
The Experiment Orchestration System (EOS):
Comprehensive Foundation for Laboratory Automation

Angelos Angelopoulos1, Cem Baykal1, Jade Kandel1, Matthew Verber2, James F. Cahoon2, Ron Alterovitz1

Abstract— As scientific research in chemistry, materials sci-
ence, and applied sciences becomes increasingly complex and
data-driven, there is a growing need for efficient, scalable, and
flexible automation to accelerate discoveries and reduce human
burden and error in laboratories. We introduce the Exper-
iment Orchestration System (EOS), an open-source software
framework and runtime offering a comprehensive foundation
for laboratory automation. EOS offers an extensible framework
allowing users to define labs, devices, tasks, experiments, and
optimization criteria using YAML and Python plugins, and
also offers a distributed runtime for managing and executing
automation. EOS has a central orchestrator that communicates
with and controls laboratory equipment to execute tasks. EOS
implements autonomous experiment campaigns, parameter op-
timization, task scheduling, result aggregation, and more. By
providing a common infrastructure for laboratory automation,
EOS aims to reduce automation implementation barriers and
accelerate discoveries in science laboratories.

I. INTRODUCTION

Science laboratories in fields such as chemistry and
materials science drive innovation in applications such as
energy, sustainability, and electronics. This research often
requires synthesizing, characterizing, and optimizing novel
molecules and materials. Creating and optimizing molecules
and materials requires navigating a vast chemical space of
possible reagents, reactions, chemical systems, and process
parameters. While intuition, knowledge, and computational
modeling can help narrow the space, real-world experimenta-
tion is necessary to explore the chemical space and discover
optimal solutions.

Robots and autonomous systems can automate tasks in
science laboratories, producing experimental results faster
and with greater reproducibility [1]. Automated laboratory
tasks can include transporting samples, loading apparatuses,
conducting measurements and analyses, and processing data.
Successful implementations employ liquid handling robots
that precisely dispense microliters of reagents [2], [3], robotic
arms that transfer samples between adjacent apparatuses [4],
[5], mobile manipulation robots that transport samples be-
tween spatially distant apparatuses [6], [7], and machine
learning models that optimize experimental parameters [8].

*This work was supported by the Creativity Hub at the University of
North Carolina at Chapel Hill and the University of North Carolina System
Research Opportunities Initiative (ROI).

1Angelos Angelopoulos, Cem Baykal, Jade Kandel, and
Ron Alterovitz are with the Department of Computer Science,
University of North Carolina at Chapel Hill, NC 27599, USA
{aangelos,kandelj,ron}@cs.unc.edu

2Matthew Verber and James F. Cahoon are with the Department of
Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
{mverber,jfcahoon}@unc.edu

Workcells of
Robots + Apparatuses 

Mobile Robots
Products, Data

EOS
Founda�on of the automated laboratory

Op�miza�onConnec�vityScheduling ...

Automated Laboratory

Work

DataScien�sts

Data

Fig. 1. EOS is a comprehensive foundation for building, managing, and
running automated laboratories.

Automation can accelerate the search of vast chemical spaces
and speed up scientific discovery.

Automating science laboratories is challenging. Diverse
tasks that are constantly changing must be performed, spe-
cialized lab equipment may be shared between autonomous
systems and scientists, and safety requirements must be sat-
isfied [1]. These considerations make science lab automation
ill suited to many manufacturing automation approaches,
which work best when the same tasks are performed re-
peatedly. To efficiently automate laboratory tasks, we need
software to coordinate and operate disparate robots and
apparatuses to run experiments, adapt to new experiments
and changes in the laboratory, collect and organize data,
and integrate artificial intelligence (AI) for parameter opti-
mization. The current lack of software infrastructure for lab
automation hinders automation implementation, experiment
protocol sharing and reproducibility, and automation reuse.

We introduce the Experiment Orchestration System (EOS),
an open-source [9] framework and runtime (execution en-
gine) offering a comprehensive foundation for laboratory
automation. Using EOS, scientists can implement tasks and
devices, define experiments, specify objectives, and EOS will
schedule and execute the tasks, organize results, and optimize
experiment parameters based on the objectives (Fig. 1). EOS
can support any level of laboratory automation [1], from
level 1 “assistive automation” in which EOS controls a
single instrument to level 5 “full automation” in which EOS
orchestrates entire multi-step experiments.

EOS enables scientists to set up automation and define
their tasks and objectives using YAML [10] and Python.
Scientists can then use EOS to run the automation. EOS or-
chestrates distributed tasks, communicating with and control-
ling laboratory apparatuses. Through experiment campaign
management, task scheduling, automatic result aggregation,



Analyzed Data

EOS
Scheduling

Distributed
Tasks

State
Tracking

File
Storage

Data
Storage

Distributed
Processing

Standard
Formats

Dynamic
Parameters

Valida�on

Design

Execu�on

Data Collec�on
and Analysis

Op�miza�on Bayesian
Op�mizer

Custom
Op�mizers

Quasi-
Random
Sampling

Tasks

Products, Data

Parameters

Fig. 2. EOS offers the foundation for laboratory automation.

parameter optimization, and validation, EOS enables closed-
loop automation (Fig. 2). By lowering the barrier to imple-
menting laboratory automation, EOS can greatly benefit both
newcomers and existing laboratory automation users.

II. RELATED WORK

There has been much work of varying complexity in labo-
ratory automation. Implementations commonly used bench-
top workcells [4], [5], [11], [12], [13], [14] consisting of
apparatuses connected with fixed robot arms for batch pro-
cessing or tubes for flow chemistry. Others have used Carte-
sian robots such as liquid handlers for rapid synthesis with
multi-well plates [2], [15], dual-arm manipulators for faster
task completion or bimanual dexterity [16], and even mobile
robots for transporting samples and loading/unloading them
to/from apparatuses [6], [17], [18], [7]. We briefly highlight
two laboratory automation implementations [4], [6], which
we selected due to their complexity.

Burger et al. [6] focused on photocatalysis, automating
experiments to find active photocatalyst mixtures. A KUKA
KMR iiwa [19] mobile manipulator transported samples
between 9 stations containing apparatuses for tasks like dis-
pensing, capping, sonication, and chromatography. The robot
loaded/unloaded samples and operated equipment via API
calls. Each experiment took 8 hours, and experiments were
autonomously optimized. A custom “process management
system” controlled the lab apparatuses and the robot through
protocols such as TCP via Ethernet/Wi-Fi and RS-232.

Szymanski et al. [4] built an autonomous lab for inorganic
powder synthesis. It comprised three workcells, each with a
robot arm and apparatuses for chemistry. The lab operated
for 17 days, conducting 355 experiments. Synthesis recipes
were generated using AI models mining literature data. Tem-
peratures were also predicted using AI and reactions were

optimized using a custom method. The lab was controlled by
“AlabOS”. Equipment drivers and tasks were implemented in
Python, with tasks executed as actors. The system tracked
equipment and samples to prevent conflicts. Experiments
were represented as directed acyclic graphs and executed
based on equipment availability and prioritization.

Laboratory automation faces significant challenges due
to diverse equipment and complex integration needs [1].
Research groups invest much time in developing software
for device drivers, communication protocols, data pipelines,
parameter optimization, and optimizing throughput, leading
to redundant efforts with limited reusability. While systems
like SiLA 2 [20] and HELAO-async [21] have attempted to
address some of these challenges, their adoption has been
limited. SiLA 2 is a client-server architecture for integrating
laboratory automation components. Systems like SiLA 2
Manager [22] have added orchestration capabilities to SiLA
2, but they are more limited than EOS, lacking features such
as optimized scheduling, campaign optimization, and user
code hot reloading.

To address these limitations, we developed EOS as both a
comprehensive framework and orchestration engine for labo-
ratory automation. EOS combines ease of use with extensive
functionality, including integration with external systems,
support for diverse workflows, and features for autonomous
experimentation. Unlike existing systems, EOS provides a
comprehensive suite of capabilities including actor-based dis-
tributed communication, task scheduling, data aggregation,
and parameter optimization. EOS abstracts complexity, is
extensible, and is built to support the future of laboratory
automation.

III. THE EXPERIMENT ORCHESTRATION SYSTEM

EOS supports crucial aspects needed for laboratory au-
tomation, illustrated in Fig. 2. During the design phase, rather
than having to build complex systems from scratch, EOS
provides a structured framework for defining laboratories,
devices, tasks, and experiments as well as a package system
for organizing them. For example, EOS offers Python and
YAML interfaces for implementing device drivers and tasks.
The framework provided by EOS saves scientists time and
effort and makes automation easier to develop, understand,
and share.

After the design phase, laboratory automation goes
through the execution, data collection and analysis, and op-
timization phases. EOS is a comprehensive runtime for lab-
oratory automation, handling aspects such as state manage-
ment, data persistence, task scheduling, validation, parameter
optimization, and distributed execution across lab comput-
ers. EOS also simplifies administrative tasks like updating
code across laboratory computers through hot reloading and
automatic code deployment. The major features of EOS
are summarized in Fig. 3. In the following subsections we
describe how EOS supports the key phases of lab automation,
as shown in Fig. 2.



Fig. 3. The major features of EOS.

A. Design

During the design phase, EOS provides a structured frame-
work for scientists to implement laboratory automation and
design experiments. Here we present the key components
that make up this framework.

Packages: Automation in EOS is organized in packages.
A package can contain any combination of laboratories,
experiments, devices, and tasks, along with arbitrary code
and data. For instance, a package might contain task and
device implementations for equipment from a specific man-
ufacturer, while another might contain experiments designed
for a particular lab. EOS packages can be shared with others,
similarly to ROS [23] packages.

Laboratories: Laboratories house an array of components
including computers, devices (e.g., apparatuses), and sample
containers, all used for experiments. Scientists define each
laboratory in a YAML file specifying (1) the locations in the
lab (useful for mobile robot navigation), (2) the computers
connected to EOS that can run work, (3) devices in the lab,
with their specific locations and connected computers, and
(4) sample containers, grouped by type (e.g., beaker, vial)
and given unique identifiers.

Devices: Automation is executed by devices, such as
laboratory apparatuses and robots, which require drivers
enabling EOS to interface with the hardware and execute
automation. In EOS, scientists define devices with two files:
(1) a YAML file containing a unique “type” for the device
(e.g., magnetic mixer) and any initialization parameters (e.g.,
socket ports for physical device connections), and (2) a
Python file with the “driver” implementation.

Tasks: Tasks coordinate and control devices. Scientists
define tasks using a YAML file and a Python file. The YAML
file is an interface contract and documentation, specifying
requirements such as the required device types, input/output
parameters with data types, constraints, and containers. The

1 type: Magnetic Mixing
2 desc: Mix the contents of a beaker
3

4 device_types:
5 - magnetic_mixer
6

7 input_containers:
8 beaker:
9 type: beaker

10

11 input_parameters:
12 mixing_time:
13 type: int
14 unit: sec
15 min: 5
16 desc: How long to mix
17

18 mixing_speed:
19 type: int
20 unit: rpm
21 min: 60
22 max: 2000
23 desc: How fast to mix

Listing 1. Sample YAML specification for a magnetic mixing task.

Python file implements the task logic. Example YAML
and Python files for a magnetic mixing task are shown in
Listing 1 and Listing 2, respectively.

Experiments: An experiment is defined by a directed
acyclic graph (DAG) of tasks. Scientists define each experi-
ment in a YAML file containing (1) the laboratories involved,
(2) the parameters to initialize containers, and (3) the tasks
to be executed. Parameters can be hard-coded values or
references to other task inputs and outputs. Task input param-
eters can also be dynamic, denoted as “eos dynamic”, which
allows input to be provided at a later time by a scientist or by
an optimizer, the latter enabling closed-loop experimentation.
Tasks have dependencies to establish ordering. An excerpt of
an experiment task sequence is shown in Listing 3.

Campaigns: A campaign is a sequence of repeated exper-
iments whose parameters are provided by an optimizer. The
goal of the campaign is to achieve some objectives by finding
the optimal parameters. For example, the goal of a campaign



1 class MagneticMixing(BaseTask):
2 def _execute(
3 self,
4 devices: BaseTask.DevicesType,
5 parameters: BaseTask.ParametersType,
6 containers: BaseTask.ContainersType,
7 ) -> BaseTask.OutputType:
8 magnetic_mixer = devices.get_all_by_type(
9 "magnetic_mixer"

10 )[0]
11

12 containers["beaker"] = magnetic_mixer.mix(
13 containers["beaker"],
14 parameters["mixing_time"],
15 parameters["mixing_speed"]
16 )
17

18 return None, containers, None

Listing 2. Sample Python implementation for a magnetic mixing task.

1 tasks:
2 ...
3 - id: dispense_colors
4 type: Dispense Colors
5 desc: Dispense colors into a container
6 devices:
7 - lab_id: color_lab
8 id: color_dispenser
9 containers:

10 beaker: retrieve_container.beaker
11 parameters:
12 cyan_volume: eos_dynamic
13 magenta_volume: eos_dynamic
14 yellow_volume: eos_dynamic
15 black_volume: eos_dynamic
16 dependencies: [retrieve_container]
17

18 - id: move_container_to_mixer
19 type: Move Container
20 desc: Move the container to the mixer
21 devices:
22 - lab_id: color_lab
23 id: robot_arm
24 - lab_id: color_lab
25 id: magnetic_mixer
26 containers:
27 beaker: dispense_colors.beaker
28 parameters:
29 target_location: magnetic_mixer
30 dependencies: [dispense_colors]
31 ...

Listing 3. Excerpt from a YAML color mixing experiment definition.

could be to identify more efficient catalysts. Scientists can
manually set dynamic parameters for experiments or delegate
parameter selection entirely to the optimizer.

Validation: Scientists may make mistakes when imple-
menting laboratories, devices, tasks, and experiments. It is
important to catch as many mistakes as possible to in-
crease reliability and safety. EOS performs static validation,
checking for complete task parameters in experiments, unit
specification for numeric parameters, device-computer corre-
spondence, unique sample container IDs, and more. Runtime
validations occur during task execution, such as ensuring
parameters match task specifications in terms of data types
and value constraints.

B. Execution

During the execution phase, laboratory automation is ex-
ecuted and results are generated. EOS supports this phase
with its runtime (i.e., execution engine). After implementing
automation in the EOS framework, the EOS runtime can
manage and execute the automation.

Database

EOS
OrchestratorWeb API

Server(s) Object Storage
User Interface

RESTREST Files

State, Results

State, Results

Device
Actor

Device
Actor

...

Task Task ...
Ray Cluster

gRPC
Task Calls, Results, Files, ...

Robots Equipment So�ware ...

Files

Op�mizer
Actor

Op�mizer
Actor

...

Fig. 4. The high-level system architecture of EOS.

The EOS runtime consists of a central orchestrator and
a Ray [24] cluster. Ray is a framework and set of libraries
for distributed computing. EOS connects to lab computers
running Ray workers and creates persistent actor processes
to control devices. EOS has a hierarchical execution model
supporting tasks, experiments, and campaigns. The task
executor is at the lowest level, and executes tasks submitted
by users and higher-level executors. Experiment executors
submit execution requests to the task executor for each task
in the experiments. A scheduler coordinates experiments to
prevent conflicts in device and container usage and improve
throughput. At the top level, campaign executors create
experiment executors for each campaign experiment. EOS’s
architecture is summarized in Fig. 4 and major features are
shown in Fig. 3.

EOS loads tasks and devices as plugins at runtime. EOS
spawns each device implementation as a persistent Ray actor
process on the computer connected to the device, providing
an interface between EOS and the device. Tasks in EOS are
transient functions that call device functions through Ray.
Tasks can be simple, using a single device for a single distinct
process, or they can be more complex, grouping together
processes by using multiple devices. EOS automatically
deploys task and device code to the appropriate computers.
For example, if scientists make changes to device code while
EOS is running, the device can be reloaded and EOS will
make a new Ray actor without restarting. The tasks and
devices execution model is illustrated in Fig. 5.

The scheduler enables EOS to execute experiments while
avoiding conflicts in shared devices and sample containers.
The default scheduler uses a greedy policy, scheduling tasks
based on experiment priorities and whenever resources are
available. The scheduling system is modular, allowing for
the integration of new schedulers in the future such as a
scheduler that takes the charge level of a mobile robot into
account.

Devices and sample containers can only be used by one
task at a time. In addition, humans may need to use some
devices or sample containers so EOS should not use them



EOS
Device
Actor 1

Task 1

Task 2

Task 3

Device
Actor 2

Devices
Persistent 
Processes

Tasks
Transient

Physical 
Devices

or anything

Fig. 5. The execution model using tasks and devices in EOS.

for the duration. To ensure safety, EOS allocates devices
and sample containers to “owners” such as tasks or humans.
The scheduler submits resource allocation requests for ex-
periment tasks and the task executor for standalone tasks.
Requests have a priority and a timeout after which they must
be re-issued to avoid deadlocks. Tasks can execute only when
their requested resources have been allocated.

Finally, managing state is crucial. Here, “state” refers to
the current condition and information of all system com-
ponents. To prevent state corruption that may arise from
bad practices or bugs in user code, EOS centralizes state.
The EOS orchestrator manages system state such as task
and experiment statuses as well as creates and destroys
Ray actors for devices and campaign optimizers. EOS also
resolves parameter and container references used as inputs
to tasks. Tasks and devices do not directly edit state as they
do not have access to the EOS database.

C. Data Collection and Analysis

During the data collection and analysis phase, EOS aggre-
gates data generated by tasks and experiments. EOS stores
the data and offers features to help with data processing.

EOS automatically stores all state data for tasks, experi-
ments, and campaigns in a database (PostgreSQL [25]) and
an object store (MinIO [26]). For example, EOS stores state
for recovering from disruptions (e.g., experiment progress),
as well as task results and output files. Persistence is seamless
and requires no user input. For example, EOS aggregates task
results and stores files in the object store automatically. Users
can easily access stored data to validate and replicate work
later.

EOS also supports scalable data analysis through dis-
tributed computing. For instance, scientists can leverage
Ray’s data library for distributed processing of large data
sets, enabling automated data analysis. Scientists can also
use Ray to train machine learning and reinforcement learning
models, serve AI models for inference by other tasks, or run
any distributed tasks and actors they need. These features are
available through EOS tasks and devices.

D. Optimization

In the final phase, EOS uses analyzed data to optimize fu-
ture experiments. EOS includes a built-in Bayesian optimizer
using BoFire [8]. Through BoFire, the built-in optimizer

supports single and multi-objective optimization, surrogate
models such as Gaussian processes and Bayesian neural
networks, several acquisition functions, and quasi-random
sampling such as Sobol and Latin Hypercube. Optimizers
are defined as Python plugins, integrated within the cor-
responding experiment’s EOS package. Scientists can use
the built-in optimizer as is, extend it, or provide their own
optimizers. Optimizers are automatically spawned as Ray
actors on computers specified by the user.

IV. EXAMPLE SCENARIO

In this section, we show how EOS can facilitate lab
automation and optimize an objective. In the example, we
have a laboratory for color mixing. The objective is to learn
how to synthesize a target color specified using RGB (red,
green, blue) with CMYK (cyan, magenta, yellow, black)
ingredient colors while minimizing the used ingredients. The
input space has 10 continuous parameters: a color volume
(amount) and color intensity (dilution) for each CMYK
component, and a mixing time and speed. The number of
parameters and possible colors is in the millions, creating a
large optimization domain. Although analytical color mixing
models could accelerate this process, our goal is to demon-
strate an intuitive end-to-end example of how a laboratory
and optimization objectives can be set up in EOS, and how
leveraging EOS’s features can enable quicker lab automation.
This example’s source code and simulation is available to
download as an EOS package [27].

Retrieve
Container Mix Colors Move Container

to Analyzer
Analyze

Color

Score Color Empty
Container

Clean
Container

Store
Container

Main Device Used
Robot Arm Color Mixer Color Analyzer Cleaning Sta�on

Op�mizer
Task Parameters, LossTask Parameters

Fig. 6. The color mixing experiment. Most tasks use multiple devices, but
we denote the most important device by color.

A. Design

We implemented an abstract virtual lab with 8 devices: a
robot arm, 3 color mixers, 3 color analyzers, and a cleaning
station. We defined the lab with EOS, implemented the
code for the 4 unique devices, and implemented 8 tasks as
shown in Fig. 6. The experiment begins with the “Retrieve
Container” task, which grabs a specified container with the
robot arm, and “moves” the container to the color mixer for
the next task. We simulate container movement by updating
their locations. The last task is “Store Container”, which uses
the robot arm to store the container used for the experiment.

B. Optimization, Data Collection, Analysis

The objective is to minimize the loss L (c, t) =

w1

√
∑i∈r,g,b(ci − ti)2 +w2v, where c is the synthesized RGB



color, t is the target RGB color, ci are the RGB components
of c, ti are the RGB components of t, v is the total dispensed
color volume, and w1 = 0.8 and w2 = 0.2 are weights.
The loss has two normalized components: (1) a Euclidean
distance for the problem of synthesizing a target color, and
(2) v to penalize large and redundant color volumes.

We configured EOS’s built-in Bayesian optimizer to use
the Upper Confidence Bound acquisition function, and con-
figured 50 Sobol-sampled experiments to collect initial data.
Subsequently, we conducted 100 experiments with optimiza-
tion. We constrained color volume to [0,25], color intensity
to [2,100]%, mixing time to [1,45] seconds and mixing speed
to [100,200]. Color volume and mixing time are unitless, and
are specific to the fluid simulation we used to simulate color
mixing, which we describe later in this section. The optimizer
generates task parameters for each experiment by considering
the task parameters and losses of past experiments (Fig. 6).

0 25 50 75 100 125 150
Experiment Index

0.0

0.2

0.4

0.6

Lo
ss

 (N
or

m
al

ize
d)

Sobol Sampling

Campaign 1
Campaign 2
Campaign 3

Fig. 7. Losses for the color mixing campaigns. The lowest losses are
marked with “X”. The campaigns progress concurrently; EOS handles
scheduling, data collection, and optimization automatically.

TABLE I
RESULTS OF THE THREE COLOR MIXING CAMPAIGNS.

Campaign Target RGB Best RGB Lowest Loss

1 (53, 29, 64) (57, 28, 53) 0.04
2 (11, 25, 82) (11, 26, 82) 0.02
3 (14, 107, 20) (38, 99, 27) 0.07

C. Execution and Results

We ran three simultaneous campaigns each consisting of
150 experiments (totaling 450 experiments and 3600 task
executions) with Bayesian optimization to discover how to
synthesize three distinct colors specified by the user. To
enable anyone to run this color mixing example with EOS,
we simulate the devices and tasks in the virtual laboratory.
Excluding mixing and robot arm movements, we configured
each task to take 1 second. In order to move a container
from one device to another, the robot arm requires multiple
movements, each of which is configured to take 1 second.
We assume that the robot arm is situated in the center of a
table. For example, if a container needs to move from the
color mixer to the color analyzer, then the arm has to do
three movements: (1) from the center to the color mixer, (2)
from the color mixer to the analyzer, and (3) back to the
center.

The “Mix Colors” and “Analyze Color” tasks interface
with a dedicated fluid simulation over a web socket, sending
commands to dispense CMYK colors at different amounts
and intensities, setting the mixing speed, and computing
the average color. “Mix Colors” runs the simulation and is
the longest task, configured to take up to 45 seconds. The
color mixer device commands the simulation to dispense and
mix the colors in reverse CMYK order. “Analyze Color”
computes the average RGB color on the canvas and is used
by the “Score Color” task to compute L .

To simulate color mixing, we used a real-time GPU-
accelerated fluid simulation [28], [29] based on Stable Flu-
ids [30], and a physically-based color mixing model using
Kubelka-Munk theory [29]. The fluid simulation runs using
WebGL in a browser and uses shaders to apply non-linear
operations over time (e.g., Navier-Stokes equations). For
fluid mixing, we implemented a vortex with configurable
speed. CMYK colors of different amount and intensity can be
placed in the canvas. Color volume is simulated by changing
the radius of the liquid color spawned as a circle in the
simulation, while mixing speed is an amplitude multiplier
that controls the speed of the vortex. We treat the simulation
as a complex black box function, aiming to discover how
to use it to synthesize target colors. Each campaign uses
a dedicated fluid simulation, so there are three browser
windows running concurrently.

EOS streamlined setting up the color mixing experiment
by providing a framework for concise implementation of
devices and tasks. We set up three experiments, one for
each color target. We then set up the optimizers by defining
the parameters, objective, initial sampling, and acquisition
function. We submitted a campaign for each of the 3 ex-
periments, and EOS took care of scheduling, task execu-
tion, and optimization. The scheduler ran the campaigns
concurrently for about 2 hours, executing tasks and using
devices in parallel, saving approximately 4 hours compared
to running sequentially. The results are summarized in Fig. 7
and Table I. Overall, EOS greatly simplified the process of
defining the color mixing problem, and made it easy to run
experiments and generate results.

V. CONCLUSIONS

EOS is an open-source [9] framework and runtime for im-
plementing and executing laboratory automation. It includes
a comprehensive feature set for laboratory automation such
as: YAML and Python plugins for implementing tasks, device
interfaces, and experiments, a package system, static and
dynamic validation, on-demand task, experiment, and cam-
paign execution, scheduling, Bayesian optimization, result
aggregation, and distributed execution. EOS was developed
from our practical need for robust lab automation infrastruc-
ture that could integrate diverse equipment including robots,
custom apparatuses, and AI systems. Moving forward, we
plan many enhancements for EOS and hope it will benefit
the scientific community by lowering barriers to entry in the
rapidly growing field of laboratory automation.



REFERENCES

[1] A. Angelopoulos, J. F. Cahoon, and R. Alterovitz, “Transforming
science labs into automated factories of discovery,” Science Robotics,
vol. 9, no. 95, p. eadm6991, Oct. 2024, publisher: American
Association for the Advancement of Science.

[2] F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic Liquid
Handling for Life Science: A Critical Review of the Current State
of the Art,” Journal of Laboratory Automation, vol. 17, no. 3, pp.
169–185, June 2012, publisher: SAGE Publications Inc.

[3] P. Dettinger, T. Kull, G. Arekatla, N. Ahmed, Y. Zhang, F. Schneiter,
A. Wehling, D. Schirmacher, S. Kawamura, D. Loeffler, and
T. Schroeder, “Open-source personal pipetting robots with live-cell
incubation and microscopy compatibility,” Nature Communications,
vol. 13, no. 1, p. 2999, May 2022, publisher: Nature Publishing
Group.

[4] N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He, D. Milsted,
M. J. McDermott, M. Gallant, E. D. Cubuk, A. Merchant, H. Kim,
A. Jain, C. J. Bartel, K. Persson, Y. Zeng, and G. Ceder,
“An autonomous laboratory for the accelerated synthesis of novel
materials,” Nature, vol. 624, no. 7990, pp. 86–91, Dec. 2023,
publisher: Nature Publishing Group.

[5] A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata,
M. Markham, J. Rowland, L. N. Soldatova, K. E. Whelan, M. Young,
and R. D. King, “Towards Robot Scientists for autonomous scientific
discovery,” Automated Experimentation, vol. 2, no. 1, p. 1, Jan. 2010.

[6] B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai,
X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin,
B. Harris, R. S. Sprick, and A. I. Cooper, “A mobile robotic chemist,”
Nature, vol. 583, no. 7815, pp. 237–241, July 2020, publisher: Nature
Publishing Group.

[7] A. Angelopoulos, M. Verber, C. McKinney, J. Cahoon, and
R. Alterovitz, “High-Accuracy Injection Using a Mobile Manipulation
Robot for Chemistry Lab Automation,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2023, pp. 10 102–10 109, iSSN: 2153-0866.

[8] J. P. Dürholt, T. S. Asche, J. Kleinekorte, G. Mancino-Ball, B. Schiller,
S. Sung, J. Keupp, A. Osburg, T. Boyne, R. Misener, R. Eldred, W. S.
Costa, C. Kappatou, R. M. Lee, D. Linzner, D. Walz, N. Wulkow, and
B. Shafei, “BoFire: Bayesian Optimization Framework Intended for
Real Experiments,” Aug. 2024, arXiv:2408.05040 [cs, math, stat].

[9] A. Angelopoulos, “UNC-Robotics/eos: The Experiment Orchestration
System (EOS).” [Online]. Available: https://github.com/UNC-
Robotics/eos

[10] “The Official YAML Web Site,” Feb. 2025. [Online]. Available:
https://yaml.org/

[11] J. M. Granda, L. Donina, V. Dragone, D.-L. Long, and L. Cronin,
“Controlling an organic synthesis robot with machine learning to
search for new reactivity,” Nature, vol. 559, no. 7714, pp. 377–381,
July 2018, number: 7714 Publisher: Nature Publishing Group.

[12] A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A.
Bedermann, J. Torosian, B. Yue, K. F. Jensen, and T. F. Jamison,
“Reconfigurable system for automated optimization of diverse
chemical reactions,” Science, vol. 361, no. 6408, pp. 1220–1225,
Sept. 2018, publisher: American Association for the Advancement of
Science.

[13] S. Steiner, J. Wolf, S. Glatzel, A. Andreou, J. M. Granda, G. Keenan,
T. Hinkley, G. Aragon-Camarasa, P. J. Kitson, D. Angelone, and
L. Cronin, “Organic synthesis in a modular robotic system driven by
a chemical programming language,” Science, vol. 363, no. 6423, p.
eaav2211, Jan. 2019.

[14] C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski, C. P.
Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H. Gao, R. W.
Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti, W. H. Green, A. J.
Hart, T. F. Jamison, and K. F. Jensen, “A robotic platform for flow
synthesis of organic compounds informed by AI planning,” Science,
vol. 365, no. 6453, p. eaax1566, Aug. 2019, publisher: American
Association for the Advancement of Science.

[15] H. Tegally, J. E. San, J. Giandhari, and T. de Oliveira, “Unlocking
the efficiency of genomics laboratories with robotic liquid-handling,”
BMC Genomics, vol. 21, no. 1, p. 729, Oct. 2020.

[16] Y. Jiang, H. Fakhruldeen, G. Pizzuto, L. Longley, A. He, T. Dai,
R. Clowes, N. Rankin, and A. I. Cooper, “Autonomous biomimetic
solid dispensing using a dual-arm robotic manipulator,” Digital
Discovery, vol. 2, no. 6, pp. 1733–1744, 2023, publisher: Royal
Society of Chemistry.

[17] S. Kleine-Wechelmann, K. Bastiaanse, M. Freundel, and C. Becker-
Asano, “Designing the mobile robot Kevin for a life science labo-
ratory,” in 2022 31st IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), Aug. 2022, pp. 870–
875, iSSN: 1944-9437.

[18] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “Mobile robotic trans-
portation in laboratory automation: Multi-robot control, robot-door
integration and robot-human interaction,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014), Dec. 2014,
pp. 1033–1038.

[19] “KMR iiwa.” [Online]. Available: https://www.kuka.com/en-us/
products/amr-autonomous-mobile-robotics/mobile-robot-systems/
kmr-iiwa

[20] D. Juchli, “SiLA 2: The Next Generation Lab Automation Standard,”
in Smart Biolabs of the Future, ser. Advances in Biochemical
Engineering/Biotechnology, S. Beutel and F. Lenk, Eds. Cham:
Springer International Publishing, 2022, pp. 147–174.

[21] D. Guevarra, K. Kan, Y. Lai, R. J. R. Jones, L. Zhou, P. Donnelly,
M. Richter, H. S. Stein, and J. M. Gregoire, “Orchestrating nimble
experiments across interconnected labs,” Digital Discovery, vol. 2,
no. 6, pp. 1806–1812, 2023, publisher: Royal Society of Chemistry.

[22] L. Bromig, D. Leiter, A.-V. Mardale, N. von den Eichen,
E. Bieringer, and D. Weuster-Botz, “The SiLA 2 Manager for rapid
device integration and workflow automation,” SoftwareX, vol. 17, p.
100991, Jan. 2022.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, and others, “ROS: an open-source Robot
Operating System,” in ICRA workshop on open source software, vol. 3.
Kobe, Japan, 2009, p. 5, issue: 3.2.

[24] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
Distributed Framework for Emerging AI Applications,” Sept. 2018,
arXiv:1712.05889 [cs, stat].

[25] PostgreSQL Global Development Group, “PostgreSQL.” [Online].
Available: https://www.postgresql.org/

[26] MinIO Inc, “MinIO | S3 Compatible Storage for AI.” [Online].
Available: https://min.io

[27] A. Angelopoulos, “UNC-Robotics/eos-examples: Collection of
example EOS packages.” [Online]. Available: https://github.com/
UNC-Robotics/eos-examples

[28] P. Dobryakov, “PavelDoGreat/WebGL-Fluid-Simulation,” Sept. 2024,
original-date: 2017-08-22T21:30:33Z. [Online]. Available: https:
//github.com/PavelDoGreat/WebGL-Fluid-Simulation

[29] “Mixbox - Natural Color Mixing Based on Real Pigments.” [Online].
Available: https://scrtwpns.com/mixbox

[30] J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, ser. SIGGRAPH
’99. USA: ACM Press/Addison-Wesley Publishing Co., July 1999,
pp. 121–128.


