary left/right steering that follows
paths composed of arcs of constant curvature, whose po-
sition can be estimated by sensors at regular intervals,
and whose path may deflect due to motion uncertainty.

2 Problem Definition

Steerable bevel-tip needles are controlled by 2 degrees of
freedom: insertion distance and rotation angle about the
needle axis. The actuation is performed at the needle
base outside the patient (Webster III et al., 2006a). In-
sertion pushes the needle deeper into the tissue, while
rotation turns the needle about its shaft, re-orienting the
bevel at the needle tip. For a sufficiently flexible needle,
Webster IIT et al. (2006a) experimentally demonstrated
that rotating the needle base will change the bevel direc-
tion without changing the needle shaft’s position in the
tissue. In the plane, the needle shaft can be rotated 180°
about the insertion axis at the base so the bevel points
in either the bevel-left or bevel-right direction. When in-
serted, the asymmetric force applied by the bevel causes
the needle to bend and follow a curved path through the
tissue (Webster III et al., 2006a). Under ideal conditions,
the curve will have a constant radius of curvature r, which
is a property of the needle and tissue. We assume the nee-
dle moves only in the imaging plane; a recently developed
low-level controller using image feedback can effectively
maintain this constraint (Kallem and Cowan, 2007). We
also assume the tissue is stiff relative to the needle and
that the needle is thin, sharp, and low-friction so the tis-
sue does not significantly deform. While the needle can
be partially retracted and re-inserted, the needle’s motion
would be biased to follow the path in the tissue cut by
the needle prior to retraction. Hence, in this paper we
only consider needle insertion, not retraction.

We define the workspace as a 2-D rectangle of depth
Zmaz and height 9. Obstacles in the workspace are
defined by (possibly nonconvex) polygons. The obstacles
can be expanded using a Minkowski sum with a circle to
specify a minimum clearance (LaValle, 2006). The target
region is defined by a circle with center point t and radius
Tt.

As shown in Fig. 2, the state w of the needle during
insertion is fully characterized by the needle tip’s position
p = (py,p-), orientation angle 6, and bevel direction b,
where b is either bevel-left (b=0) or bevel-right (b=1).

We assume the needle steering procedure is performed
with image guidance; a medical image is acquired at reg-
ular time intervals and the state of the needle (tip posi-
tion and orientation) is extracted from the images. Be-
tween image acquisitions, we assume the needle moves
at constant velocity and is inserted a distance §. In our

model, direction changes can only occur at discrete deci-
sion points separated by the insertion distance . One of
two actions u can be selected at any decision point: insert
the needle a distance § (u = 0), or change direction and
insert a distance § (u =1).

During insertion, the needle tip orientation may be de-
flected by inhomogeneous tissue, small anatomical struc-
tures not visible in medical images, or local tissue dis-
placements. Additional deflection may occur during di-
rection changes due to stiffness along the needle shaft.
Such deflections are due to an unknown aspect of the tis-
sue structure or needle/tissue interaction, not errors in
measurement of the needle’s orientation, and can be con-
sidered a type of noise parameter in the plane. We model
uncertainty in needle motion due to such deflections using
probability distributions. The orientation angle § may be
deflected by some angle 3, which we model as normally
distributed with mean 0 and standard deviations o; for
insertion (v = 0) and o, for direction changes followed
by insertion (v = 1). Since o; and o, are properties
of the needle and tissue, we plan in future work to au-
tomatically estimate these parameters by retrospectively
analyzing images of needle insertion.

The goal of our motion planner is to compute an opti-
mal action u for every feasible state w in the workspace
to maximize the probability ps that the needle will suc-
cessfully reach the target.

3 Motion Planning for Determin-
istic Needle Steering

We first introduce a motion planner for an idealized steer-
able needle whose motion is deterministic: the needle per-
fectly follows arcs of constant curvature in response to
insertion actions.

To computationally solve the motion planning prob-
lem, we transform the problem from a continuous state
space to a discrete state space by approximating needle
state w = {p,0,b} using a discrete representation. To
make this approach tractable, we must round p and 6
without generating an unwieldy number of states while
simultaneously bounding error due to discretization.

3.1 State Space Discretization

Our discretization of the planar workspace is based on a
grid of points with a spacing A horizontally and vertically.
We approximate a point p = (py,p.) by rounding to the
nearest point q = (gy,¢.) on the grid. For a rectangular
workspace bounded by depth 2,4, and height 9,42, this
results in

Ns =

Zmam + A ymaz Jr A
A A
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Figure 2: The state of a steerable needle during insertion is characterized by tip position p, tip orientation angle 6,
and bevel direction b (a). Rotating the needle about its base changes the bevel direction but does not affect needle
position (b). The needle will cut soft tissue along an arc (dashed vector) based on bevel direction.

(a) Needle tracing an action circle

(b) Action circle (c)
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Figure 3: A needle in the bevel-left direction with orientation 6 is tracing the solid action circle with radius r (a).
A direction change would result in tracing the dotted circle. The action circle is divided into N. = 40 discrete arcs
of length § (b). The action circle points are rounded to the nearest point on the A-density grid, and transitions for
insertion of distance ¢ are defined by the vectors between rounded action circle points (c).

position states aligned at the origin.

Rather than directly approximating 6 by rounding,
which would incur a cumulative error with every transi-
tion, we take advantage of the discrete insertion distances
6. We define an action circle of radius r, the radius of
curvature of the needle. Each point ¢ on the action cir-
cle represents an orientation 6 of the needle, where 6 is
the angle of the tangent of the circle at ¢ with respect
to the z-axis. The needle will trace an arc of length §
along the action circle in a counter-clockwise direction for
b =0 and in the clockwise direction for b = 1. Direction
changes correspond to rotating the point ¢ by 180° about
the action circle origin and tracing subsequent insertions
in the opposite direction, as shown in Fig. 3(a). Since
the needle traces arcs of length ¢, we divide the action
circle into N, arcs of length 6 = 2mwr/N.. The endpoints
of the arcs generate a set of N, action circle points, each
representing a discrete orientation state, as shown in Fig.
3(b). We require that N, be a multiple of 4 to facilitate
the orientation state change after a direction change.

At each of the N, discrete position states on the A grid,
the needle may be in any of the IV, orientation states and

the bevel direction can be either b = 0 or b = 1. Hence,
the total number of discrete states is N = 2N N,.

Using this discretization, a needle state w = {p, 6, b}
can be approximated as a discrete state s = {q,©,b},
where q = (gy, ¢-) is the discrete point closest to p on the
A-density grid and O is the integer index of the discrete
action circle point with tangent angle closest to 6.

3.2 Deterministic State Transitions

For each state and action, we create a state transition
that defines the motion of the needle when it is inserted
a distance §. We first consider the motion of the needle
from a particular spatial state q. To define transitions for
each orientation state at q, we overlay the action circle
on a regular grid of spacing A and round the positions of
the action circle points to the nearest grid point, as shown
in Fig. 3(c). The displacement vectors between rounded
action circle points encode the transitions of the needle
tip. Given a particular orientation state © and bevel
direction b = 0, we define the state transition using a
translation component (the displacement vector between



the positions of ® and © — 1 on the rounded action circle,
which will point exactly to a new spatial state) and a new
orientation state (© — 1). If b = 1, we increment rather
than decrement ©. We create these state transitions for
each orientation state and bevel direction for each posi-
tion state q in the workspace. This discretization of states
and state transitions results in 0 discretization error in
orientation when new actions are selected at § intervals.

Certain states and transitions must be handled as spe-
cial cases. States inside the target region and states inside
obstacles are absorbing states, meaning they have a sin-
gle self-transition edge of zero length. If the transition arc
from a feasible state exits the workspace or intersects an
edge of a polygonal obstacle, a transition to an obstacle
state is used.

3.3 Discretization Error

Deterministic paths designated using this discrete repre-
sentation of state will incur error due to discretization,
but the error is bounded. At any decision point, the po-
sition error due to rounding to the A workspace grid is
Ey=AV?2 /2. When the bevel direction is changed, a po-
sition error is also incurred because the distance between
the center of the original action circle and the center of
the action circle after the direction change will be in the
range 2r + Av/2. Hence, for a needle path with h direc-
tion changes, the final orientation is precise but the error
in position is bounded above by Ej = hAV?2 + A\/§/2.

3.4 Computing Deterministic Shortest
Paths

For the planner that considers deterministic motion, we
compute an action for each state such that the path
length to the target is minimized. As in standard mo-
tion planning approaches (Latombe, 1991; Choset et al.,
2005; LaValle, 2006), we formulate the motion planning
problem as a graph problem. We represent each state as
a node in a graph and state transitions as directed edges
between the corresponding nodes. We merge all states in
the target into a single “source” state. We then apply
Dijkstra’s shortest path algorithm (Bertsekas, 2000) to
compute the shortest path from each state to the target.
The action u to perform at a state is implicitly computed
based on the directed edge from that state that was se-
lected for the shortest path.

4 Motion Planning for Needle
Steering Under Uncertainty

We extend the deterministic motion planner from Sec.
3 to consider uncertainty in motion and to compute ac-

tions to explicitly maximize the probability of success p;
for each state. The planner retains the discrete approx-
imation of the state space introduced in Sec. 3.1, but
replaces the single deterministic state transition per ac-
tion defined in Sec. 3.2 with a set of state transitions, each
weighted by its probability of occurrence. We then gener-
alize the shortest path algorithm defined in Sec. 3.4 with
a dynamic programming approach that enables the plan-
ner to utilize the probability-weighted state transitions to
explicitly maximize the probability of success.

4.1 Modeling Motion Uncertainty

Due to motion uncertainty, actual needle paths will not
always exactly trace the action circle introduced in Sec.
3.1. The deflection angle [ defined in Sec. 2 must be
approximated using discrete values. We define discrete
transitions from a state z;, each separated by an angle
of deflection of a@ = 360°/N,. In this paper, we model
[ using a normal distribution with mean 0 and standard
deviation o; or o,, and compute the probability for each
discrete transition by integrating the corresponding area
under the normal curve, as shown in Fig. 4. We set the
number of discrete transitions N,, such that the areas
on the left and right tails of the normal distribution sum
to less than 1%. The left and right tail probabilities are
added to the left-most and right-most transitions, respec-
tively. Using this discretization, we define a transition
probability matrix P(u), where P;;(u) defines the proba-
bility of transitioning from state z; to state x; given that
action u is performed.

4.2 Maximizing the Probability of Suc-
cess using Dynamic Programming

The goal of our motion planning approach is to com-
pute an optimal action u for every state w (in continuous
space) such that the probability of reaching the target
is maximized. We define ps(w) to be the probability of
success given that the needle is currently in state w. If
the position of state w is inside the target, ps(w) = 1. If
the position of state w is inside an obstacle, ps(w) = 0.
Given an action u for some other state w, the probability
of success will depend on the response of the needle to
the action (the next state) and the probability of success
at that next state. The expected probability of success is

(1)

where the expectation is over v, a random variable for the
next state. The goal of motion planning is to compute an
optimal action u for every state w:

ps(w) = E[ps(v)\w, u]’

(2)

ps(w) = max {Eps(v)|w,u]}.
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Figure 4: When the needle is inserted, the insertion angle § may be deflected by some angle 3. We model the
probability distribution of 8 using a normal distribution with mean 0 and standard deviation o; for insertion or o,
for direction change. For a discrete sample of deflections (5 = {—2a, —, 0, «, 2a}), we obtain the probability of each

deflection by integrating the corresponding area under the normal curve.

For N discrete states, the motion planning problem
is to determine the optimal action u; for each state x;,
i =1,...,N. We re-write Eq. 2 using the discrete ap-
proximation and expand the expected value to a summa-
tion:

N
ps(@;) = max > Py (ui)ps(a) ¢ (3)

Jj=1

where P;;(u;) is the probability of entering state x; after
executing action u; at current state x;.

We observe that the needle steering motion planning
problem is a type of MDP. In particular, Eq. 3 has the
form of the Bellman equation for a stochastic maximum-
reward problem (Bertsekas, 2000):

N
J*(2) = quf}xzpij(uz’) (9(zi,ui x5) + T (25)). (4)

j=1

where g(z;,u;,x;) is a “reward” for transitioning from
state x; to x; after performing action u;. In our case, we
set J*(z;) = ps(x;), and we set g(z;,u;,x;) = 0 for all
Z;, Ui, and ;. Stochastic maximum-reward problems of
this form can be optimally solved using infinite horizon
Dynamic Programming (DP).

Infinite horizon DP is a type of dynamic programming
in which there is no finite time horizon (Bertsekas, 2000).
For stationary problems, this implies that the optimal
action at each state is purely a function of the state with-
out explicit dependence on time. In the case of needle
steering, once a state transition is made, the next action
is computed based on the current position, orientation,
and bevel direction without explicit dependence on past
actions.

To solve the infinite horizon DP problem defined by
the Bellman Eq. 4, we use the value iteration algorithm
(Bertsekas, 2000), which iteratively updates ps(x;) for
each state ¢ by evaluating Eq. 3. This generates a DP
look-up table containing the optimal action w; and the
probability of success ps(z;) fori=1,... N.

Termination of the algorithm is guaranteed in N iter-
ations if the transition probability graph corresponding
to some optimal stationary policy is acyclic (Bertsekas,
2000). Violation of this requirement will be rare in mo-
tion planning since a violation implies that an optimal
action sequence results in a path that, with probability
greater than 0, loops and passes through the same point
at the same orientation more than once. As in the de-
terministic shortest path planner case, the planner does
not explicitly detect self-intersections of the needle path
in the plane.

To improve performance, we take advantage of the
sparsity of the matrices P;;(u) for u = 0 and v = 1. Each
iteration of the value iteration algorithm requires matrix-
vector multiplication using the transition probability ma-
trix. Although P;;(u) has N? entries, each row of P;;(u)
has only k£ nonzero entries, where k << N since the nee-
dle will only transition to a state j in the spatial vicinity
of state 7. Hence, P;;(u) has at most kN nonzero entries.
By only accessing nonzero entries of P;;(u) during com-
putation, each iteration of the value iteration algorithm
requires only O(kN) rather than O(N?) time and mem-
ory. Thus, the total algorithm’s complexity is O(kN?).
To further improve performance, we terminate value iter-
ation when the maximum change € over all states is less
than 1073, which in our test cases occurred in far fewer
than N iterations, as described in Sec. 5.

5 Computational Results

We implemented the motion planner in C++ and tested
it on a 2.21GHz Athlon 64 PC. In Fig. 1, we set the
needle radius of curvature r = 5.0, defined the workspace
by Zmaz = Ymaz = 10, and used discretization parameters
N, =40, A = 0.101, and 6 = 0.785. The resulting DP
problem contained N = 800,000 states. In all further
examples, we set 7 = 2.5, Zmazr = Ymaz = 10, N, = 40,
A = 0.101, and § = 0.393, resulting in N = 800,000
states.
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(b) Maximize ps
(01 = 10°, oy = 10°),
ps = 76.95%

(¢) Maximize ps
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Figure 5: Asin Fig. 1, optimal plans maximizing the probability of success p; illustrate the importance of considering

uncertainty in needle motion. The shortest path plan passes through a narrow gap between obstacles (a).

Since

maximizing ps explicitly considers uncertainty, the optimal expected path has greater clearance from obstacles,
decreasing the probability that large deflections will cause failure to reach the target. Here we consider medium (b)
and large (c) variance in tip deflections for a needle with smaller radius of curvature than in Fig. 1.

Optimal plans and probability of success ps depend on
the level of uncertainty in needle motion. As shown in
Figs. 1 and 5, explicitly considering the variance of needle
motion significantly affects the optimal plan relative to
the shortest path plan generated under the assumption of
deterministic motion. We also vary the variance during
direction changes independently from the variance during
insertions without direction changes. Optimal plans and
probability of success ps are highly sensitive to the level of
uncertainty in needle motion due to direction changes. As
shown in Fig. 6, the number of direction changes decreases
as the variance during direction changes increases.

By examining the DP look-up table, we can optimize
the initial insertion location, orientation, and bevel direc-
tion, as shown in Figs. 1, 5, and 6. In these examples,
the set of feasible start states was defined as a subset of
all states on the left edge of the workspace. By linearly
scanning the computed probability of success for the start
states in the DP look-up table, the method identifies the
bevel direction b, insertion point (height y on the left edge
of the workspace), and starting orientation angle 6 (which
varies from —90° to 90°) that maximizes probability of
success, as shown in Fig. 7.

Since the planner approximates the state of the needle
with a discrete state, the planner is subject to discretiza-
tion errors as discussed in Sec. 3.3. After each action, the
state of the needle is obtained from medical imaging, re-
ducing the discretization error in position of the current
state to A\/§/2. However, when the planner considers
future actions, discretization error for future bevel direc-
tion changes is cumulative. We illustrate the effect of
cumulative discretization error during planning in Fig. 8,
where the planner internally assumes the expected nee-
dle path will follow the dotted line rather than the actual

expected path indicated by the solid line. The effect of
cumulative errors due to discretization, which is bounded
as described in Sec. 3.3, is generally smaller when fewer
direction changes are planned.

As defined in Sec. 4.2, the computational complexity of
the motion planner is O(kN?). Fewer than 300 iterations
were required for each example, with fewer iterations re-
quired for smaller ¢; and o,.. In all examples, k, the num-
ber of transitions per state, is bounded such that k < 25.
Computation time to construct the MDP depends on the
collision detector used, as collision detection must be per-
formed for all N states and up to kN state transitions.
Computation time to solve the MDP for the examples
ranged from 67 sec to 110 sec on a 2.21GHz AMD Athlon
64 PC, with higher computation times required for prob-
lems with greater variance, due to the increased num-
ber of transitions from each state. As computation only
needs to be performed at the pre-procedure stage, we be-
lieve minutes of computation time is reasonable for the
intended applications. Intra-operative computation time
is effectively instantaneous since only a memory access to
the DP look-up table is required to retrieve the optimal
action after the needle has been localized in imaging.

Integrating intra-operative medical imaging with the
pre-computed DP look-up table could permit optimal
steering of the needle in the operating room without re-
quiring costly intra-operative re-planning. We demon-
strate the potential of this approach using simulation
of needle deflections based on normal distributions with
mean 0 and standard deviations o; = 5° and o, = 20°
in Fig. 9. After each insertion distance ¢, we assume the
needle tip is localized in the image. Based on the DP
look-up table, the needle is either inserted or the bevel
direction is changed. The effect of uncertainty can be



'

-

'

-

Y&

-

(a) Low uncertainty
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(b) Medium uncertainty
at direction changes
(oi =5°, o = 10°),

(c) High uncertainty
at direction changes
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Figure 6: Optimal plans demonstrate the importance of considering uncertainty in needle motion, where ¢; and o, are
the standard deviations of needle tip deflections that can occur during insertion and direction changes, respectively.
For higher o, relative to o;, the optimal plan includes fewer direction changes. Needle motion uncertainty at locations
of direction changes may be substantially higher than uncertainty during insertion due to transverse stiffness of the

needle.

(a) Optimization surface for Fig. 5(c)

Figure 7: The optimal needle insertion location y, angle

look-up table for the feasible start state with maximal ps.

2 -90

(b) Optimization surface for Fig. 6(c)

f, and bevel direction b are found by scanning the DP
Here we plot optimization surfaces for b = 0. The low

regions correspond to states from which the needle has high probability of colliding with an obstacle or exiting the
workspace, and the high regions correspond to better start states.

seen as deflections in the path, i.e., locations where the
tangent of the path abruptly changes. Since o, > oy,
deflections are more likely to occur at points of direction
change. In practice, clinicians could monitor ps, inser-
tion length, and self-intersection while performing needle
insertion.

6 Conclusion and Future Work

We developed a new motion planning approach for steer-
ing flexible needles through soft tissue that explicitly con-
siders uncertainty: the planner computes optimal actions
to maximize the probability that the needle will reach
the desired target. Motion planning for steerable needles,
which can be controlled by 2 degrees of freedom at the

needle base (bevel direction and insertion distance), is a
variant of nonholonomic planning for a Dubins car with
no reversals, binary left/right steering, and uncertainty
in motion direction.

Given a medical image with segmented obstacles, tar-
get, and start region, our method formulates the planning
problem as a Markov Decision Process (MDP) based on
an efficient discretization of the state space, models mo-
tion uncertainty using probability distributions, and com-
putes actions to maximize the probability of success us-
ing infinite horizon DP. Using our implementation of the
method, we generated motion plans for steerable needles
to reach targets inaccessible to stiff needles and illustrated
the importance of considering uncertainty in needle mo-
tion, as shown in Figs. 1, 5, and 6.

Our approach has key features particularly beneficial



(a) Deterministic shortest
path,
4 direction changes

(b) 0i = 5°, o = 20°,
8 direction changes

(¢) 03 = 5°, oy = 10°,
15 direction changes

Figure 8: The small squares depict the discrete states used internally by the motion planning algorithm when
predicting the expected path from the start state, while the solid line shows the actual expected needle path based
on constant-curvature motion. The cumulative error due to discretization, which is bounded as described in Sec. 3.3,
is generally smaller when fewer direction changes (indicated by solid circles) are performed.

for medical planning problems. First, the planning for-
mulation only requires parameters that can be directly
extracted from images (the variance of needle orientation
after insertion with or without direction change). Second,
we can determine the optimal needle insertion start pose
by examining the pre-computed DP look-up table con-
taining the optimal probability of success for each needle
state, as demonstrated in Fig. 7. Third, intra-operative
medical imaging can be combined with the pre-computed
DP look-up table to permit optimal steering of the needle
in the operating room without requiring time-consuming
intra-operative re-planning, as shown in Fig. 9.

Extending the motion planner to 3-D would expand the
applicability of the method. Although the mathemat-
ical formulation can be naturally extended, substantial
effort will be required to geometrically specify 3-D state
transitions and to efficiently handle the larger state space
when solving the MDP. We plan to consider faster alter-
natives to the general value iteration algorithm, including
hierarchical and adaptive resolution methods (Chow and
Tsitsiklis, 1991; Bakker et al., 2005; Moore and Atkeson,
1995), methods that prioritize states (Barto et al., 1995;
Dean et al., 1995; Hansen and Zilberstein, 2001; Moore
and Atkeson, 1993; Ferguson and Stentz, 2004), and other
approaches that take advantage of the structure of our
problem formulation (Bemporad and Morari, 1999; Bran-
icky et al., 1998, 1999).

In future work, we also plan to consider new objec-
tive functions, including a weighted combination of path
length and probability of success that would enable the
computation of higher risk but possibly shorter paths. We
also plan to develop automated methods to estimate nee-
dle curvature and variance properties from medical im-
ages and to explore the inclusion of multiple tissue types
in the workspace with different needle/tissue interaction

properties.

Our motion planner has implications beyond the needle
steering application. We can directly extend the method
to motion planning problems with a bounded number of
discrete turning radii where current position and orien-
tation can be measured but future motion response to
actions is uncertain. For example, mobile robots subject
to motion uncertainty with similar properties can receive
periodic “imaging” updates from GPS or satellite images.
Optimization of “insertion location” could apply to au-
tomated guided vehicles in a factory setting, where one
machine is fixed but a second machine can be placed to
maximize the probability that the vehicle will not collide
with other objects on the factory floor. By identifying a
relationship between needle steering and infinite horizon
DP, we developed a motion planner capable of rigorously
computing plans that are optimal in the presence of un-
certainty.
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Figure 9: Three simulated image-guided needle insertion procedures from a fixed starting point with needle motion
uncertainty standard deviations of o; = 5° during insertion and o, = 20° during direction changes. After each
insertion distance &, we assume the needle tip is localized in the image and identified using a dot. Based on the DP
look-up table, the needle is either inserted (small dots) or a direction change is made (larger dots). The effect of
uncertainty can be seen as deflections in the path, i.e., locations where the tangent of the path abruptly changes.
Since o, > o, deflections are more likely to occur at points of direction change. In all cases, ps = 72.35% at the
initial state. In (c), multiple deflections and the nonholonomic constraint on needle motion prevent the needle from

reaching the target.
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