
Closed-Loop Global Motion Planning for
Reactive Execution of Learned Tasks

Chris Bowen and Ron Alterovitz

Abstract— We present a motion planning approach for per-
forming a learned task while avoiding obstacles and reacting to
the movement of task-relevant objects. We employ a closed-loop
sampling-based motion planner that acquires new sensor infor-
mation, generates new collision-free plans that are based on a
learned task model, and replans at an average rate of more than
10 times per second for a 7-DOF manipulator. The task model
is learned from expert demonstrations prior to task execution
and is represented as a hidden Markov model. During task
execution, our motion planner quickly searches in the Cartesian
product of the task model and a probabilistic roadmap for a
plan with features most similar to the demonstrations given the
locations of the task-relevant objects. We improve the replan
rate by using a fast bidirectional search and by biasing the
sampling distribution using information from the learned task
model to construct high-quality roadmaps. We illustrate the
efficacy of our approach by performing a simulated navigation
task with a 2D point robot and a physical powder transfer task
with the Baxter robot.

I. INTRODUCTION

Robotic manipulators have the potential to assist peo-
ple with a variety of routine tasks in both homes and
workplaces. A key challenge for autonomously completing
tasks in environments where people live and work is that
objects in the environment are often not static—objects may
move independently or be moved by people. A second key
challenge is that many tasks must be performed in a manner
that enforces constraints that humans are aware of from
context and intuition; for example, the constraint that a glass
of water must be kept approximately level when being carried
in order to avoid spilling the water. A third key challenge is
that homes and workspaces are often cluttered with obstacles,
and these obstacles must be avoided to safely perform a task.

In this paper, we present a motion planning approach that
addresses these challenges by using a learned task model and
executing in a closed-loop manner, enabling the robot to be
responsive to the movement of task-relevant objects in the
environment while avoiding stationary obstacles. To learn
a task model, our method requires a set of expert demon-
strations, which can be performed in a static environment
with no obstacles present. If the task-relevant objects are
in different locations in different demonstrations, then the
learner can generalize the task model to new locations. Once
the task is learned, our motion planner can be executed in
new environments with novel obstacles and can adjust to

This research was supported in part by the National Science Foundation
(NSF) under awards IIS-1117127 and IIS-1149965.

Chris Bowen and Ron Alterovitz are with the Department of Computer
Science, The University of North Carolina at Chapel Hill, NC, USA
{cbbowen,ron}@cs.unc.edu

Fig. 1. As the Baxter robot performs the learned task of transferring powder
from the yellow bucket to the green bowl using the blue spoon, a person
moves the green bowl. Our method automatically replans in a closed-loop
manner, enabling the robot to avoid obstacles and perform the learned task
even when task-relevant objects are moved mid-task.

the movement of task-relevant objects as the task is being
performed.

Based on prior work [1], we consider a task model
consisting of a sequence of probability distributions over
the configuration of the robot given the state of the envi-
ronment. Specifically, we consider features defined by both
the configuration of the robot and the position of the end-
effector relative to task-relevant objects (e.g., the bowl in the
powder transfer task in Fig. 1). We learn not only the average
values of these features over time, but their variances,
under the assumption that more consistent features in the
demonstrations should similarly be reproduced consistently

during execution. For instance, in the powder transfer task
in Fig. 1, the orientation of the spoon is likely to have been
consistently level in the demonstrations during the time that
the expert was transferring powder.

During execution, our motion planner uses these distribu-
tions to define a cost function which is minimized by an
interactive-rate sampling-based planner. The planner finds
solutions that approach global optimality, in contrast to
approaches that only guarantee local optimality and may
become caught in the basin of attraction of a bad solution.
We search for plans in a roadmap defined by the Cartesian
product of the learned task model, represented as a hidden
Markov model, and a probabilistic roadmap over the robot’s
configuration space. To consider the movement of task-
relevant objects, we continuously replan by updating the
roadmap edges and costs and then searching for a new
plan. This replanning approach computes plans that avoid
stationary obstacles while explicitly considering the motion
of task-relevant objects.

The robot replans in real-time, averaging more than 10
plans per second in our experiments, by leveraging informa-
tion in the task model and using appropriate data structures
and algorithms. First, we employ a sampling distribution
biased toward low-cost regions of configuration space to
produce a small, high-quality roadmap. Second, we use a
parallel bidirectional search over an implicit graph combined
with lazy computation to quickly and globally search for
optimal plans.

Our approach differs from prior work by incorporating
learning from demonstrations, obstacle avoidance, and global
sampling-based replanning in a unified method. We apply our
method to both a simulated scenario and to the Baxter robot.

II. RELATED WORK

Sampling-based methods have been highly successful for
computing feasible (and optimal) motion plans for a wide
variety of robots, including manipulators with many degrees
of freedom [2], [3], [4]. While most sampling-based motion
planners that consider optimality aim to minimize metrics
such as Euclidean distance in the workspace or configura-
tion space, some methods have investigated incorporating
more general task-based cost functions. Several approaches
are based on rapidly exploring random trees (RRTs) [2],
a highly successful sampling-based method for comput-
ing feasible, obstacle-avoiding trajectories. Transition-based
RRT (T-RRT) [5] biases expansion of an RRT to low cost
regions of the configuration space cost map, and Mainprice
et al. used T-RRT to generate natural motions based on a
predefined cost map for human robot interaction [6]. RRTs
have also been used in conjunction with analytically-defined
task constraints [7] and with symbolic representations of
manipulation strategies [8]. Recent sampling-based motion
planners have also investigated integrating motion constraints
and properties learned from demonstrations. Claasens ex-
tended RRT to sample only inside a user-specified number
of standard deviations of a mean demonstrated trajectory [9],
Berenson et al. integrated local optimization with an RRT

to find low-cost paths over cost maps [10], Scholz et al.
incorporated gradient descent into an RRT to locally optimize
a specified objective function [11], and Şucan and Chita
investigated sampling strategies that enforce constraints [12].
Finally, RRTs have been used for replanning when the envi-
ronment changes [13], [14], [15]. However, plans produced
by RRT methods are almost surely suboptimal, even as
computation time approaches infinity.

We employ an asymptotically optimal sampling-based
motion planner, meaning the computed plan is guaranteed
to approach a globally optimal plan (based on the given cost
metric) as computation time is allowed to increase. Kara-
man and Frazzoli proposed asymptotically optimal motion
planning algorithms such as RRG and PRM* that guarantee
asymptotic optimality [4]. Asymptotically optimal motion
planners avoid the suboptimal plans resulting from local
minima that can occur when using potential field methods
[3] or resulting from sampling-based planners not designed
for asymptotic optimality like RRT [4]. Related work has
investigated asymptotically optimal planners that balance
exploration and refinement [16], asymptotic near optimal
planners using smaller roadmaps [17], the near-optimality
of solutions in finite time [18], and anytime solution opti-
mization [19].

Our method integrates a learned hidden Markov model
(HMM) representing a task with a sampling-based motion
planner to guarantee asymptotic optimality. HMMs have
previously been used for motion generation (e.g. [20], [21]),
but prior approaches, unlike our proposed method, do not si-
multaneously guarantee global optimality while enabling fast
replanning. A number of methods learn high level tasks from
demonstrations (e.g., [22]). For execution, these methods
may use visual servoing in conjunction with subtask-specific
motion planners [23]. Our method differs in that we learn the
motions of these subtasks rather than learning a high level
task and explicitly specifying subtasks. Dynamical systems
have been used to learn motions from demonstrations, e.g.
[24], [25], and [26]. Such systems have also been extended
to avoid obstacles in [27], but this approach retains no notion
of global optimality.

III. METHOD OVERVIEW

A. Problem Statement

Let Q ⊆ Rd be the d-dimensional configuration space
of the robot. Let Qfree ⊆ Q denote the subspace of the
configuration space for which the robot is not in collision
with an obstacle in the current execution environment. Let
q ∈ Q denote a configuration of the robot. We assume
the robot is capable of sensing the positions of L task-
relevant objects, called landmarks (such as the green bowl in
Fig. 1). We also assume the robot is holonomic with position-
controlled joints and that obstacles in the environment (in
contrast to task-relevant objects) do not move.

During execution (described in Sec. IV), our objective
is to compute a trajectory Φ in the robot’s configuration
space from a start configuration qstart ∈ Qfree to a goal
configuration qgoal ∈ Qfree such that the trajectory (1)

Planning

Roadmap

Sensing

RobotLandmarks Obstacles

Learned Task Model

Demonstrations

Le
a
rn

in
g

E
xe

cu
tio

n

Fig. 2. General overview of the components of the system, with expert
input shown in green, task learning shown in blue, execution shown in red,
and environment shown in yellow. Note that the task model does not depend
on the environment and so need only be learned once per task. It can then be
used for execution across many environments. All arrows indicate execution
flow and solid arrows indicate data flow.

avoids obstacles in the robot’s current environment and (2)
moves relative to the task-relevant objects in a manner that
successfully accomplishes the task.

To address this challenge, our approach consists of two
major phases: learning a task model from a set of demon-
strations followed by task performance in the execution
environment. Note that the task model is not tied to a specific
environment, so it only needs to be learned once per task. It
can then be used for execution across many environments.
Fig. 2 illustrates an overview of the approach.

During the learning phase, the user provides demonstra-
tions of a task class. These demonstrations can be per-
formed with no obstacles present, and the environment in
each demonstration can be static. As introduced in [1] and
summarized in Sec. III-B, we use statistical methods to learn
a task model, which can be mapped to new environments
with previously unseen obstacles and in which task-relevant
objects may be in different locations.

In the execution phase, presented in Sec. IV, the robot
first senses its environment to collect sufficient information
to perform collision detection and to compute costs in the
current environment based on the learned task model. The
robot then computes a collision-free motion plan based on
the learned costs. We then enter the loop shown in red in
Fig. 2; the robot executes the current plan while, in a closed-
loop manner, replanning based on the learned costs as task-
relevant objects might move in the environment.

B. Learned Task Model

To learn a task, we consider a reformulation of the method
originally presented in [1], wherein a task was learned from a
set of demonstrations of a human kinesthetically guiding the
robot through the task. For each demonstration, we record a
sequence of configurations evenly-spaced in time as well as
an annotation a that encodes the positions of task-relevant
objects during the demonstration. We then time-align the
demonstrations and use them to estimate a sequence of
multivariate Gaussian distributions N (µi,Σi) in a motion

s1

N (µ1,Σ1)

p1,1
p1,2

s2

N (µ2,Σ2)

p2,2
p2,3

s3

N (µ3,Σ3)

p3,3

Fig. 3. Hidden Markov model with 3 states and Gaussian distributed
observations.

feature space consisting of the robot’s configuration and
end-effector position relative to task-relevant objects in the
environment.

In this paper, for ease of integration with a constantly
updating motion planning roadmap, we reformulate this
approach as learning a hidden Markov model (HMM) with a
restricted structure (see Fig. 3). We assume the model has S
sequential states wherein each state si has nonzero transition
probabilities only to itself and the next state si+1. This
induces a linear order structure to the model corresponding to
time. As such, we refer to these states as time steps. For our
experiments, we let the observed outputs in each state si be
distributed according to a multivariate Gaussian distribution
N (µi,Σi) in motion feature space.

This learned model will be used to compute a cost function
for motion planning during task execution. The cost function
is parameterized by the annotation a, which will vary across
execution environments as well as vary during execution
when a task-relevant object moves. The cost function [1] is
defined such that a trajectory which minimizes it, maximizes
the likelihood in the learned model, and thereby should
successfully perform the task in the execution environment
with high probability.

IV. CLOSED-LOOP REPLANNING WITH LEARNED COSTS

For motion planning, our method first builds a spatiotem-
poral roadmap in which the edge costs are set based on the
learned task model. During task execution, we efficiently
update the roadmap edge costs and perform searches on the
roadmap in a closed-loop manner to account for the move-
ment of task-relevant objects. We now describe each of the
components of the closed-loop motion planning approach.

A. Spatiotemporal Roadmap

We employ a variation of a probabilistic roadmap (PRM)
[28], which we chose to adapt because it produces globally
optimal plans to within the roadmap resolution. A roadmap
is a graph in which vertices represent the states of the robot
and edges represent feasible local plans between these states.
In the simplest case these local plans are just straight line
trajectories in configuration space.

A traditional roadmap is undirected and is constructed as
follows. First, N configurations {q0,q1, ...,qN} are ran-
domly sampled from Qfree via rejection sampling. Then,
edges are constructed between all configurations qi and qj

for which ‖qi − qj‖D < ε if a feasible local plan can be

Time

Configuration
Space

s3
p3,3

s1
p1,1

p1,2
s2
p2,2

p2,3

Fig. 4. Cartesian product of the configuration space roadmap and the graph of the learned task model.

found. We construct exactly such a roadmap, which we will
call the spatial roadmap.

To accommodate dependence on the time step in the
learned task, we also define a temporal roadmap. This is
not a roadmap in the traditional sense, but rather the graph
representation of the Markov chain implied by the task
model, where time steps correspond to vertices in the graph.
Because the transitions in the Markov chain are directed, the
temporal roadmap is a directed graph.

Finally, we define a spatiotemporal roadmap, a directed
graph that combines the information in the spatial and tem-
poral roadmaps. The vertices of the spatiotemporal roadmap
are each defined by a pair composed of a vertex from the
spatial roadmap and a vertex from the temporal roadmap. The
set of edges are given by the vertex-wise union of edges in
the spatial and temporal roadmaps (see Fig. 4). Put another
way, the spatiotemporal roadmap is the Cartesian product
of the spatial and temporal roadmaps. Such a roadmap is
necessary because the state of the robot needs to incorporate
the task progress (see Sec. V-A).

This full roadmap can be quite large, but because of its
regular structure, it need not be explicitly constructed. Rather,
we can implicitly traverse it by keeping track of vertices in
the constituent roadmaps. This approach has multiple advan-
tages over directly sampling in the product of configuration
space and time. First, because the full roadmap does not need
to be explicitly constructed, it uses less memory and exhibits
better locality of reference. Second, because every vertex
and edge in the spatial roadmap is effectively duplicated
across all time steps, fewer collision queries are required.
Finally, small additions to either constituent roadmap are
immediately reflected as larger additions to the full roadmap
without the need to perform an explicit construction, making
updates fast. As an aside, we also experimented with the
tensor product of the roadmaps, which while more natural,
produced many more edges and adversely impacted search
performance.

B. Cost Function

In a traditional roadmap, the goal is to find shortest
paths, so edges in the roadmap are assigned costs based
on the lengths of the local plans they represent. We wish

to find paths which are most likely to successfully perform
the task, so choose edge costs based on the learned task
model. Specifically, we define a notion of cost which, when
minimized, maximizes probability of successfully executing
the task as defined by the learned model.

By the construction of the Cartesian product, each edge is
from a configuration q and time step s to another configu-
ration q′ and time step s′. Our definition of edge cost will
be based on the negative log probability of entering state
s′ and observing configuration q′ after being in state s and
observing configuration q, which simplifies as follows:

− log(P(q′, s′ | q, s)) =

− log(P(q′ | s′) · P(s′ | s)) = (Markov Property)
− log P(q′ | s′)− log P(s′ | s).

We consider the log probability because the shortest path
algorithm will minimize the sum of the edge costs while
joint probabilities (under independence assumptions) are
multiplicative, as seen above. We then negate the result to
formulate the problem as a minimization with non-negative
edge costs. However, recall that edges in the spatial roadmap
represent local plans. So for such edges, we use the line
integral of the negative log probability along the local plan.

C. Real-Time Execution
During execution, we update the roadmap using the latest

sensed information and query the roadmap in a closed-loop
manner. Hence, the method updates with high frequency the
path being executed. In Fig. 5 we show a schematic of the
computation during real-time execution.

Updates to the roadmap take two forms, expansion and
re-evaluation.

Expansion occurs both initially and in each replanning
cycle to add waypoints to the spatial roadmap. During
expansion we first numerically compute a locally optimal
trajectory, analogous to the guiding path in [1], based on
the sensed locations of the task-relevant objects. This locally
optimal trajectory may intersect obstacles. We then sample
a fixed number of new configurations from a mixture of
Gaussian distributions each with mean on this locally optimal
trajectory and covariances estimated from the demonstra-
tions. These new configurations are checked for collision

Sensing

Roadmap
Evaluation

Roadmap
Expansion

Path
Search

Landmark
Positions

Edge
Costs

Spatial
Roadmap

Continuous
Execution

Landmarks

Motors

Obstacles

Software

World

Fig. 5. Flow of computation during real-time execution.

with obstacles and are added to the spatial roadmap as in
a traditional PRM. This biased sampling allows the planner
to produce high-quality plans without expending much com-
putational effort in regions of configuration space which the
robot is highly unlikely to traverse. Expansion after initial
roadmap construction is important because the sampling
density used initially may not be sufficient to produce high-
quality plans, particularly when the environment changes
dramatically.

Re-evaluation occurs in each replanning cycle to update
roadmap edge costs and compute an updated path. At the
beginning of each replanning cycle, the positions of the
task-relevant objects are obtained from the sensor. Because
the edge costs depend on these positions, the edge costs
must be recomputed when the task-relevant objects move.
We recompute the edge costs lazily while searching for the
shortest path in the roadmap from the current configuration to
the goal. We compute the shortest path using a bidirectional
search based on Dijkstra’s algorithm. Together, the lazy cost
evaluation and bidirectional search greatly reduce the portion
of the roadmap which must be explored and the number of
edge costs which must be computed. Furthermore, this search
(and thus cost evaluation) is parallelized across two cores,
cutting computation time nearly in half.

Unlike many methods for real-time planning or control,
our approach is globally optimal in that it selects the true
minimal cost path present in the roadmap. Consequently, our
method may consider multiple homotopic classes of paths
and can avoid being trapped in a local minimum. Because
we use a PRM, our approach is also asymptotically optimal
in the sense that the plans produced approach optimality as
the size of the roadmap used increases. We do not use the
shrinking edge connection radius of PRM* [4] because the
roadmap only grows slowly after initial construction, so a
good fixed connection distance can be determined offline,
prior to execution. While we only build and expand the
roadmap for short periods of time, asymptotic optimality
of the planner allows the method to find better solutions,

(a) Example
Demonstrations

(b) Execution with
Spatial Roadmap

(c) Execution Using Our Method
Environment 1 Environment 2 Environment 3

Fig. 6. (a) Three of the 7 demonstrations for the simulated navigation task
as well as the beacon and goal sampling regions. The demonstrated paths
start at a fixed location, move counter-clockwise around a specified beacon,
and then move to a specified goal. (b) Execution without the temporal
roadmap and using a temporal alignment heuristic [1] with obstacles (red),
a beacon (yellow), and a goal (green). (c) Three executed trajectories (solid
blue) and planned trajectories (dashed blue) as computed by our method,
before (top) and after (bottom) the beacon was moved.

approaching the global optimum, as computational power
increases.

Our execution is real-time in the sense that we impose
a firm deadline on the planner, from sensing to execution,
to ensure the robot is never acting on sensor information
that is excessively out of date. A missed deadline manifests
as a pause while the robot waits for a new plan to be sent
to the motors for actuation. If the replanning cycle finishes
before the deadline, then the next replanning cycle begins
immediately. In our implementation, we used a deadline of
250 milliseconds, although in our experiments we were on
average able to achieve replanning cycles substantially faster
than the deadline.

V. RESULTS

To show the applicability of the method, we ran it on a
simulated 2D navigation task and on a physical task using
the Baxter robot [29]. All computation was performed using
a C++ implementation on a PC with two 2.0 GHz Intel Xeon
E5-2620 processors.

A. Simulated Navigation Task

We consider a point robot that is to navigate on a 2D plane
by starting at a fixed location, moving counter-clockwise
completely around a beacon without intersecting it, and

Fig. 7. Two example executions for the powder transfer task, from a bucket (yellow) to a bowl (green).

Fig. 8. Environment for transfer task with the permissible region for both
the green bowl and paper towel roll highlighted in blue.

then stopping at a specified goal. In the learning phase, the
feature space consisted of the absolute position of the robot
and its position relative to two landmarks, corresponding
to the beacon and intended goal position specified by the
annotations. For the demonstrations, we manually performed
7 successful trajectories with beacon locations randomly
sampled from the yellow region and goal locations randomly
sampled from the green region in Fig. 6(a).

In the execution phase, the test environment included 32
circular obstacles which were not present in the demonstra-
tions. We randomly generated 15 test cases with different
obstacle locations and with randomly chosen beacon and goal
locations (sampled independently from the locations chosen
for demonstrations but using the same regions). A quarter
of the way through the trajectory (approximately when the
robot begins encircling the beacon) we moved the beacon
10% of the width of the environment in a random direction.

The method successfully accomplished the task in all 15
test cases. Several representative executions are shown in
Fig. 6(c). Due to the density of the obstacles, in most of
the test cases it was necessary for the method to change
homotopic classes when replanning, illustrating the need for
global planning rather than local refinement of plans.

Success Avg. Avg.
Rate Pauses Update

Full Method 80% 0 89 ms
No Bidirectional Search 50% 16 174 ms
No Obstacle Avoidance 10% 0 85 ms

No Biased Sampling 0% – –
No Replanning 0% – –

Fig. 9. Success rates, average pauses, and average update periods for
variants of the method. The additional failures without bidirectional search
were due to insufficient reaction time when the bowl was moved, and
without biased sampling, the method was unable to find successful plans
even after 5 minutes of roadmap computation time.

This task also illustrates the need to incorporate task
progress into the robot state. Planning in configuration space
alone is not sufficient for correct execution because a suc-
cessful path necessarily crosses itself. Using the temporal
alignment heuristic from [1] skips an important portion of
the task as shown in Fig. 6(b).

B. Powder Transfer Task

In the second task, the goal was to scoop powder from
a small bucket and transfer it into a bowl using a spoon.
To successfully perform the task, the robot was required to
transfer the powder without spilling while avoiding obstacles
in the environment. The feature space consisted of the
configuration of the robot and the position of the spoon
tip relative to the bowl, for a total feature dimension of
10. We provided the method with 11 successful kinesthetic
demonstrations from which to learn.

At the beginning of execution the green bowl was ran-
domly placed on the reachable surface of the table and
tracked using a Kinect sensor. For obstacles, we affixed a
hanging lamp shade above the table and randomly placed
a vertical roll of paper towels on the table (see Fig. 8).
If a random obstacle location intersected the bowl, we

rejected the location and sampled a new location. During task
execution, when the robot positioned the spoon above the
bowl but before it began dumping the contents, we quickly
moved the bowl to a different random location.

In 8 out of the 10 tests, the method was successful. In
the 2 failed tests, the method was unable to find a feasible
trajectory to the bowl due to a narrow passage created by
the obstacles, and so executed trajectories that failed to
properly transfer the powder. We show the average update
period, defined as the total time required to perform sensing
and replan, for different variants of the method along with
success rate and pauses due to missed deadlines in Fig. 9.

This task, as well as another task, are shown in the video
associated with this paper.

VI. CONCLUSION

We presented a closed-loop motion planning approach that
is applicable to execution of learned tasks in which task-
relevant objects move during execution. We illustrated the
efficacy of the approach for a simulated navigation task and
for a physical powder transfer task with the Baxter robot.

In future work, we plan to consider the problem of
extrapolating the position of the task-relevant objects and
incorporating the noise in these predictions to produce better
plans and to accommodate occlusion. We will also inves-
tigate methods to make replanning faster, including using
bidirectional A* with a task-specific admissible heuristic.
The additional performance could enable us to effectively
handle faster moving objects. It could also enable us to
extend the method to handle not only moving task-relevant
objects but also moving obstacles. We also plan to consider
generalizations of the learned task model to consider more
complex tasks that require integration of task and motion
planning.

ACKNOWLEDGMENT

The authors thank Jenny Womack, Sachin Patil, Pierre
Berthet-Rayne, Wen Sun, and Christophe Cordero for their
input.

REFERENCES

[1] G. Ye and R. Alterovitz, “Demonstration-guided motion planning,” in
Int. Symp. Robotics Research (ISRR), Aug. 2011.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[3] H. Choset, K. M. Lynch, S. A. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, Jun. 2011.

[5] L. Jaillet, J. Cortes, and T. Simeon, “Sampling-based path planning on
configuration-space costmaps,” IEEE Trans. Robotics, vol. 26, no. 4,
pp. 635–646, Aug. 2010.

[6] J. Mainprice, E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami, and
T. Siméon, “Planning human-aware motions using a sampling-based
costmap planner,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), May 2011, pp. 5012–5017.

[7] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Trans. Robotics, vol. 26, no. 3, pp. 576–584,
Jun. 2010.

[8] R. Jakel, S. R. Schmidt-Rohr, M. Losch, and R. Dillmann, “Repre-
sentation and constrained planning of manipulation strategies in the
context of programming by demonstration,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), May 2010, pp. 162–169.

[9] J. Claassens, “An RRT-based path planner for use in trajectory
imitation,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 2010, pp. 3090–3095.

[10] D. Berenson, T. Simeon, and S. S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), May 2011, pp. 4561–4568.

[11] J. Scholz and M. Stilman, “Combining motion planning and optimiza-
tion for flexible robot manipulation,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Dec. 2010, pp. 80–85.

[12] I. A. Şucan and S. Chitta, “Motion planning with constraints using
configuration space approximations,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Oct. 2012, pp. 1904–1910.

[13] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), May 2006,
pp. 1243–1248.

[14] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), Apr. 2007, pp. 1603–1609.

[15] K. Hauser, “On responsiveness, safety, and completeness in real-time
motion planning,” Autonomous Robots, vol. 32, no. 1, pp. 35–48, Sep.
2011.

[16] R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring
roadmaps: Weighing exploration vs. refinement in optimal motion
planning,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 2011, pp. 3706–3712.

[17] J. D. Marble and K. E. Bekris, “Asymptotically near optimal planning
with probabilistic roadmap spanners,” IEEE Trans. Robotics, vol. 29,
no. 2, pp. 432–444, Apr. 2013.

[18] A. Dobson and K. E. Bekris, “A study on the finite-time near-
optimality properties of sampling-based motion planners,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Nov. 2013,
pp. 1236 – 1241.

[19] R. Luna, I. A. Şucan, M. Moll, and L. E. Kavraki, “Anytime solution
optimization for sampling-based motion planning,” in IEEE Int. Conf.
Robotics and Automation (ICRA), May 2013, pp. 5068 – 5074.

[20] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard, “Handling
of multiple constraints and motion alternatives in a robot program-
ming by demonstration framework,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Dec. 2009, pp. 582–588.

[21] D. Kulic, W. Takano, and Y. Nakamura, “Incremental learning, clus-
tering and hierarchy formation of whole body motion patterns using
adaptive hidden Markov chains,” Int. J. Robotics Research, vol. 27,
no. 7, pp. 761–784, Jul. 2008.

[22] S. Benson, “Inductive learning of reactive action models,” in Proc. Int.
Conf. Machine Learning (ICML), 1995, pp. 47–54.

[23] S. Ekvall and D. Kragic, “Robot learning from demonstration: A task-
level planning approach,” Int. J. Advanced Robotic Systems, vol. 5,
no. 7, pp. 223–234, 2008.

[24] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. Robotics, vol. 24, no. 6, pp. 1463–1467, Dec. 2008.

[25] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Sep. 2011,
pp. 365–371.

[26] A. Shukla and A. Billard, “Coupled dynamical system based arm-hand
grasping model for learning fast adaptation strategies,” Robotics and
Autonomous Systems, vol. 60, no. 3, pp. 424–440, Mar. 2012.

[27] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, May 2012.

[28] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, Aug. 1996.

[29] Rethink Robotics, “Baxter Research Robot,”
http://www.rethinkrobotics.com/products/baxter-research-robot/,
2013.

