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Abstract In highly constrained settings, e.g., a tentacle-

like medical robot maneuvering through narrow cavi-

ties in the body for minimally invasive surgery, it may

be difficult or impossible for a robot with a generic

kinematic design to reach all desirable targets while

avoiding obstacles. We introduce a design optimization

method to compute kinematic design parameters that

enable a single robot to reach as many desirable goal re-

gions as possible while avoiding obstacles in an environ-

ment. Our method appropriately integrates sampling-

based motion planning in configuration space into sto-

chastic optimization in design space so that, over time,

our evaluation of a design’s ability to reach goals in-

creases in accuracy and our selected designs approach

global optimality. We prove the asymptotic optimality

of our method and demonstrate performance in simu-
lation for (i) a serial manipulator and (ii) a concentric

tube robot, a tentacle-like medical robot that can bend

around anatomical obstacles to safely reach clinically-

relevant goal regions.
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1 Introduction

In a cluttered environment, the ability of a robotic ma-

nipulator to reach desired targets while avoiding ob-

stacles depends significantly on the robot’s kinematic

design. A robot’s kinematic design can be seen as a set

of kinematic parameters that define a robot’s shape and

are fixed throughout the robot’s use, e.g., the length of

each link of a serial manipulator or the lengths and cur-

vatures of tubes in a concentric tube robot [10,12]. In

highly constrained settings, e.g., a tentacle-like robot

maneuvering through narrow cavities in the body for

minimally invasive surgery, it may be difficult or im-

possible for a robot with a generic kinematic design to

reach all desirable targets while avoiding obstacles (see

Figure 1).

Fortunately, advances in methods that enable the

rapid fabrication of customized robot designs is intro-

ducing the potential to create robots that are kinemati-

cally optimized on a task-specific basis. Advances in 3D

printing enable the rapid creation of robots with links of

customizable lengths. Customized medical robots, like

concentric tube robots, can be created in minutes by

shape-setting or 3D printing [13,29]. Our objective is to

computationally optimize the kinematic design param-

eters of a robotic manipulator on a task-specific basis:

given the shapes of obstacles in the environment as well

as goal regions the robot should be capable of reaching,

we aim to compute a single robot design that can reach

as many of the goal regions as possible while avoiding

obstacles.

https://doi.org/10.1007/s10514-018-9766-x
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Fig. 1 Optimizing the kinematic design of a robotic manip-
ulator can enable it to reach more goal regions in a cluttered
environment. In this example, the objective is to optimize
the design of a concentric tube robot, a surgical manipulator
composed of nested, precurved tubes (cyan, yellow, magenta)
whose lengths and curvatures can be customized (top). The
objective is to move from a bronchial tube (white arrow) to
reach goal regions (green spheres) in the lung while avoid-
ing anatomical obstacles, e.g., blood vessels (red, blue) and
bronchial tubes (off-white). A generic design may fail to reach
some goal regions in a cluttered environment (right column),
while an optimized design (left column) has the potential to
reach more goal regions.

In this paper, we focus on optimizing the kinematic

design of a general class of robots whose shapes can be

modeled as a continuous mapping from a compact set.

This model can be applied to standard serial manipula-

tors, where the length of each link is a kinematic design

parameter, as well as concentric tube robots, tentacle-

like robots for minimally invasive surgery that can curve

around anatomical obstacles to reach surgical sites in

constrained spaces [10,12]. Concentric tube robots are

composed of nested, pre-curved tubes, where each tube

is typically shaped with a straight section followed by

a pre-curved constant-curvature section. Each of the

robot’s component tubes can be independently rotated

or extended, enabling the entire device to change shape

as the nested tubes elastically interact. This robot’s

kinematic design parameters include the pre-curvatures

and lengths of each constituent tube. These parameters

have a significant impact on the surgical targets reach-

able by the device in constrained spaces, so proper se-

lection of kinematic design parameters for a patient’s

anatomy is critical to the success of a medical proce-

dure.

Optimizing a robot’s kinematic design on a task-

specific basis is challenging. We desire to compute high

quality designs reasonably quickly (i.e., minutes, not

days), particularly for medical applications in which

the physician customizes the robot design based on a

patient-specific anatomy identified in medical images.

However, the kinematic design space of a robot may be

large, and for any candidate design we must evaluate

whether that design can move from an initial configu-

ration to reach a volume of goal points in the target

set while avoiding obstacles. This implies we need to

compute motion plans to multiple goal regions for suc-

cessively selected designs, but current state-of-the-art

motion planners based on sampling-based methods can-

not determine with certainty in finite time whether a

goal region can be reached by a particular design.

Our novel contributions are as follows. First, we in-

troduce a unified framework for optimizing the kine-

matic design parameters of a wide class of robots on a

task-specific basis by appropriately integrating sampling-

based motion planning into iterations of a stochastic op-

timization method for design selection. We implement

the integration so that, over time, our reachability eval-

uations increase in accuracy and our design selections

improve toward global optimality. Second, we analyze

our algorithm and prove asymptotic optimality, i.e., al-

most sure convergence to a globally optimal design, un-

der a mild continuity assumption on the robot’s shape

and the design objective, which guarantees that our

method avoids getting trapped in local optima. Third,

we demonstrate the broad applicability and effective-

ness of our design optimization method via evaluations

for two distinct robots: (i) a 4-link serial manipulator,

and (ii) a concentric tube medical robot.

2 Related Work

Our approach to optimizing the kinematic design of

robots integrates prior work in robot design optimiza-

tion, stochastic search, and robot motion planning. Prior

work has investigated combinatorial approaches to de-

sign optimization over a finite and discrete set of robot

features. Examples include optimizing over discrete com-

ponents of modular robots [19,36], monopedal jumping
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robots [33], snake-like and multi-modal robots [30,41],

and kinematic chains such as proteins [9]. In this paper,

we focus on robots with continuous design parameters.

There has been extensive work on optimizing the

kinematic design of serial manipulators. Approaches have

optimized various metrics and have used genetic al-

gorithms [8,21,25,37], interval analysis [27], geometric

methods [40], and grid-based methods [32]. These meth-

ods typically lack theoretical performance guarantees or

achieve computational tractability by imposing signifi-

cant assumptions on the robot’s workspace and by using

simplified kinematic models, which limit the effective-

ness and applicability of the optimization procedure.

Kinematic design optimization for concentric tube

robots is particularly challenging due to their complex

kinematics, which is computationally expensive to eval-

uate due to the complex elastic and torsional interac-

tions of their constituent tubes. Morimoto et al. present

a complementary approach to automatic design opti-

mization by providing a human with an intuitive inter-

face to manually design the tubes [28]. Bergeles et al.

computationally optimize the robot’s design to reach a

set of points without colliding with anatomical obsta-

cles [4]. For computational efficiency, they reduce the

motion planning problem to finding goal configurations

that can reach the targets and do not offer a global opti-

mality guarantee. Burgner et al. combine a grid-based

evaluation of the robot’s kinematics in configuration

space with a nonlinear optimization method over the

design space to maximize the reachable region of points

subject to anatomical constraints [5]. Burgner et al. ex-

tended this work to characterize the workspace of con-

centric tube robots [6,7]. Ha et al. present a method for

generating designs to maximize device stability [14].

By focusing only on computing designs and goal

configurations, the works above cannot guarantee that a

collision-free path from start to goal exists for the com-

puted design. Torres et al. integrated a motion planner

into concentric tube robot design using an RRT to sam-

ple in the design space and another RRT in the config-

uration space to ensure the computed design is able to

avoid obstacles en route to specific points [39], but offers

slow performance. Baykal et al. investigated computing

minimal sets of concentric tube robot designs to reach

multiple targets [2], although no analysis was provided

regarding a guarantee on optimality.

Recent work includes approaches that simultane-

ously optimize the design and motion of the robot with

respect to a given objective. Ha et al. introduce a de-

sign optimization procedure that leverages the Implicit

Function Theorem to computationally optimize the mor-

phological design of manipulators and quadruped robots

[15]. Taylor et al. present a nonlinear optimization based

approach to simultaneous design and motion optimiza-

tion of dynamic planar manipulators [38]. However, these

methods only apply to specific design objectives, do not

provide global optimality guarantees, and are prone to

getting stuck in locally optimal solutions. We present a

unified approach to asymptotically optimal kinematic

design optimization that is applicable to a wide class of

robots and objectives.

In this paper, we present a refined and extended ver-

sion of our methods and analysis originally introduced

in [1]. Our prior work in [1] focused on design opti-

mization for piecewise cylindrical robots to maximize

end-effector reachability to specified goal regions. We

relax the previously imposed assumption on the robot’s

shape and generalize our prior method and analysis

to a much larger class of robots whose shapes can be

modeled as a continuous mapping from a compact set.

We also provide additional experimental results demon-

strating the scalability of our algorithm with respect to

varying dimensionality of the design space.

3 Problem Definition

A robot’s design d is an n-dimensional vector of kine-

matic parameters that correspond to physical proper-

ties of the robot’s shape that are fixed for the duration

of a given task. This vector includes kinematic parame-

ters such as the length of each link of a serial manipula-

tor or the lengths and curvatures of tubes in a concen-

tric tube robot. The design space D ⊂ Rn of a robot is

the n-dimensional open set corresponding to the space

of all possible kinematic designs of the robot. We as-

sume that the robot operates in a workspace W ⊆ Rl
containing a compact set of obstacles O ⊂ W, where

l ∈ {2, 3}.
Our overarching goal is to design the robot so it can

safely, i.e., without colliding with the obstacles, reach

as many points in a specified goal region G ⊂ W as pos-

sible. That is, the optimization problem is to generate

an optimal design d∗ ∈ D such that the robot under

design d∗ maximizes the reachable volume of points

in G. Formulating the design optimization problem in

this continuous, volume-based manner formally cap-

tures the objective of maximizing reachability, however,

it also renders the problem computationally intractable

to exactly solve algorithmically. This challenge stems

from the fact that the volume-based objective requires

the evaluation of reachability to an uncountable set of

points in G in order to measure volume. Evaluating this

objective is both algorithmically challenging in theory

and computationally intractable in practice.

Motivated by these practical and theoretical con-

cerns, we consider a discretized version of the problem
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where the objective of maximizing the reachable volume

is replaced by its discretized analogue of maximizing the

number of discrete goal regions that can be reached.

This discretization alleviates the challenges associated

with the volume-based objective without significantly

altering the core problem that we address in this paper.

That is, the robot should be designed so it can reach

(while avoiding obstacles) a set of m user-specified goal

regions, where each goal region Gi ⊂ W, i ∈ {1, . . . ,m}
is defined as a volume of workspace positions. We de-

fine G = {Gi : i = 1, . . . ,m} as the union of the goal

regions.

Let the open set Q ⊂ Rd denote the d-dimensional

configuration space of the robot. Since the shape of

a robot at any configuration is a function of its de-

sign d, the set of configurations for which the robot’s

shape does not intersect an obstacle is dependent on d.

Thus, we denote the set of collision-free configurations

for a robot of design d as Qfree
d ⊂ Q. We model the

shape of a robot with design d ∈ D at configuration

q ∈ Q by the mapping Shape : D × Q × Krobot → W,

where Krobot is a compact set used for parameterization

(e.g., a parameterization of points in the volume of a

manipulator or along the central axis of a thin tubu-

lar robot). Namely, Shape(d,q, ·) defines the workspace

points that the robot occupies under design d at con-

figuration q. We assume Shape is computed using an

accurate kinematic model. We let kbase,kend ∈ Krobot

denote elements of Krobot such that Shape(·, ·,kbase)

and Shape(·, ·,kend) correspond to the robot’s base and

end-effector points, respectively.

We define q0 ∈ Q as the robot’s start configuration.

The robot’s motion is a path in the configuration space
Q defined by the continuous function σ : [0, 1] → Q,

where σ(0) = q0. A path σ executed under robot design

d is collision-free if it lies entirely in the collision-free

configuration space, that is, if σ(τ) ∈ Qd
free for all τ ∈

[0, 1].

We define our design optimization objective with

respect to a user-defined reachability function f : D ×
Q×Kreach →W for a non-empty, compact set Kreach ⊆
Krobot. The function f can be thought of as a mapping

from a robot design d ∈ D at configuration q ∈ Q to an

objective-specific point in the workspace. In particular,

in this paper we consider the objective of reaching as

many goal regions in G as possible with the robot’s end-

effector, where we define Kreach = kend and f as the

mapping from a design-configuration pair (d,q) to the

robot’s end effector position, Shape(d,q,kend) 1. We

1 In fact, for any objective that can be defined with respect
to a set of points on the robot, we can define the mapping
f as f(d,q,k) 7→ Shape(d,q,k) for any objective-specific
Kreach ⊆ Krobot.

compute f via the kinematics evaluation for Shape for

some Kreach corresponding to the points on the robot

that we desire to reach the goal.

More generally, given a user-specified f and a non-

empty compact set Kreach, the reachability of any goal

region Gi ∈ G, i ∈ [m] under design d ∈ D at configura-

tion q can be defined entirely in terms of f and Kreach,

as formalized below.

Definition 1 (Reachable design-configuration

pair) A design-configuration pair (d,q) ∈ D ×Qfree
d is

said to be reachable if there exists a collision-free path

σ : [0, 1]→ Qfree
d from the initial configuration q0 to q

under design d.

Definition 2 (Reachable goal region under a de-

sign-configuration pair) A goal region Gi ∈ G, i ∈
[m] is said to be reachable by the design-configuration

pair (d,q) with respect to the reachability function f

and a non-empty compact set Kreach ⊆ Krobot if:

1. the pair (d,q) is reachable and,

2. there exists k ∈ Kreach such that f(d,q,k) ∈ Gi.

Definition 3 (Reachability under a design) A goal

region Gi ∈ G, i ∈ [m] is said to be reachable by a robot

of design d ∈ D if there exists a configuration q ∈ Q
such that Gi is reachable by the design-configuration

pair (d,q).

Our over-arching goal is to compute an optimal robot

design d∗ ∈ D that enables the robot to reach as many

goal regions in G as possible in a safe manner, i.e., via

collision-free paths that avoid the workspace obstacles

O. The quality of a design d ∈ D is defined with respect
to the extent of the design’s reachability to the goal re-

gions in G (Definition 3). That is, the objective function

value of d is expressed as the percentage of goal regions

in G that are reachable with design d relative to the

total number of goal regions in G.

Formally, the reachability of design d is given by the

mapping R(d) : D → [0, 1]:

R(d) =
|GoalRegionsReachable(d)|

|G|
, (1)

where GoalRegionsReachable(d) : D → 2|G| denotes

the set of goal regions that the robot of design d can

reach with respect to the reachability function f and

compact set Kreach, by following a collision-free path.

R(d) expresses the reachable goal percentage of the robot

under design d, which we seek to maximize. We for-

malize the kinematic design optimization problem as

follows:

Given an environment W ⊆ Rl (where l = 2 or 3),

a set of obstacles O ⊂ W, a set of user-specified goal
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regions G, an objective-specific non-empty compact set

Kreach ⊆ Krobot, and a reachability function f : D ×
Q×Kreach →W, generate a design d∗ that maximizes

the reachable goal percentage, i.e.,

d∗ ∈ argmax
d∈D

R(d). (2)

4 Methods

In this section, we present our algorithm for optimiz-

ing the kinematic design parameters of a robot whose

shape can be modeled as a continuous mapping from

a compact set, to maximize the robot’s reachable goal

percentage while avoiding obstacles in a task-specific

environment.

4.1 Method Overview and the Key Challenge

Our design optimization approach combines a stochas-

tic search in the robot’s design spaceD with a sampling-

based motion planner in the robot’s configuration space

Q to efficiently generate designs with high reachabil-

ity. To select candidate designs for evaluation, we use

Adaptive Simulated Annealing (ASA) [17], a global op-

timization algorithm. For each selected design, we use

the Rapidly-exploring Random Tree (RRT) [23] algo-

rithm to estimate the design’s reachable workspace and

evaluate its reachable goal percentage. We provide an

overview of our approach in Algs. 1 and 2 and formally

prove the method’s asymptotic optimality in Sec. 5.

To ensure that we converge toward a globally op-

timal design, a key challenge we must address is that

state-of-the-art, practical motion planners cannot guar-

antee completeness [23], i.e., they cannot always in fi-

nite time answer the question of whether a collision-

free motion plan exists from the start configuration to

a goal region. This limitation of current state-of-the-

art motion planners introduces a significant challenge

for design optimization; to use a standard optimization

algorithm to optimize the design d in equation 2, a

motion planner must evaluate the reachable goal per-

centage accurately and in finite time in each iteration of

the optimization algorithm. Commonly used sampling-

based motion planners only offer probabilistic complete-

ness (and in some cases also asymptotic optimality in

terms of path quality), meaning the probability that

they will produce a collision-free path (if one exists) to

a goal region approaches 1 as more time is spent [23].

Terminating a sampling-based motion planner after fi-

nite time may result in an incorrect computation of the

reachable goal percentage. The lack of full completeness

makes it impossible to simply plug a standard sampling-

based motion planner into a standard optimization al-

gorithm and expect convergence toward a globally opti-

mal design. We address this challenge by appropriately

integrating sampling-based motion planning into sto-

chastic optimization in design space so that, over time,

our reachable goal percentage evaluations increase in

accuracy and our selected designs approach global op-

timality.

4.2 Evaluating a Design’s Reachable Goal Percentage

Evaluating the objective function value R(d) in equa-

tion (1) for an arbitrary design d ∈ D requires com-

puting GoalRegionsReachable(d), the set of goal re-

gions that design d can reach by executing collision-

free paths. Thus, evaluating the reachability of a design

is fundamentally a motion planning problem, which is

known to be PSPACE-hard [34]. This renders the use of

exact evaluation methods computationally intractable

and motivates the use of a sampling-based motion plan-

ning algorithm, such as the Rapidly-exploring Random

Tree (RRT) [23], to generate approximations of a de-

sign’s reachability (albeit an approximation that can

improve over time, as will be discussed in Sec. 4.4).

For a given design d ∈ D and a start configuration

q0, the RRT algorithm incrementally constructs a tree

of configurations that can be reached by collision-free

paths from the root of the tree, q0. For a given design,

we run the RRT algorithm for i ∈ N+ iterations and

iterate over the configurations in the constructed tree

to compute the set of goal regions that can be feasibly

reached by the robot with design d (Line 2, Alg. 1).

From this we can approximate the design’s reachable

goal percentage in a computationally tractable manner

(Line 3, Alg. 1). Because RRT provides probabilistic

completeness, as we increase the iterations i of RRT,

the probability of our approximation R̂i(d) being equal

to the true R(d) approaches 1. For any finite i, our

approximations of the reachable goal percentage at each

iteration is ensured to be a lower bound of the ground-

truth reachability, i.e., R̂i(d) ≤ R(d).

A key challenge is appropriately setting the number

of iterations i the RRT will run for. In Sec. 4.4, we

introduce an approach to setting i in Alg. 1 that ensures

asymptotic optimality of the design optimization.

4.3 Selecting Designs

We use the ASA algorithm [17,26] for optimizing the

kinematic design to maximize the reachable goal per-

centage. We use ASA because it is a global optimiza-
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Algorithm 1 Select and evaluate a kinematic design
Input:

G: set of goal regions
O: set of environmental obstacles
f : the objective-specific reachability function
Kreach: the objective-specific non-empty compact set
dcurrent: previously considered robot design
T : ASA’s current annealing temperature
i: number of RRT iterations to execute

Output:

dnew: new robot design
R̂new: approximate reachable goal percentage of dnew

1: dnew ← SampleDesign(dcurrent, T );
2: goalRegionsReached← RRT(dnew, i,O, f,Kreach);

3: R̂new ← |goalRegionsReached|/|G|;
4: return dnew, R̂new;

Algorithm 2 Iterative design optimization
Input:

G: set of goal regions
O: set of environmental obstacles
f : the objective-specific reachability function
Kreach: the objective-specific non-empty compact set
iinit: initial number of RRT iterations
i∆: additional RRT iterations after each sample
Tinit(optional): initial annealing temperature for the search
dinit(optional): initial design for the search

Output:

d∗: a robot design that maximizes (1)

1: T ← 1 or Tinit if provided;
2: i← iinit;
3: R̂current ← 0;
4: R̂∗ ← 0;
5: dcurrent ← random initial design or dinit if provided;
6: d∗ ← dcurrent;
7: k ← 0;
8: while allotted time remains do
9: d′, R̂′ ← Algorithm1(G,O, f,Kreach,dcurrent, T, i)

10: if Accept(R̂′, R̂current, T ) then
11: dcurrent ← d′;
12: R̂current ← R̂′;

13: if R̂′ > R̂∗ then
14: d∗ ← d′;
15: R̂∗ ← R̂′;

16: i← i + i∆;
17: k ← k + 1;
18: T ← UpdateTemperature(Tinit, k);

19: return d∗

tion method that escapes local optima, it is efficient in

practice for problems in high dimensional spaces, and it

has favorable algorithmic properties which we exploit.

Specifically, we are able to use sampling-based motion

planning in each iteration of ASA in a manner that en-

sures asymptotic optimality of the design, as discussed

in Sec. 4.4.

Our ASA-based algorithm is shown as Alg. 2 and

operates similar to a hill climbing algorithm in that it

is centered on a design dcurrent that it incrementally

attempts to improve. However, unlike a hill climbing

algorithm, the algorithm may in some iterations select

an inferior design, which enables escaping local minima.

Next designs are determined by sampling a new design

(SampleDesign; Line 1, Alg. 1) and deciding whether

to accept that new design (Accept; Line 6, Alg. 2), with

both procedures being highly dependent on a temper-

ature parameter T ∈ R≥0. Accept returns true if the

sampled design d′ is higher quality than dcurrent (i.e.,

R̂′ > R̂current) or with some probability (dependent on

T ) if d′ is inferior. In particular, for a sampled state

d′, if R̂′ > R̂current then the probability of accepting

the state d′ from the current state dcurrent, denoted by

PAccept, is defined to be

PAccept =

{
1 if R̂′ > R̂current,

exp
(
− R̂current−R̂′

T

)
otherwise.

The temperature variable T is initially set to a suf-

ficiently high value2, Tinit ∈ R+, to ensure convergence

to the globally optimal solution and is decreased after

each iteration based on a cooling schedule (Alg. 2, Line

18),

UpdateTemperature(Tinit, k) = Tinit exp(−c k 1
n ),

where c is an appropriate constant [17,18] and n is the

number of design parameters (see Sec. 4.2.7 of [18] for

full details).

When T is high, ASA is more likely to sample states

that are far away from dcurrent and also more likely

to probabilistically accept inferior designs, which leads
to exploratory behavior initially. As T is cooled down

over time, ASA samples states in smaller neighborhoods

around dcurrent and is increasingly less likely to accept

inferior designs, which leads to eventual convergence to

a high quality design. We cache the best found design

(Alg. 2, Line 10) so the best found design is returned

when the algorithm terminates.

Full details of the Adaptive Simulated Annealing al-

gorithm can be found in the publicly available codebase

of Ingber [16,18].

4.4 Integrating Motion Planning into Stochastic

Optimization

A key requirement to converging toward a globally op-

timal design is an accurate evaluation of any candi-

2 We remark that a default initial value of 1 is suggested
in [16,17,18] and refer the reader to prior work, e.g., [3], for
computing an appropriate Tinit.
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date design’s reachable goal percentage. This implies

we need to compute motion plans to multiple goal re-

gions for each design considered in the optimization,

but current state-of-the-art motion planners based on

sampling-based methods cannot specify with certainty

in finite time whether a goal can be reached by a par-

ticular design.

To address this challenge, we use a simple-to-implement

idea: we incrementally increase the number of RRT

iterations by i∆ after each sampled design (Line 13,

Alg. 2). This approach ensures that our approximations

become increasingly accurate over time. This approach

is sufficient for establishing the asymptotic optimality

of our algorithm (see Sec. 5). This approach also has

a secondary benefit: it enables us to more quickly (but

more coarsely) evaluate many designs in the initial it-

erations and subsequently evaluate candidate designs

with higher accuracy (albeit at a slower rate) in later

iterations.

5 Analysis

We prove under mild assumptions that the design com-

puted by our algorithm almost surely converges [11]

to a globally optimal design. The outline of our proof

is as follows. First, we establish that the set of opti-

mal designs with respect to the reachability problem

(2) is non-empty and open, and thus has strictly pos-

itive measure. Then, we show that by property of the

ASA algorithm, optimal designs will be sampled and

evaluated infinitely often. We conclude by proving that,

eventually, an optimal design will be sampled and eval-

uated accurately by the RRT algorithm.

5.1 Preliminaries

We remind the reader that the inverse images of open

and closed sets under continuous functions are them-

selves open and closed respectively where the inverse

image of A ⊆ B under f : C → B (denoted f−1[A])

is the set {c ∈ C | f(c) ∈ A}. In the following proofs,

we will also frequently refer to the topological projec-

tion (or simply projection) from a Cartesian product

of topological spaces X × Y to X. The projection of

a set Z ⊆ X × Y to X is the set {x ∈ X | ∃y ∈ Y :

(x, y) ∈ Z}. Two useful properties of projections enable

the proofs below. First, the projection of an open set is

itself open. Second, if Y is compact, then the projection

X × Y → X of a closed set is itself closed. This latter

property is referred to as the Tube Lemma [31].

Assumption 1 (Goal Regions as Open Sets) Each

goal region Gi ⊂ W, i ∈ [m], is defined as an open set.

Assumption 2 (Continuity of the Shape Function)

Shape : D ×Q×Krobot →W is continuous.

Assumption 3 (Continuity of f) f : D×Q×Kreach →
W is continuous.

Assumption 1 rules out pathological problem in-

stances where only a single optimal design lying on

the boundary of the design space exists. Assumption 2

guarantees that robots of similar designs have similar

shapes at similar configurations. Finally, Assumption 3

is a technical assumption that ensures the pertinent de-

sign optimization objective is sufficiently well-behaved.

Let R ⊆ D ×Q denote the set of reachable design-

configuration pairs. The following lemma is an exten-

sion of the analysis introduced in [1], and establishes

that the set of reachable design-configuration pairs, R,

is open.

Lemma 1 The set of reachable design-configuration pairs

R ⊆ D ×Q is open.

Proof Our proof of this lemma is based on the result in

Kuntz et al. [22]. Consider a reachable design-configuration

pair (d,q) ∈ D × Qfree
d for which we wish to construct

a reachable neighborhood. By definition of reachable,

there must exist some collision-free path σ ∈ [0, 1] →
Qfree

d with σ(1) = q, i.e.,

∀s ∈ [0, 1],k ∈ Krobot Shape(d, σ(s),k) ∈ O,

where O denotes the set complement of O. Let σq′(s) =

σ(s) + s · (q′ − q). σq′ is continuous by continuity of σ

and σq′(1) = q′ by construction, so σq′ is a path to

q′. We thus have only to show that σq′ is collision-free

under each design d′ for all (d′,q′) in a neighborhood

of (d,q).

Observe that the mapping L : D × Q × Krobot ×
[0, 1]→W given by:

d′,q′,k, s 7→ Shape(d′, σq′(s),k)

is continuous by continuity of σq′ and Shape. We then

have that B = L−1[O] ⊆ D × Q × Krobot × [0, 1] is

closed by closedness of O. Let C be the projection of

B to D × Q. C is thus the set of all (d′,q′) for which

σq′(s) is in collision under design d′ for some s ∈ [0, 1],

and is closed by compactness of Krobot × [0, 1] and the

Tube Lemma.

Now observe that (d,q) ∈ C because σq = σ, and

σ is collision-free for design d by definition. But C is

open, so it covers some neighborhood N of (d,q). N is

thus a neighborhood of (d,q) in which σq′ is collision-

free under design d′ for all (d′,q′) ∈ N . ut



8 Cenk Baykal et al.

Now, let Rg ⊆ D × Qfree
d denote the set of design-

configuration pairs under which the goal region g ∈ G
is reachable. The following lemma establishes that RGi
is open for all of the m goal regions Gi ∈ G, i ∈ [m].

Lemma 2 For any goal region Gi ∈ G, i ∈ [m], the set

of design-configuration pairs under which goal region Gi
is reachable, denoted by RGi , is open.

Proof For any arbitrary goal region Gi ∈ G, consider

the set A = Gi =W \Gi. Note that A is closed sinceW
is compact and Gi is open. The remainder of the proof

proceeds in a manner similar to Lemma 1.

Let B = f−1[A] ⊆ D ×Q×Kreach and note that B

is closed since A is closed and f is continuous. Now let

C ⊆ D ×Q be the projection of B to D ×Q, i.e., C is

the set of design-configuration pairs that cannot reach

the goal region Gi for any k ∈ Kreach:

∀(d,q) ∈ C @k ∈ Kreach : f(d,q,k) ∈ Gi.

Since Kreach is compact, it follows by the Tube Lemma

that the set C is closed. Therefore, its complement, C,

is open. Now, note that the set of reachable design-

configuration pairs from which goal Gi is reachable is

defined as RGi = C∩R, where R is the set of all reach-

able design-configuration pairs as before. By Lemma 1,

R is open, thus RGi , the intersection of two open sets,

is also open.

ut

Let R∗ = maxd∈D R(d) denote the optimal objec-

tive value with respect to the non-empty compact set

Kreach and the reachability function f , and let D∗ =

{d ∈ D | R(d) = R∗} be the optimal set of designs

with respect to the optimization problem defined by (2)

in Sec. 3. The following lemmas establish that designs

from the optimal design set will be sampled infinitely

often.

Lemma 3 The set of optimal designs, D∗ ⊆ D, is

open.

Proof For all i ∈ [m], let RGi denote the set of design-

configuration pairs under which goal region Gi is reach-

able, and note that by Lemma 2, RGi is open. Now,

let Di denote the projection of RGi to the set of de-

signs D. Projection is an open mapping, so each Di is

open. Let m∗ be the number of goal regions reachable

by an optimal design. Observe that the union of all m∗-

wise intersections of {D1, . . . ,Dm} is the set of optimal

designs. This is a finite union of finite intersections of

open sets, and is thus open itself. ut

Corollary 1 (Frequency of Sampling Optimal De-

signs) Alg. 2 will sample designs from the optimal de-

sign set D∗ infinitely often.

Proof It is known that designs that are an element of

any subset of D with non-zero measure will be sam-

pled infinitely often by the ASA algorithm [17,26]. By

Lemma 3 we have that D∗ is open and non-empty.

Lebesgue measure is strictly positive on non-empty open

sets, thus the set of optimal designs D∗ ⊆ D has non-

zero measure and the result follows. ut

5.2 Asymptotic Optimality

Let Yk be a random variable that denotes the maximum

reachable goal percentage attained over all the designs

sampled in optimization iterations 1, . . . , k.

Theorem 1 (Asymptotic Optimality) Let Assump-

tions 1-3 hold. Then, the solution generated by Alg. 2 al-

most surely converges to a globally optimal design d∗ ∈
D∗, i.e.,

P
(

lim
k→∞

Yk = R∗
)

= 1.

Proof Application of Corollary 1 implies that the op-

timal set of designs D∗ ⊂ D will be sampled infinitely

often. Let j ∈ N+ denote the jth occurrence of sampling

any arbitrary optimal design d∗ ∈ D∗ and let Ij denote

the number of iterations that the RRT algorithm is ex-

ecuted for. Note that by the procedure used to increase

the number of RRT iterations by i∆ ∈ N+ (Alg. 2) after

each sampled design, we have that Ij + 1 ≤ Ij+1 for all

j and that 1 ≤ I1.

For each occurrence of sampling an optimal design

d∗ ∈ D, a random approximation of the reachable goal

percentage is generated by running the RRT algorithm

for Ij iterations. Let Ĝj(d∗) and R̂j(d
∗) =

|Ĝj(d∗)|
|G| de-

note the approximation of GoalRegionsReachable(d∗)

and R(d∗) for the jth sampled optimal design respec-

tively. For any arbitrary ε ∈ R+, let Aj denote the

event |R̂j(d∗)−R∗| ≥ ε for each j. Note that event Aj
is equivalent to the event that the RRT algorithm fails

to find a collision-free path to at least one goal region

g ∈ G∗ \ Ĝj(d∗) within Ij iterations. Thus, we have

P (Aj) = P (∃g ∈ G∗ \ Ĝj(d∗))

≤
∑
g∈G∗

P (g ∈ G∗ \ Ĝj(d∗))

≤
∑
g∈G∗

ae−bIj

= |G∗|ae−bIj ,

for some constants a, b, where the first inequality is by

the union bound and the second by RRT’s exponential

decay of the probability of failure to find a path after

Ij iterations [24,20].
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Consider the sum of the probabilities of Aj over all

j:

∞∑
j=1

P (Aj) ≤
∞∑
j=1

|G∗|ae−bIj

≤
∞∑
j=1

|G∗|ae−bj

=
|G∗|a
eb − 1

<∞.

By the Borel-Cantelli Lemma we have that

P
(

lim sup
j→∞

Aj

)
= 0,

that is, the probability that Aj occurs infinitely often

is 0. This implies that

P
(

lim inf
j→∞

|R̂j(d∗)−R∗| < ε

)
= 1,

which is precisely the definition of R̂j(d
∗)

a.s.→ R∗.

Thus, with probability 1, at least one optimal de-

sign d∗ ∈ D∗ will be sampled and evaluated accurately

as the number of optimization iterations of Alg. 2 ap-

proaches infinity. Since the best solution found thus far

is cached in Alg. 2, it follows that Yk
a.s.→ R∗. ut

Corollary 2 The design optimization procedure is asymp-

totically optimal with respect to the objective of reaching

as many goal regions as possible with the robot’s end-

effector, i.e., Alg. 2 is asymptotically optimal for the

choice of reachability function f : D×Q×Kreach →W
with Kreach = kend, defined as the mapping

f(d,q,k) 7→ Shape(d,q,k).

Proof Observing that Kreach = kend is compact and f

is continuous (since Shape is continuous), and applying

theorem 1 yields the result.

6 Results

We apply our design optimization algorithm to two dis-

tinct robots: (i) a serial manipulator and (ii) a concen-

tric tube robot, a tentacle-like robot designed for min-

imally invasive medical procedures. In particular, we

consider the design objective of maximizing the reach-

ability of the robot’s end effector to the specified goal

regions, i.e., we define Kreach = kend and f : D × Q ×
Kreach →W as the mapping

f(d,q,k) 7→ Shape(d,q,k),

for all d ∈ D,q ∈ Q,k ∈ Kreach.

We assess the performance of our method (ASA+MP)

in computing designs with high reachable goal percent-

age and compare its computational efficiency and re-

sults with the following variants of our method and

other state-of-the-art design optimization algorithms.

– NM+G : The Nelder-Mead optimization algorithm

is used instead of ASA for sampling designs. For

evaluation of the reachable goal percentage, a grid-

based approach is used instead of motion planning;

the configuration space is discretized into a grid and

the robot configuration at each grid point is evalu-

ated to determine if it is collision-free and reaches a

goal region [5].

– NM+MP : Nelder-Mead is used for optimizing the

design. In contrast to prior work using Nelder-Mead

[5], we use motion planning using the same number

of initial and additional RRT iterations as our algo-

rithm to approximate the reachable goal percentage

of candidate designs.

– ASA+G : In this simplified form of our approach, we

use ASA to sample designs, but we use the grid ap-

proach (as described in NM+G) to evaluate reach-

able goal percentage for a candidate design.

– RRT of RRTs: An RRT-based algorithm is run both

in the design space [39] and in the configuration

space for estimating reachable goal percentage.

We emphasize that the grid-based algorithms (ASA+G

and NM+G) only consider final configurations when

evaluating reachable goal percentage during design op-

timization. This implies that grid-based evaluations gen-

erate upper bounds on the ground-truth reachable goal

percentage, since the actual motion of the device from

its start configuration to a goal region is not consid-

ered, and no motion may be feasible due to obstacles.

In our results graphs, we do not display this upper

bound; instead, we run a post-processing step (that is

not counted towards method computation time) and es-

timate the reachable goal percentage of each returned

design by running the RRT algorithm for 300,000 iter-

ations.

We implemented all design optimization algorithms

in C++. The experiments were conducted on a PC with

two 2.40 GHz Intel Xeon E5620 processors (8 cores to-

tal) and 12 GB RAM.

6.1 Design Optimization of a Serial Manipulator in 2D

We consider the design optimization of a serial manip-

ulator with 4 revolute joints and 4 straight links op-

erating in a 2D environment. The configuration space

of the robot is defined by the angles of the four links,
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Example Instance 1 Example Instance 2 Example Instance 3

Optimal
design

Generic
design

Fig. 2 First row: Example configurations of robot designs (where the links are colored green, cyan, magenta, and orange)
computed by our algorithm for three randomly generated 2D environments containing obstacles (red) and a grid of goal regions
colored green for grid cells reachable using the optimal design and blue for unreachable cells. Second row: In contrast to optimal
designs, generic (i.e., randomly generated) robot designs operating in the same three scenarios are unable to reach the goal
regions.
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Fig. 3 The performance over time of the design optimization
methods for a 4-link serial manipulator. The plot shows the
reachable goal percentage of the best design found thus far
with respect to computation time, averaged over 40 random-
ized problem instances.

i.e., Q ⊂ (S1)4. We define a robot’s design space as the

length of each of the four links, thus, D ⊂ R4. We eval-

uated each design optimization method on 40 random-

ized problem instances. For each instance, we randomly

generated between 4 and 8 rectangular or right trian-

gular obstacles with sides of random length and a set of

100 goal regions arranged in a regular grid and placed

randomly in the workspace. The robot’s start configura-

tion q0 was fixed as 0 for all instances and the robot’s

base position was randomly placed so that the robot

was collision-free. Fig. 2 depicts three examples of the

problem instances.

Fig. 3 shows the reachable goal percentage (aver-

aged over the 40 problem instances) achieved by each
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Fig. 4 Plot of the reachable goal percentage over computa-
tion time for each design optimization method run 10 times
for the problem instance in Fig. 2 (right column).

design optimization algorithm as a function of compu-

tation time. The robot design generated by our algo-

rithm is capable of reaching a significantly higher per-

centage of the goal regions compared to the designs

found by the other algorithms.

Fig. 4 depicts the performance of each design op-

timization algorithm for a single scenario, specifically

Example Instance 3 in Fig. 2. Each line is an aver-

age over 10 runs of the corresponding algorithm. We

note the methods that use grid-based evaluation of the

objective function are not guaranteed to improve over

time since ignoring motion planning implies they are

optimizing a potentially incorrect approximation of the

objective function. Our method improves the design in

an asymptotically optimal manner.
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Fig. 5 The reachable goal percentage over computation time
for optimizing the design of n-link manipulators, for various
values of n. The results are averaged across 10 different prob-
lem instances.

Our results indicate that our approach for blending

ASA for searching the design space and motion plan-

ning for design evaluation helps in attaining computa-

tional efficiency and escapes local optima via asymp-

totic optimality.

We also demonstrate the scalability of our method

in simulation by optimizing the design parameters of an

n = 2, . . . , 6-link serial manipulator respectively over

an allotted computation time of 4 hours per trial. We

also consider the performance of our algorithm in more

difficult, from a motion planning standpoint, problem

instances where the number of workspace obstacles the

prior experimental setting for the n-link manipulator.

For each problem instance we randomly generated be-

tween 6 to 10 obstacles.

Fig. 5 depicts the performance of our algorithm with

respect to different values for the dimensionality of the

design space. The results confirm the intuition that

when the number of links is small, e.g., n = 2, the

robot’s shape is not sufficiently flexible to maneuver

around the obstacles in the environment to reach goal

regions. On the other hand, when the number of links

is relatively large, e.g., n = 6, the robot’s initial config-

uration may be in collision, e.g., with other links, the

boundary of the workspace, or obstacles, which makes it

more difficult for the robot to follow collision-free paths

from the initial configuration, causing an increase in the

computation time needed for design optimization.

6.2 Design Optimization of a Concentric Tube Robot

We next apply our design optimization algorithm to

a concentric tube robot [10,12], a medical robot com-

posed of nested nitinol tubes that can be rotated and

translated independently to change the shape of the

entire robot and achieve tentacle-like motion. Unlike

Fig. 6 A concentric tube robot (composed of cyan, yellow,
and magenta tubes) has the potential to reach clinical goal
regions (green and blue voxels) within the lung for early-stage
lung cancer diagnosis. The figure shows the robot with an
appropriate design reaching a point (green sphere) in one of
the goal regions (shown as blue).

0 50 100 150 200 250 300 350
Computation Time (minutes)

0

20

40

60

80

100

R
e

a
c
h

a
b

le
 G

o
a

l 
P

e
rc

e
n

ta
g

e

ASA+MP

ASA+G

NM+MP

NM+G

RRT-of-RRTs

Fig. 7 The reachable goal percentage over computation time
for the concentric tube robot scenario. The results are aver-
aged across 40 different problem instances, each with ran-
domly selected goal regions in the right lung.

traditional medical instruments that are constrained to

straight-line paths, these robots are capable of curv-

ing around anatomical obstacles, e.g., blood vessels, to

reach clinical targets in a safe, minimally-invasive man-

ner.

We consider in simulation a concentric tube robot

with 3 tubes. In configuration space, each tube adds

two degrees of freedom (since each tube can be inde-

pendently inserted and rotated), resulting in a 6 di-

mensional configuration space, i.e., Q ⊂ (S1)3 × R3.

The curvilinear shapes that the robot can achieve are

highly dependent on the physical specifications of the

robot’s tubes, i.e., its design. In this study, each tube of

the concentric tube robot is described by (i) the length

of its straight section, (ii) the length of its pre-curved
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section, and (iii) the curvature of its pre-curved section.

Thus, for our 3-tube robot the design space is 9 dimen-

sional, i.e., D ⊂ R9. To evaluate the robot’s shape given

its configuration, we use an accurate mechanics-based

kinematic model to account for the elastic and torsional

interactions between the tubes [35].

Fig. 6 illustrates a potential medical application of

these devices for biopsy of suspicious nodules in the

lung for early-stage lung cancer diagnosis. The concen-

tric tube robot is deployed near the base of the primary

bronchus of the right human lung using a rigid bron-

choscope with the objective of reaching a clinical tar-

get for biopsy. We discretized the interior volume of the

right human lung into 4156 equally-sized cubic voxels

each with volume ≈ 0.7 cm3. For each trial, a subset

of 8 contiguous voxels (i.e., goal regions) was randomly

chosen to represent subregions of a clinical target that

should be biopsied.

The results averaged over 40 trials are shown in

Fig. 7. The results for this scenario follow a similar

trend as the results obtained from the 4-link serial ma-

nipulator scenario. In particular, the figure illustrates

our algorithm’s effectiveness in finding a design with

high reachable goal percentage and its tendency to ef-

ficiently improve the solution over the allotted compu-

tation time without being trapped in local optima.

7 Conclusion

We presented a design optimization algorithm appli-

cable to a wide class of robots whose shapes can be

modeled via a continuous mapping from a compact set

and design objectives that satisfy a mild continuity con-

dition. The algorithm integrates a sampling-based mo-

tion planner in the configuration space with stochastic

search in the design space to efficiently compute de-

signs that maximize reachability to user-specified goal

regions in the workspace. We proved the asymptotic op-

timality of our algorithm and demonstrated its compu-

tational efficiency in simulated scenarios involving serial

manipulators and concentric tube robots for medical

procedures.

In future work, we plan to consider a mixture of con-

tinuous and discrete design parameters and generalize

our definition of goal regions to consider goal configura-

tions and end effector poses. We also plan to physically

implement the designs computed by our method and

conduct experiments in testbeds based on clinically-

relevant scenarios, such as lung biopsies and neuro-

surgery. Since the shape-set or 3D-printed robots may

not precisely match our method’s output, we plan to

consider design uncertainty in design optimization.
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