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Abstract— Concentric tube robots are tentacle-like medical
robots that can bend around anatomical obstacles to access
hard-to-reach clinical targets. The component tubes of these
robots can be swapped prior to performing a task in order
to customize the robot’s behavior and reachable workspace.
Optimizing a robot’s design by appropriately selecting tube pa-
rameters can improve the robot’s effectiveness on a procedure-
and patient-specific basis. In this paper, we present an algorithm
that generates sets of concentric tube robot designs that can
collectively maximize the reachable percentage of a given goal
region in the human body. Our algorithm combines a search
in the design space of a concentric tube robot using a global
optimization method with a sampling-based motion planner in
the robot’s configuration space in order to find sets of designs
that enable motions to goal regions while avoiding contact with
anatomical obstacles. We demonstrate the effectiveness of our
algorithm in a simulated scenario based on lung anatomy.

I. INTRODUCTION

Concentric tube robots are tentacle-like medical robots that
can potentially enable safer minimally invasive interventions
at many sites in the human body, including the lungs, the
skull base, and the heart [1]. These robots are composed
of nested nitinol tubes that each are precurved, typically
with a straight segment followed by a curved segment. To
perform a task, the robot axially rotates and translates each
tube relative to one another, causing the entire device’s shape
to change. Concentric tube robots act like shape-changing
robotic needles that can curve around anatomical obstacles
(e.g., bones, blood vessels, critical nerves, etc.) to reach
clinical targets not easily accessed using traditional straight
medical instruments.

The curvilinear shapes achievable by concentric tube
robots are highly dependent on the component tubes’ physi-
cal specifications. The design of the concentric tubes, includ-
ing the tubes’ lengths and precurvatures, affects the robot’s
workspace and the space of the robot’s attainable shapes.
Consequently, the design of the concentric tubes determines
the set of clinical targets that the robot can safely reach.

Even with the shape-changing capabilities of a concentric
tube robot (as shown in Fig. 2), due to kinematic constraints
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Fig. 1. We show the points reachable by two concentric tube robots in an
anatomical scenario, where red and green dots indicate reachable points by
different designs. The robots are deployed into a lung model near the base
of the primary bronchus and must avoid blood vessels. The two designs
complement one another and collectively reach a larger percentage of the
lung volume than either of the designs alone.

a single design is often not capable of reaching all targets
in a physician-specified goal region. Fortunately, concentric
tube robots can be built to facilitate fast swapping of tubes
of varying physical specifications; selecting tubes for a
particular task could maximize the robot’s efficacy during
the procedure. In this paper we introduce a new algorithm
to efficiently compute a set of designs for a concentric
tube robot, such that this set of designs can be sequentially
swapped into the robot to access as much of the goal region
as feasibly possible while avoiding anatomical obstacles. Fig.
1 shows that two designs collectively can reach more targets
than one design.

The methods we propose could be used to create designs
for classes of procedures or on a patient-specific basis. Prior



Fig. 2. Four designs of a concentric tube robot reaching different clinical targets (green) within a lung model. Each robot is composed of three tubes
(aqua, orange, and pink). The robots must avoid colliding with anatomical obstacles, which include arteries (red), veins (blue), and bronchial tubes (ivory).

to a procedure, physicians typically obtain a CT scan or MRI
of the relevant anatomy, and we can use these volumetric
images to segment (either manually or via automatic seg-
mentation software) the goal region as well as anatomical
obstacles that must be avoided. Unfortunately, the complex
kinematics of concentric tube robots makes it difficult to
assess if a given design of concentric tubes can safely
access a given target while avoiding anatomical obstacles.
As the device’s tip moves, the shape of the shaft of the
device may change substantially, and this shape change must
be considered to ensure obstacle avoidance. We previously
addressed the challenge of computing a single design to
reach a finite set of points by using a sampling-based motion
planning method that explicitly considered the shape of the
entire device en route to a target point [2]. In this paper we
build on the prior approach and introduce algorithms that
efficiently find a set of designs that can reach as many targets
as possible inside a specified goal region while avoiding
obstacles along the entire shaft of the robot.

We consider two variants of the problem: (1) finding a set
of designs of a fixed size that maximizes the percentage of a
goal region that can be reached and (2) minimizing the size
of a set of designs that reaches a desired percentage of a
goal region. The optimization should be fast, especially for
patient-specific design optimization, so as to minimize the
required time between patient imaging and task performance.
Our algorithm interleaves a search in the concentric tube
robot’s design space (i.e., the lengths and precurvatures of
the robot’s component tubes) with a motion planner in the
robot’s configuration space (i.e., the rotations and translations
of the robot’s tubes). We use Adaptive Simulated Annealing
(ASA) with parallel computing to accelerate the design
space search and the Rapidly-exploring Random Trees (RRT)
motion planning algorithm to quickly evaluate the goal
region reachability of candidate designs. We demonstrate the
effectiveness of our approach in finding sets of designs for
concentric tubes using anatomy-inspired scenarios.

II. RELATED WORK

Computing multiple designs for a concentric tube robot
can be seen as a generalization of the problem of finding
one design that best performs a task. Several approaches have
previously been developed for the single design problem.

Bergeles et al. proposed a powerful optimization frame-
work for generating robot tube designs that can reach sets
of points subject to anatomical constraints, and then applied
this method to brain and heart surgery scenarios [3]. They
achieve computational tractability by (1) reducing the motion
planning problem to finding individual configurations that
can reach each specified task point, and (2) using a simpler
and faster kinematic model for the general optimization, and
then refining the solution using a more accurate (but slower)
kinematic model. Although this method works well for a
variety of cases, the assumptions that enable computational
tractability can sometimes yield suboptimal solutions [2].
This can happen because the method does not explicitly
consider the entire robot deployment to the target site [2].

Ha et al. presented a method for designing concentric tube
robots while maximizing device stability [4]. The method
complements this paper’s approach to computing sets of
concentric tube robot designs.

Burgner et al. addressed the problem of finding a concen-
tric tube robot design that maximized the reachable region
of points in the sella of the human skull, subject to physical
constraints imposed by the bones in the skull [5]. They
achieved this by performing a nonlinear optimization over
the design space of the robot; they quantify how much of
the sella is reachable under a given design by computing the
forward kinematics over a grid on the robot’s configuration
space. Their approach is well-suited for the neurosurgical
scenario in question, but can be subject to the same sub-
optimal solutions as the work by Bergeles et al. due to not
considering the entire robot deployment to the surgical task
site.

We take an alternative approach that explicitly considers
the entire robot deployment, i.e., the complete motion that
the robot has to undertake, to reach the target site. Due
to tube interactions, the robot’s tip during deployment will
likely not trace the shape of the concentric tubes at the final
configuration. In this paper we extend previous work that
considered full deployment [2] to the case of computing sets
of designs. We also use an improved search strategy that
enables faster convergence to higher quality solutions.

Designing a concentric tube robot in advance to per-
form a particular task requires accurate kinematic modeling.
Kinematic modeling of concentric tube robots has rapidly



progressed in accuracy and sophistication [6], [7], [8], [9],
[10], [11]. In this paper we used a mechanics-based model
developed by Rucker et al. [12].

Our approach depends on the ability to determine the
positions in the anatomy that are safely reachable by a con-
centric tube robot. Burgner-Kahrs et al. developed a method
to characterize the workspace of concentric tube robots [13].
We instead take a motion planning approach in order to find
points that are reachable by robot motions that avoid contact
with anatomical obstacles. Prior work in motion planning
for concentric tube robots includes planners using simplified
[14], [15] and mechanics-based [16], [17] kinematic models.
In this paper we aim to accurately approximate the robot’s
reachability, so we use an accurate kinematic model com-
bined with a motion planning algorithm.

The problem of optimizing robot design has been ad-
dressed in previous work for serial manipulators. Prior work
has used genetic algorithms to optimize the structure of
manipulators under various metrics [18], [19], [20], [21].
Other approaches to optimal manipulator design have used
interval analysis [22], geometric methods [23], and grid-
based methods [24]. We explore an alternative approach that
can handle the complex kinematics of concentric tube robots.

III. PROBLEM DEFINITION

A concentric tube robot design d is the set of physical
parameters of the robot’s component tubes that are selected
and fixed before performing a clinical task. Specifically, we
describe each tube’s design with the following 3 parameters.
• Ls

i : length of tube i’s straight section
• Lc

i : length of tube i’s pre-curved section
• κi: curvature of tube i’s pre-curved section

Therefore, a concentric tube robot composed of n tubes has
a design space D with 3n parameters, i.e., D⊂ R3n.

During operation of a concentric tube robot, each tube can
be independently axially rotated and translated, meaning that
an n-tube robot’s configuration is a 2n-dimensional vector q.
The robot’s configuration space is Q⊂ (S1)n×Rn.

We represent the shape of a concentric tube robot during
operation as a 3D space curve that depends on (1) the robot’s
configuration q and (2) the robot’s design d. We therefore
denote the robot’s shape as a function x(q,d,s) : Q×D×
[0,1] 7→R3, where x(q,d) is a space curve parameterized by
s. The positions of the robot’s insertion point and end-effector
correspond to s = 0 and s = 1, respectively. We compute x
using an accurate mechanics-based model of concentric tube
interactions [12].

Safe operation of a concentric tube robot requires that we
avoid collisions between the robot’s shaft and anatomical ob-
stacles such as bones, blood vessels, and sensitive tissue. We
define the anatomical obstacles O ⊂ R3 as all 3D points in
space that should never intersect with the robot’s shape x. We
can determine O via manual or automatic segmentation of the
patient’s preoperative medical imaging [25]. We denote the
collision-free subset of robot configurations as Qfree

d , which
depends on the robot’s current design d since the robot’s
design affects the robot’s shape x at any configuration.

We wish to find concentric tube robot designs that can
access targets by performing collision-free motion. We con-
sider a motion plan Π = (q1, . . . ,ql) to be collision-free if
the continuous motion to each subsequent configuration qi
is all collision-free (i.e., free of intersection with O).

We focus on finding concentric tube robot designs that
allow for collision-free motions so the robot’s tip reaches
as many points as possible in a goal region G⊂ R3, which
is identified in medical images by physicians in a manner
similar to obstacles. We emphasize that this goal region is
different from typical motion planning problems since we
want to reach as many points as possible in the goal region
rather than finding a single collision-free motion to any point
in the goal region.

We denote the set of points that a concentric tube robot
can reach by collision-free motions as W (d) ⊂ R3 (i.e., the
reachable workspace). We can therefore quantify the quality
of a given design by the percentage of G that lies in the
robot’s reachable workspace W . For computational feasibil-
ity, we discretize the goal region G into a countable and finite
set of voxels V (i.e., cells in a 3D grid). We can therefore
compute the reachable goal percentage of a given design d
as |VoxelsReachable(d)|/|V |, where VoxelsReachable(d) is
the set of goal voxels in V within the reachable workspace
of a robot of design d in an environment with obstacles O.
When computing VoxelsReachable, we emphasize that we
must consider the entire sequence of motions executed to
reach a goal voxel from the robot’s starting configuration.

We first consider finding a set of robot designs whose
union of reachable workspaces covers as much of the goal
region as possible. The reachable goal percentage r of a given
design set S is

r(S) =

∣∣⋃
d∈S VoxelsReachable(d)

∣∣
|V |

. (1)

Finally, we wish to find a set S∗ of robot designs that is
minimal (in cardinality) but with a reachable goal percentage
greater than a physician-specified threshold rthreshold:

S∗ = argmin
S∈2D

|S|, s.t. r(S∗)> rthreshold, (2)

where 2D is the set of all possible sets of designs.

IV. METHODS

We optimize a set of robot designs by interleaving a guided
sampling-based search in the robot’s design space with a
sampling-based motion planner in the robot’s configuration
space. For the design space, we use a global optimization
algorithm called Adaptive Simulated Annealing (ASA) [26].
For motion planning in the configuration space, we use the
Rapidly-exploring Random Tree (RRT) [27] algorithm. We
use ASA to sample a group of robot designs, and then we
use RRT to evaluate this group’s reachable goal percentage.
We iterate on this process to find a set of designs that can
collectively reach a maximal percentage of the goal region
or to find a design set of minimal cardinality.



A. Computing Reachable Goal Percentage

According to Eq. 1, in order to evaluate the reachable
goal percentage r of a set of designs S, we need to compute
VoxelsReachable(d) for each design d in the set. Checking
whether a given voxel can be reached by a collision-free
motion is equivalent to solving the motion planning problem,
which is known to be PSPACE-hard [28]. This implies that,
in order to generate solutions in a feasible amount of time,
we must accept approximate solutions. We therefore use
a probabilistic, sampling-based motion planning algorithm,
RRT [27], that can quickly compute an approximation of
the robot’s reachable workspace.

RRT incrementally builds a tree of robot configurations
that can be reached by collision-free motions from a given
start configuration under a given design d. After a given
number t of iterations of RRT, we iterate over each con-
figuration q in the tree to check which goal voxels can be
reached from these configurations. In this way we compute
an approximation of VoxelsReachable(di) for each di in a
given design set S, and then we use Eq. 1 to compute the
design set’s approximate reachable goal percentage r̂t(S).
We use the t in r̂t(S) to denote that this approximation
was generated using t iterations of the RRT algorithm.
We note that the nature of RRT’s reachable workspace
approximation is such that we never overestimate the design
set’s true reachable goal percentage, i.e., r̂t(S)≤ r(S). RRT
also provides probabilistic completeness, a useful property in
which the longer we execute the RRT algorithm, the more
likely it is to find a collision-free motion to a given target (if a
feasible motion plan exists). This implies that, as we increase
the iterations t of RRT, the probability of our approximation
r̂t(S) being equal to the true r(S) approaches 100%. For a
given design set S, we compute each VoxelsReachable(di)
in parallel for a considerable computational speedup. We
compute the reachability of a set of designs S by computing
the union of all VoxelsReachable(di) for all di ∈ S.

B. Finding a Design Set of Fixed Size

In this section we describe how we find a set of designs
of fixed size (i.e., |S∗| = m) that collectively maximize the
reachable goal percentage. We utilize the method in the
previous section for computing the goal reachability of a
design set. We provide pseudocode in Alg. 1 and Alg. 2.

For a design set of fixed size, the space of possible sets
of designs is Dm. We will refer to members of the set Dm as
states. For an n-tube concentric tube robot, this problem is
a 3nm-dimensional search for a design set (i.e., a state) with
maximal goal reachability. Due to the high dimensionality of
the search space, we opt for a stochastic approach based on
the adaptive simulated annealing (ASA) algorithm. We use
ASA because it is a global optimization algorithm that can
escape local optima during the search for better design sets.

ASA is always centered on a “current” state Scurrent in
the search space. At the beginning, ASA tends to sample
states far away from Scurrent in order to adequately explore the
space. As ASA progresses, it tends to sample states nearer
and nearer to Scurrent in order to make local refinements.

ASA controls this sampling variance using a temperature
parameter T that decreases with each iteration of ASA.
Whenever ASA samples a state Ssample with a lower cost
than that of Scurrent, ASA updates Scurrent to be equal to
this new sample Ssample. Additionally, if the cost of the new
sample is higher than that of the current state, ASA might
still update to the new sample with an acceptance probability
that decreases over time (also controlled by the temperature
T ). This potential to take steps of increasing costs allows
ASA to escape local minima in state space.

In our method, a state S ∈ Dm has a low cost if it has a
high reachable goal percentage, which we approximate with
r̂t(S) as described in Sec. IV-A. Computing r̂t(S) requires
that we specify t, i.e., the number of iterations of RRT
to use for the approximation. We cannot know in advance
how many iterations of RRT it will take to compute an
adequate approximation of a design’s goal reachability, so
we set this number of iterations t to an initial value tstart
and increase it by tincrease after every design set we consider.
This enables us to more quickly (but more coarsely) evaluate
many design sets at the beginning, and then we evaluate at a
slower rate with higher accuracy as the algorithm progresses.
This behavior is analogous to ASA’s decreases in sampling
variance and acceptance probability over time.

As mentioned in Sec. IV-A, for efficiency we
compute r̂t(S) by parallelizing the computations of
VoxelsReachable(di) for all di ∈ S across multiple processor
cores. However, we often have more processor cores than
designs in a design set, i.e., c > m for c processor cores and
m designs per design set. This leaves c−m cores that are
free for additional computation. In order to make use of all
our cores, at each iteration of ASA we actually sample a
design set S′ of size c and evaluate each design’s reachable
goal voxels. We then iterate over all

( c
m

)
subsets of S′ of

size m to find the set of designs that collectively yield the
highest reachable goal percentage r̂t(S). This subset iteration
step is completely dominated in computation time by the
evaluation of each design’s reachable goal percentage, so
this method effectively enables us to sample design sets
of higher quality with no extra computation time due to
parallelization.

C. Finding a Design Set of Minimal Size

In Sec. IV-B we described how we find a set of designs
of fixed size that collectively maximize the reachable goal
percentage. We now focus on finding a design set of minimal
cardinality with a reachable goal percentage greater than a
user-specified threshold rthreshold (shown in Alg. 3).

We begin by invoking the fixed size algorithm (Alg. 2)
with a user-specified maximum set size mmax and terminating
after the threshold rthreshold is reached. Once a design set S∗

of size mmax has been found that can reach a percentage of
the goal greater than rthreshold, we iterate by invoking Alg. 2
using a design set of size mmax−1. In order to speed up the
algorithm, we initialize subsequent iterations of Alg. 2 with
the set S, the best subset of S∗ of size mmax−1. We iterate
until we run out of the time allotted for the optimization.



Algorithm 1 Sample and evaluate a design set
Input:

Scurrent: Current design set of size m
m: required design set size
c: number of available processing cores
t: number of RRT iterations to execute
T : ASA’s current annealing temperature

Output:
Snew: new set of robot designs of size m
rnew: reachable goal percentage of Snew

1: S← ASA SampleDesignSet(Scurrent,c, t,T );
2: designToVoxelsMap=∅;
3: for di ∈ S (in parallel on |S|= c cores) do
4: designToVoxelsMap[di]← executeRRT(di, t);
5: candidateSets← subsets of size m of S;
6: rnew← 0;
7: Snew←∅;
8: for each S′ ∈ candidateSets do
9: r←

∣∣⋃
d∈S′ designToVoxelsMap[d]

∣∣;
10: if r > rnew then
11: rnew← r;
12: Snew← S′;
13: return Snew,rnew;

Algorithm 2 Find a design set of fixed size with maximum
reachable goal percentage
Input:

m: number of designs in the design set S
c: number of available processing cores
rthreshold(optional): desired reachability threshold
Sinit(optional): initial design set for our search

Output:
S∗: a set of m robot designs that together maximize
reachable goal percentage

‘
1: S∗ =∅;
2: t← tstart;
3: T ← Tinitial;
4: rcurrent← 0;
5: Scurrent← random set of designs or Sinit if provided;
6: while allotted time remains (and rcurrent < rthreshold if

rthreshold provided) do
7: S′,r′← Algorithm1(Scurrent,m,c, t,T )
8: if r′ > rcurrent then
9: Scurrent← S′;

10: S∗← S′;
11: rcurrent← r′;
12: else
13: if ASA maybeAccept(r′,rcurrent,T ) then
14: Scurrent← S′;
15: rcurrent← r′;
16: t← t + tincrease;
17: T ← ASA updateTemperature(T );
18: return S∗

Algorithm 3 Find a minimal design set that reaches a
sufficient percentage of the goal region
Input:

mmax: maximum number of designs in the design
set
rthreshold: desired reachable goal percentage

Output:
S∗: a minimal set of designs with goal reachability
greater than rthreshold

1: S←∅;
2: m← mmax;
3: while allotted time remains and m > 0 do
4: S∗← Algorithm2(m,c,rthreshold,S);
5: S← best subset of S∗ of size m−1;
6: m← m−1;
7: return S∗;

V. RESULTS

We evaluate our design optimization approach in a simu-
lated scenario based on lung anatomy. In this scenario, the
concentric tube robot is deployed near the base of the primary
bronchus of the right human lung using a rigid bronchoscope.
We aim to find sets of concentric tube robot designs that
can safely maneuver to any target in the right lung while
avoiding anatomical obstacles, e.g., blood vessels and smaller
bronchial tubes. We set the goal region to the entire right
lung. We subdivide the interior volume of the goal region into
4156 equally-sized cubic voxels for purposes of evaluating
voxels reached. In our optimization, we also consider the
start pose of the concentric tube robot as a design parameter,
which for this scenario are the additional variables α and β ,
which correspond to angular offsets in two directions from
the rigid bronchoscope’s tangent axis. We implemented our
design optimization algorithms in C++. All experiments were
conducted on a PC with two 2.40 GHz Intel Xeon E5620
processors (8 cores total) and 12 GB of RAM.

A. Maximizing Reachability of a Design Set of Fixed Size

We first show how the reachable goal percentage of a
set of designs is affected by the size of the design set. We
considered fixed set sizes m of 1, 2, 4, and 6. For each value
of m, we executed Alg. 2 to find a design set of size m
that maximizes the reachable goal percentage. For each trial
we recorded how the solutions’ reachable goal percentage
progressed over an allotted time of 3 hours, and we averaged
the results of 20 trials for each value of m. Results are shown
in Fig. 3.

In the time allotted, design sets of larger size were found
to reach a larger percentage of the goal region by our design
algorithm, with design sets of sizes 1, 2, 4, and 6 being
found to reach approximately 70%, 84%, 94%, and 97% of
the goal region, respectively. This demonstrates the benefit of
considering collections of designs in order to enable a wider
variety of possible clinical procedures. Also, the marginal
difference in reachable goal percentage between using 4 and



Fig. 3. We show the performance of Algorithm 2 over time in finding
design sets that maximize the reachable percentage for the lung scenario
using fixed set sizes of 1, 2, 4, and 6. In general, larger design sets can
reach greater percentages of the goal region.

6 designs highlights the diminishing returns of adding more
designs to the set.

B. Minimal Design Set with Sufficient Goal Reachability

We next evaluated the ability of Alg. 3 to generate a robot
design set of minimal cardinality that can reach at least
rthreshold = 95% of the goal region. We used a maximum
design set size of mmax = 12. We executed 20 trials of our
algorithm, with 3 hours of computation time per trial.

We show the average minimum set size found by our
algorithm over time in Fig. 4. We note that we did not begin
averaging results until all trials had found their first design set
with a sufficient reachable goal percentage rthreshold, which
occurred at 116 minutes. The figure shows that, over time
up to 3 hours, our algorithm progressively finds smaller and
smaller sets of robot designs that can still reach a sufficient
percentage of the goal region.

C. Benchmarking Variations on Algorithm

We next compare our method with different approaches to
design optimization. We compare our algorithm for fixed-size
design sets against two variants that borrow some elements of
the design algorithm presented by Burgner et al. [5], which
we note was developed for different anatomical scenarios.
• NM + G: We use the Nelder-Mead optimization al-

gorithm instead of ASA for generating new designs
to consider. To evaluate the reachable goal percentage
of a design, we do not use motion planning; we in-
stead consider a goal voxel reachable if there exists a
single collision-free robot configuration where the tip
lies inside the goal voxel. We compute the reachable
goal voxels of a design by discretizing the robot’s
configuration space into a grid and iterating over each
point on the grid.

• NM + MP: We use the Nelder-Mead optimization
algorithm to sample new design sets instead of ASA.

Fig. 4. We show the performance of Algorithm 3 over time in finding a
design set of minimal size that can reach 95% of the goal region for the
lung scenario. This plot is averaged over 20 trials, and the plot begins after
all 20 trials have found their first design set capable of reaching 95% of the
goal region.

We use motion planning to compute the reachable goal
percentage of design sets.

We compare the above approaches against our full method,
which we denote as “ASA + MP”. We executed each
algorithm on the lung scenario with a fixed design set size
of 2. Since the “NP + G” variant does not ensure that goal
voxels are reachable by entirely collision-free motions when
considering full deployment, we estimated the reachable goal
voxels of designs generated by this variant by executing
200,000 RRT iterations on each design returned (and we did
not count this verification step in the timing results).

We executed 20 trials of each approach and averaged their
reachable goal percentage over time to generate the results
in Fig. 5. The results demonstrate that (1) using motion
planning as part of the optimization to determine a set of
designs’ reachable goal percentage and (2) using a global
optimization method like ASA enable us to more quickly
compute sets of concentric tube robot designs that can reach
larger portions of the goal region without colliding with
anatomical obstacles during deployment.

VI. CONCLUSIONS

We presented algorithms for computing sets of concentric
tube robot designs that can reach physician-specified goal
regions while avoiding contact with anatomical obstacles.
We focused on (1) finding a set of designs of a fixed size
that maximizes the percentage of a goal region that can be
reached and (2) minimizing the size of a set of designs that
reaches a desired percentage of a goal region. Our approach
interleaves a global stochastic search over the space of robot
design sets with a sampling-based motion planner in the
robot’s configuration space.

In future work we plan to improve our algorithms to
bring them closer to clinical applicability. Thus far we
have focused on static environments, and we plan to extend



Fig. 5. We compare the performance of our proposed algorithm (ASA+MP)
with variants inspired by a design algorithm from prior work [5]. This prior
method used the Nelder-Mead (NM) optimization algorithm, whereas we use
a globally optimal algorithm called Adaptive Simulated Annealing (ASA).
We also extended the prior work to consider obstacle avoidance in the entire
deployment of the concentric tube robot by using motion planning. These
extensions result in finding better sets of designs in less time.

our approach to consider tissue deformations and dynamic
obstacles. We also plan to consider new optimization metrics,
including metrics that consider tissue damage and uncer-
tainty. Furthermore, we plan to evaluate the effectiveness of
our design algorithms in physical experiments using tissue
phantoms and to assess the benefits of design optimization
in a variety of medical scenarios.
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