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Abstract—In unstructured environments in people’s homes and
workspaces, robots executing a task may need to avoid obstacles
while satisfying task motion constraints, e.g., keeping a plate of
food level to avoid spills or properly orienting a finger to push
a button. We introduce a sampling-based method for computing
motion plans that are collision-free and minimize a cost metric
that encodes task motion constraints. Our time-dependent cost
metric, learned from a set of demonstrations, encodes features
of a task’s motion that are consistent across the demonstrations
and, hence, are likely required to successfully execute the task.
Our sampling-based motion planner uses the learned cost met-
ric to compute plans that simultaneously avoid obstacles and
satisfy task constraints. The motion planner is asymptotically
optimal and minimizes the Mahalanobis distance between the
planned trajectory and the distribution of demonstrations in a
feature space parameterized by the locations of task-relevant
objects. The motion planner also leverages the distribution of the
demonstrations to significantly reduce plan computation time.
We demonstrate the method’s effectiveness and speed using a
small humanoid robot performing tasks requiring both obstacle
avoidance and satisfaction of learned task constraints.

Note to Practitioners—Motivated by the desire to enable robots
to autonomously operate in cluttered home and workplace
environments, this paper presents an approach for intuitively
training a robot in a manner that enables it to repeat the task in
novel scenarios and in the presence of unforeseen obstacles in the
environment. Based on user-provided demonstrations of the task,
our method learns features of the task that are consistent across
the demonstrations and that we expect should be repeated by
the robot when performing the task. We next present an efficient
algorithm for planning robot motions to perform the task based
on the learned features while avoiding obstacles. We demonstrate
the effectiveness of our motion planner for scenarios requiring
transferring a powder and pushing a button in environments with
obstacles, and we plan to extend our results to more complex
tasks in the future.

Index Terms—Motion and path planning, assistive robots

I. INTRODUCTION

ROBOTS have the potential to assist people with a variety
of routine tasks in people’s homes and workplaces. From

assisting a person with a disability with an activity of daily
living (such as cooking or cleaning) to assisting a small busi-
ness owner with a small-scale manufacturing task, assistive
robots need to be capable of planning and executing motions
in unstructured environments that may contain unforeseen
obstacles. Further complicating the planning challenge, many
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Fig. 1. Tasks in many domains require both avoiding obstacles and also
satisfying task constraints. Transferring powder (e.g., instant coffee, sugar,
mixes) by spoon requires avoiding obstacles while keeping the spoon level
to avoid spills (left). Pushing a (red) button requires that the robot avoid
obstacles while ensuring the finger advances at an appropriate orientation
when approaching the button (right).

assistive tasks involve significant constraints on motion that
humans are aware of from context and intuition. For example,
when carrying a plate of food, a person knows that tilting the
plate sideways, while feasible, is undesirable because it will
spill the food. In order to autonomously and safely accomplish
many assistive tasks, a robot must be aware of such task
constraints and must plan and execute motions that consider
these constraints while avoiding obstacles.

Sampling-based motion planners for robotic manipulators
have become highly successful at efficiently computing fea-
sible plans that avoid obstacles [1]. However, these motion
planners typically require that the task constraints (such as
keeping a plate level) be manually programmed, which can be
tedious and requires a programmer with domain knowledge. In
contrast, methods based on learning from demonstrations are
highly effective at automatically learning task constraints and
controllers from demonstrations by people who may not have
programming expertise. In this paper, we integrate ideas from
demonstration-based learning into a sampling-based motion
planner with asymptotic optimality.

We present demonstration-guided motion planning
(DGMP), a framework for robots to compute motion plans
that (1) avoid obstacles in unstructured environments and (2)
aim to satisfy learned features of the motion that are required
for the task to be successfully accomplished. We focus on
tasks in static environments that do not require dynamics and
in which task success depends on the relative pose of the
robot’s end effector to objects in the environment.

At the core of DGMP is an asymptotically optimal
sampling-based motion planner that computes motion plans
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that are both collision-free and globally minimize a cost metric
that encodes learned features of the motion. The motivation
for our cost metric is that if the robot is shown multiple
demonstrations of a task in various settings, features of the
demonstrations that are consistent across all the demonstra-
tions are likely to be critical to task success, while features
that vary substantially across the demonstrations are likely
unimportant. For example, when transferring instant coffee
powder from a container to a cup (see Fig. 1), the feature
of the levelness of the spoon will be consistent across the
demonstrations (i.e., low variance) while the height of the
spoon from the table may vary (i.e., high variance) due to the
presence of other objects on the table. Leveraging this insight,
our method takes as input a set of kinesthetic demonstrations
in which a person holds the robot’s limbs and guides the
robot to perform the task while we record time-dependent
motion features, including the robot’s configurations and the
pose of the end effector relative to task-relevant objects in
the environment. The placement of these objects, such as the
coffee container and cup in the example above, are randomized
for each demonstration. We then apply statistical approaches
to compute a learned task model that encodes the covariances
of the motion features as a function of time.

Once the task model is learned, DGMP can be used to
autonomously execute the learned task in a static environment
in which task-relevant objects may be in different locations and
new obstacles may be present. Using the learned task model,
we define a time-dependent cost map specific to the current
environment. The cost map, defined over the robot’s configu-
ration space, considers the covariances of the motion features
across demonstrations using a Mahalanobis distance metric
and is parameterized by the locations of the task-relevant
objects. The cost map is defined such that a trajectory that
minimizes cost has the highest probability of coming from the
distribution of the demonstrations in motion feature space. We
then introduce DGPRM (demonstration-guided probabilistic
roadmap), an asymptotically optimal sampling-based motion
planner that minimizes the integral of the learned cost map
along the planned trajectory.

The novelty of DGPRM comes from the fact that it com-
bines into a single motion planner multiple useful properties
when utilizing demonstration-based information. First, DG-
PRM considers time-dependent cost maps, which is important
since task constraints vary over the duration of a motion and
tasks may require being at the same configuration at different
time points of the task. Second, DGPRM provides asymptotic
optimality, meaning it finds a trajectory that avoids obstacles
in a manner that is globally optimal with respect to the learned
cost metric. Third, DGPRM introduces speedups that use the
distribution of demonstrations inherent to the learned task
model to significantly accelerate motion planning.

In this work, we provide a refined version of the results
presented at a conference [2] and incorporate several important
extensions. We also show the effectiveness of DGMP using the
Aldebaran NAO small humanoid robot [3] performing assistive
tasks in environments with never-before-seen obstacles.

II. RELATED WORK

Sampling-based methods have been highly successful for
computing feasible and optimal motion plans for a wide
variety of robots, including manipulators with many degrees of
freedom [1], [4]. While most sampling-based motion planners
aim to minimize metrics such as Euclidean distance in the
workspace or configuration space, some methods have inves-
tigated incorporating task constraints. Several approaches are
based on rapidly exploring random trees (RRTs) [1], a highly
successful method for computing feasible, obstacle-avoiding
trajectories but which does not guarantee plan optimality [4].
Transition-based RRT (T-RRT) [5] biases expansion of an RRT
to low cost regions of the configuration space cost map, and
Mainprice et al. used T-RRT to generate natural motions based
on a predefined cost map for human robot interaction [6].
RRTs have also been used in conjunction with analytically-
defined task constraints [7] and with symbolic representations
of manipulation strategies [8]. Recent sampling-based motion
planners have also investigated integrating motion constraints
and properties learned from demonstrations. Algorithms in-
clude sampling only inside a user-specified number of standard
deviations of a mean demonstrated trajectory [9], finding low-
cost paths over cost maps using local optimization [10], locally
optimizing a specified objective function using gradient de-
scent [11], and enforcing constraints using sampling strategies
[12]. Prior sampling-based motion planning approaches, unlike
our proposed method, do not simultaneously guarantee asymp-
totic optimality and allow for time-dependent task constraints.

At the heart of our method is an asymptotically optimal
sampling-based motion planner, meaning the computed plan
is guaranteed to approach a globally optimal plan (based on
the given cost metric) as computation time is allowed to
increase. Karaman and Frazzoli proposed motion planning
algorithms such as RRG and PRM* that guarantee asymptotic
optimality [4]. Asymptotically optimal motion planners avoid
the suboptimal plans resulting from local minima that can oc-
cur when using potential field methods [1] or sampling-based
planners not designed for asymptotic optimality like RRT [4].
Related work has investigated asymptotically optimal planners
that balance exploration and refinement [13], asymptotic near-
optimal planners using smaller roadmaps [14], and anytime
solution optimization [15]. Our method integrates a learned
cost metric with RRG or a PRM variant [4] to guarantee
asymptotic optimality for our learned cost metric.

Our method combines a new sampling-based motion planner
with ideas from demonstration-based learning, which has been
highly successful in enabling robots to learn task constraints
and imitate task motions [16], [17]. Our focus is not on
learning control policies for dynamic systems (e.g., [18], [19],
[20], [21]) but rather on computing robot trajectories that
avoid obstacles while satisfying learned constraints. Our aim
is globally optimal obstacle avoidance in which the robot
considers plans in all homotopic classes and selects the best
one. Prior work has investigated using search methods such
as A* or D* where cost maps or movement costs are learned
from demonstrations (e.g., [22], [23], [24], [25]), which are
highly effective for 2D, discrete state spaces but do not scale
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Fig. 2. The DGMP framework consists of a learning phase, which is
performed once per task, and an execution phase, which involves planning the
motion and is performed each time the task is executed in a new environment.

well to higher degree of freedom systems like robotic arms.
An alternative approach is to locally avoid obstacles, which

works well for some applications but does not guarantee global
optimality. Potential field approaches have been applied to
dynamic movement primitives [26] and a Gaussian mixture
model (GMM) [27] to locally avoid obstacles, but potential
fields require setting parameters for obstacle repulsion and can
result in a robot being trapped in local minima, especially in
obstacle concavities or narrow passages [1].

Another approach is to include the obstacles in the demon-
strations. Calinon et al. introduced a GMM and Gaussian
mixture regression (GMR) approach to learn motions relative
to task-relevant objects and obstacles that are present in both
the demonstration and execution environments [28], [29]. This
approach represents a task using a hidden Markov model
(HMM); HMM’s have been used for motion recognition (e.g.,
[30], [31], [32]) and generation (e.g., [28], [32]).

We also use an HMM; however, we use a restricted form
which permits us to build on prior work on dynamic time-
warping [18], [19] to create high quality alignments using an
expectation-maximization approach and then directly compute
means and covariances in the space of motion features. We use
this model to construct a time-dependent cost map which we
can integrate into an asymptotically optimal sampling-based
motion planner for obstacle avoidance.

III. METHOD OVERVIEW

Let Q = Rd be the d-dimensional configuration space of
the robot and Qfree ⊆ Q denote the set of configurations in
which the robot is not in collision with an obstacle. We assume
the robot has also sensed the poses of L task-relevant objects
(such as the cup and instant coffee container in Fig. 1(left)),
which are stored in a vector a ∈ SE(3)L, and that these objects
remain stationary as the task is performed. We also assume the
robot is holonomic with position-controlled joints, and we do
not consider dynamics. Our objective is to compute a trajectory
Φ ∈ [0, 1] → Qfree from the robot’s initial configuration
qstart ∈ Qfree to a goal configuration qgoal ∈ Qfree such
that the robot successfully accomplishes the task.

To address this challenge, we develop an approach for
demonstration-guided motion planning (DGMP) that consists
of two major phases: learning and execution. Fig. 2 illustrates
an overview of the approach. The approach requires as input

a set of user-provided demonstrations of the task. During
the cost metric learning phase, the robot learns from the
demonstrations a time-dependent cost metric for the task that
considers the robot’s configuration and its motion relative
to task-relevant objects. The learning phase need only be
performed once per task. When the robot is in a new envi-
ronment, the robot enters the motion planning phase in which
it computes a path that minimizes the learned cost metric,
which captures aspects of the demonstrated motions that are
required to perform the task.

During the DGMP learning phase, presented in Sec. IV,
we first extract from each demonstration a set of motion
features that quantify properties of the motion as a function
of time, such as joint angles or the location of the end
effector with respect to a task-relevant object. After time-
aligning the demonstrations, we compute statistics on the
motion features, including their means and variances, over
time across the demonstrations. The lower the variance of
a motion feature across demonstrations at a given time, the
higher the consistency of the demonstrations with respect to
that feature, which implies the mean value of a motion feature
should be followed more closely when performing the task. In
contrast, high variance motion features likely do not need to
be closely reproduced during execution.

To compute a cost metric, we will leverage the intuition
above regarding the increased importance of motion features
with low variances. Formally, we consider the demonstrations
(as encoded in the space of motion features) to be samples
from the distribution of trajectories that will succeed at the
task. We then model the quality of a candidate motion plan
in the execution environment as the likelihood that it, too, is
a sample from this distribution of successful trajectories and
define a cost metric such that better plans have lower costs.

In the DGMP execution phase, presented in Sec. V, the
robot first senses its environment to collect sufficient infor-
mation to evaluate the learned cost metric and to perform
collision detection. We then execute our new asymptotically
optimal motion planning algorithm, DGPRM, to search for a
feasible, collision-free motion plan that minimizes the learned
cost metric, and hence reproduces the demonstrator’s intent as
closely as possible in the new environment.

IV. LEARNING THE TIME-DEPENDENT COST METRIC

In the first phase of DGMP, we learn a time-dependent
cost metric for a task based on the robot’s configurations
and motions relative to task-relevant objects in a set of
demonstrations. The cost metric encodes the spatial variations
and temporal ordering of the task. The robot will later use this
cost metric when planning its motions to complete the task
in new environments where task-relevant objects may have
moved and new obstacles may be present.

Rather than directly learning constraints, we learn a cost
metric, an approach that offers two advantages. First, a cost
metric better models how we observe humans perform a task.
A human holding a spoon to transfer powder typically holds
the spoon roughly level with no explicit, hard bounds on
deviations from level. Second, the use of a cost function
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Fig. 3. The DGMP learning phase lifts demonstrations into a feature space,
iteratively time aligns the demonstrations, and learns a cost metric in the
feature space.

allows us to learn relatively complex tasks from a small
number of demonstrations. While it is hard to differentiate the
relevant similarities across demonstrations from the infinitely
many irrelevant coincidences without the extensive semantic
knowledge that a human would have, it is relatively easy
to measure similarity between a candidate trajectory and the
demonstrations (as is required for cost metric learning). We
show an overview of the learning phase in Fig. 3.

A. Inputs and Outputs of Cost Metric Learning

As input to the DGMP learning phase, a human controls
the robot to perform M demonstrations of the task. For each
demonstration, the robot’s joints are placed in a passive mode
while a human manually moves the robot’s limbs to perform
the task and indicates where the task begins and ends. We
assume the robot has encoders at every joint, allowing the
robot to sense its own motion and record its configuration (e.g.,
a vector of its joint angles) as a function of time. During each
demonstration m ∈ {1, . . . ,M}, we record a time sequence of
the robot’s configuration {qm,s}Sm

s=1, where Sm is the length
of the demonstration and qm,s is the configuration at time s.
For each demonstration, we also require an annotation am ∈
SE(3)L identifying the poses of L task-relevant objects in the
environment (e.g., the coffee container and cup in the task
shown in Fig. 1), which could be identified either manually by
the human or automatically using computer vision algorithms.
We denote the poses in demonstration m of the task-relevant
objects {(Rm,l,om,l) | m = 1, . . . ,M ; l = 1, . . . , L}, where
Rm,l is the rotation matrix and om,l is the translation vector of
landmark l with respect to a global frame. Because the objects
are task-relevant, they should be present in all demonstrations
and necessarily must be present in the execution environment.

The output of the DGMP learning phase is a time dependent
cost metric c(q, t,a) for robot configuration q at time t for
an execution environment with annotations a, which may be
different from any of the values of a in the demonstrations.

B. Extracting Motion Features from Demonstrations

Since each demonstration is a successful task execution,
we expect that the task constraints for a problem are satisfied

in each demonstration. To enable learning of these task con-
straints, we consider a set of motion features that are designed
to help identify aspects of the robot motions that are consistent
across demonstrations. These motion features may depend
on both the configuration and annotation. We denote motion
feature j for time step s of demonstration m as y

(j)
m,s. Inspired

by results from Calinon et al. [28], [29], for our experiments
we consider two classes of motion features:
• A configuration motion feature is the robot’s configu-

ration at a particular time. When there are redundant
degrees of freedom, this data enables learning natural
motions that are lost when only considering end-effector
motions. We define this motion feature as

y(0)
m,s = qm,s.

• A landmark-based motion feature is a vector of the
coordinate of a point on the robot x′ (e.g., end-effector,
grasped object) relative to a landmark on a task-relevant
object in the environment (e.g., cup, button). This mo-
tion feature facilitates task execution for cases in which
task-relevant objects may be located in different places
across demonstrations and during execution. We define
the motion feature relative to landmark l as

y(l)
m,s = R−1

m,l(x
′
m,s − om,l).

Because we compute these motion features from the same
information, namely the configuration and annotation, it is
convenient to consider both types of motion features in the
context of a unifying joint motion feature space Y along
with some general function f ∈ (Q,SE(3)L) → Y which
lifts a configuration q into the motion feature space given
some annotation a. Such a function can represent multiple
motion features simply by computing each motion feature
y(j) individually and concatenating them into a single higher-
dimensional motion feature vector y = f(q,a).

Similarly, we may consider a trajectory of motion fea-
tures for each demonstration which we denote by Ym =
{ym,1,ym,2, . . . ,ym,Sm

} where ym,s = f(qm,s,am). Con-
structing these motion features is the sole purpose of the
demonstrations. The remainder of the cost metric learning
method operates exclusively in motion feature space.

C. Statistical Modeling of the Motion Features

Our objective is to identify consistent aspects of the motion
feature trajectories across demonstrations in order to create a
cost metric, parameterized by the locations of the task-relevant
objects, which will guide the motion planner.

To achieve this, we learn a statistical model consisting of
T multivariate Gaussian distributions N (µt,Σt) in motion
feature space, each of which models the distribution of mo-
tion feature vectors of the demonstrations at some time step
t ∈ {1, . . . , T} in the task. Hence, our model of the task
is parameterized by the mean µt and the covariance matrix
Σt of motion feature vectors for each time step t. These
may be considered as output distributions in a simple HMM
with T sequential states, wherein each state t has nonzero
and equal transition probabilities only to itself and the next
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state t+ 1. This induces a linear order structure to the HMM
corresponding to time. The problem then is to find the output
distributions most likely to have generated the demonstrations.

To learn these distributions, we must find the correct mono-
tonic mapping, or alignment, between each of the observed
configurations in the demonstrations and the T time steps.
This corresponds to determining the walk in the HMM which
generated the demonstration. This is necessary because the
demonstrations are of different lengths and may perform parts
of the task more or less quickly. For instance, the demonstra-
tions of the powder transfer task mentioned previously varied
from 21 to 32 seconds in length. Estimating to which state
of the task a given observed configuration in a demonstration
corresponds requires constructing a model of the task, which
is exactly why we needed such an alignment in the first place.
We resolve this cyclic dependence by applying an expectation-
maximization (EM) algorithm, a common approach to learning
models of processes with latent variables.

First we choose a random initial alignment for each demon-
stration to the time steps in the task. Next we estimate each
distribution N (µt,Σt) using the sample mean and covariance
of the motion feature vectors which are aligned to time
step t (weighted inversely proportional to the number of
observed configurations aligned to time step t from the same
demonstration). This is the E step of the EM algorithm. Next
we find, for each demonstration, the walk in the estimated
HMM most likely to have generated the demonstration using
dynamic time warping (DTW) [33]. This is the M step of the
EM algorithm. Finally, if the algorithm has not yet converged,
we go back to the E step. Because EM algorithms can become
caught in local minima, we repeat the entire method a number
of times with different randomized initial alignments and use
the resulting alignment with maximum likelihood.

More formally, let Ym,t denote the set of motion feature
vectors in demonstration m which are aligned to time step
t. The E step computes the weighted sample mean and
covariance at each time step from Ym,t as follows:

w(t)
m ←

1

|Ym,t|
, µt ←

1

M

M∑
m=1

w(t)
m

∑
y∈Ym,t

y

 ,

Σt ←
M

M2 −
∑
w

(t)
m

M∑
m=1

w(t)
m

∑
y∈Ym,t

(y − µt)(y − µt)T
.

The M step uses DTW to align each of the demonstrations to
the distributions learned in the E step, using a cost function
which maximizes the likelihood that the motion feature vectors
aligned to time step t in the demonstration came from the dis-
tribution N (µt,Σt). The formulation of this cost is discussed
in more detail in Sec. IV-D. Our results show that using an
EM approach, rather than only DTW as is commonly done in
prior work, is crucial for effectively learning the task.

Accurately estimating the covariance matrices for the Gaus-
sian distribution at each time step requires that we have a
sufficient number of demonstrations. The number of demon-
strations should exceed the dimension of the motion feature
space. Intuitively, if the number of the demonstrations is
smaller, then one or more time steps could have too few motion

feature vectors aligned to it, resulting in a singular matrix. In
this case, we are only learning in a subspace of the motion
feature space. We note that this lower bound is empirically
tight for some problems, as shown in the results section.

It is possible to reduce the number of required demonstra-
tions by approximating the motion features as independent.
This corresponds to computing the covariance matrix of each
configuration or landmark-based motion feature independently,
resulting in Σt being a block diagonal matrix. This reduces
the number of required demonstrations to be one plus the
dimension of the largest motion feature vector. We used this
approach in our experiments with the NAO robot in Sec.VI
and were able to effectively capture relevant task constraints.

D. Cost Metric

To formally define the cost metric, we consider the demon-
strations to be samples from the distribution of trajectories
that will succeed at the task. Given an annotation â for the
environment, we define the cost of a candidate trajectory in
the environment based on how likely it is a sample from the
distribution of successful trajectories.

With this approach, we wish the probability of the trajectory
being generated by the task model to be maximized when
the cost metric is minimized. At a given time step t, with a
configuration q this probability is given by

P(q, t | µt,Σt, â) = NΣte
− 1

2 (f(q,â)−µt)
T Σ−1

t (f(q,â)−µt)

where NΣt
is a normalization factor. However, operating in

the space of probabilities is numerically inconvenient, so we
instead consider the log probability as is common practice in
the machine learning literature, yielding

log P(q, t | µt,Σt, â) =

log(NΣt)−
1

2
(f(q, â)− µt)TΣ−1

t (f(q, â)− µt).

When performing time alignment, it is this value which we
maximize in the M step, but in the case of the cost metric,
it can be simplified further. First by observing that the log
normalization term is constant for a given time step and thus
has constant contribution to the total cost of a trajectory, we
can safely ignore it. Finally, we drop the − 1

2 constant factor.
This changes the sign, which is desirable because we wish
to formulate the problem as a minimization rather than a
maximization. The final cost map is thus

c(q, t, â) = (f(q, â)− µt)TΣ−1
t (f(q, â)− µt). (1)

We note that this is simply the squared Mahalanobis distance
[34] in feature space from q to the configurations observed in
the demonstrations at time t. The cost metric we will minimize
is the integral over this cost map.

In the following discussion we will drop the dependence on
µ, Σ, and â from the notation for the sake of brevity.

This log probability formulation has desirable properties,
the most notable of which is composition. The sum of the
log probabilities is the log of the product of the probabilities,
log P(q, t) + log P(q′, t′) = log(P(q, t)P(q′, t′)). We first
assume that q and q′ are independent as will be the case when
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Fig. 4. The DGMP execution phase uses output from the learning phase to
construct a cost metric for the current execution evironment and then computes
a motion plan that minimizes the cost metric.

they are drawn independently from a sampling distribution by
a sampling-based motion planner. We then assume indepen-
dence between time steps, which while not generally true, is a
convenient simplifying assumption. Under these independence
assumptions, P(q, t)P(q′, t′) is the joint probability given the
task model, so log P(q, t) + log P(q′, t′) = log P(q, t,q′, t′).
This is important because our motion planner will find a
trajectory which minimizes the integral of this cost map,
which under these assumptions is equivalent to maximizing
the probability of the entire trajectory in our learned model.

We note that computing the likelihood given the model
requires that we compute Σ−1

t , which exists only if Σt is
non-singular. Cases where Σt is singular will arise, e.g., when
multiple landmarks are fixed relative to each other. To over-
come this in our implementation we employ a pseudoinverse,
specifically the Moore-Penrose pseudoinverse. This approach
has the desirable property of effectively collapsing multiple
landmarks fixed relative to each other into a single landmark.

The learned cost map depends on knowing â, which con-
tains the locations of the task-relevant objects. Hence, the cost
metric is used after the robot senses the locations of the task-
relevant objects in the execution environment. We describe in
Sec. V how the learned cost metric is used in motion planning.

V. MOTION PLANNING USING THE LEARNED COST
METRIC

In the DGMP execution phase, the robot computes a fea-
sible, collision-free motion plan in configuration space that
minimizes the learned cost metric. We show an overview of
the execution phase in Fig. 4.

A. Inputs and Outputs of Motion Planning

The DGMP execution phase requires as input an annotation
â describing the new environment and a model of the obstacles
that must be avoided. In our experiments, we used color and
depth data from a Microsoft Kinect to automatically create
models of obstacles as described in Sec. VI. The method
also requires as input the robot’s start and goal configura-
tions qstart,qgoal ∈ Qfree and the time-dependent cost map

c ∈ (Q, [0, 1]) → R+ as given by Eq. 1. For notational
convenience, we scale time to be between 0 and 1 and drop
the annotation parameter from c since for motion planning this
is always the observed execution environment â.

We say Φ ∈ [0, 1] → Q is a trajectory if and only if
it is Lipschitz continuous. That is ∃KΦ ∈ R+, ∀t1, t2 ∈
[0, 1], |Φ(t2)− Φ(t1)| < KΦ(|t2 − t1|). We say a trajectory
Φ is feasible if and only if ∀t ∈ [0, 1], Φ(t) ∈ Qfree,
Φ(0) = qstart, and Φ(1) = qgoal. Let C(Φ) =

∫ 1

0
c(Φ(t), t) dt

denote the cost of a trajectory Φ. As discussed previously, our
choice of cost metric has the advantageous property that the
sum of the costs is the log likelihood in the joint distribution
under the assumption of independent time steps. This is the
discrete analogue of the integral formulation of C used by the
motion planner.

Our objective is to compute a feasible trajectory Φ∗ that
minimizes cost C(Φ∗).

B. Sampling-Based Planning for the Learned Cost Metric
We introduce DGPRM, a new sampling-based motion plan-

ner for computing plans that minimize the DGMP time-
dependent cost metric. We employ a variation of a probabilistic
roadmap (PRM) [35], because of its asymptotic optimality
(using the sPRM variant) [4] and ease of parallelization,
which we leverage. We also integrate DGMP with an RRG-
based roadmap [4], which performs roughly equivalently when
used with our DGMP-based extensions as discussed in the
results. Our sampling-based motion planner guarantees that, as
computation time is allowed to increase, all homotopic classes
of plans will be considered and an optimal plan approached.

PRM methods construct a graph (called a roadmap) where
each vertex (called a waypoint) corresponds to a configuration
of the robot and each edge corresponds to a local plan
for navigating from the configuration of one waypoint to
another. This graph is constructed by repeatedly sampling
a configuration from Q and adding a new waypoint to the
roadmap corresponding to this configuration if it is collision-
free. When a new waypoint is added to the roadmap, edges are
constructed between it and other waypoints which are nearby
in configuration space and connectable by collision-free paths.
As the number of waypoints currently in the roadmap in-
creases, the roadmap becomes a denser approximation of the
collision-free configuration space.

To accommodate the time-dependency in the cost metric, we
associate a time value with each waypoint and use a directed
graph for the roadmap to forbid traversing edges backwards
in time. We choose the time value associated with a given
waypoint by maintaining a partitioning of the time span [0, 1]
which is initially just a single partition consisting of the entire
time span T = {[0, 1]}. These partitions can be thought of as
layers within the roadmap. We also choose some initial value
∆qmax. We then alternate between two phases, expansion
and splitting. Intuitively, these increase sampling density in
configuration space and in time respectively. Throughout the
process, we track the size of the largest partition, which we
denote ∆tmax.

This iterative refinement of time partitions provides mul-
tiple benefits. The first and most notable of which is the
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t = 3
t = 2

t = 1

Fig. 5. An example roadmap for a 2D configuration space with 3 time
partitions. A path is shown in green.

capability to handle time-dependent cost metrics as present
in DGMP. The second benefit of this approach is that we do
not require numeric integration of cost along roadmap edges,
which typically requires an integration step size parameter.
This approach can result in “missing” a small, high-cost region
if this parameter is not properly tuned. In contrast, as DGPRM
progresses, the maximum step size in both configuration space
and time automatically decrease in such a way that the error in
computing the cost metric for a trajectory approaches 0 under
certain reasonable assumptions (see Sec. V-D).

DGPRM begins by adding the start and goal configurations
to the roadmap. Due to the layers, multiple waypoints may
correspond to the same configuration. We say that the start
waypoint is the waypoint corresponding to the start configu-
ration in the first time partition, and the goal waypoint is the
waypoint corresponding to the goal configuration in the last
time partition. We let N denote the number of configurations
currently in the roadmap, so initially N = 2.

At any time, we may search the roadmap for the shortest
path from the start waypoint to the goal waypoint. Interpolat-
ing linearly along this path yields a feasible trajectory, which
is taken as an approximation of Φ∗. An illustrative roadmap
is shown in Fig. 5.

1) Expansion: In the expansion phase, ∆N additional
configurations are sampled from Q. For each configuration,
if the configuration is collision free we add a waypoint to the
roadmap in each time partition for the configuration. As in
other PRM methods, edges lying entirely in Qfree are then
added between nearby waypoints. In this case, nearby means
nearby in both space and time. Specifically, edges are only
added if the waypoint configurations are within ∆qmax and
the time values are within adjacent partitions. The edges are
also directional, and oriented forward in time.

2) Splitting: In the splitting phase, we first choose a time
value t at which to split. The only restriction on this choice
is that to approach optimality in the limit, the size of every
partition must approach 0. That is, ∆tmax → 0. To perform
the split, all the vertices in the time partition containing t
are duplicated, including their incoming and outgoing edges.
All of these vertices are then assigned new time values in
one of the two new partitions. Next, ∆qmax is updated based
on the new value of ∆tmax, and edges longer than ∆qmax

or that span multiple time partitions are pruned from the
roadmap. Edges which violate the temporal ordering property

are reoriented. Finally, all affected edge costs are recomputed.
This method frequently requires that we measure distance

in configuration space, both for connecting nearby waypoints
and for pruning long edges. While any distance metric could
be used here, a metric which better approximates the actual
cost of traversing an edge improves performance. In DGMP
we use the Mahalanobis distance in motion feature space with
the covariance matrix of all the motion feature vectors from
all the demonstrations.

C. Demonstration-Guided Speedups for Motion Planning

While not strictly necessary for motion planning, we com-
pute a guiding path, the trajectory which minimizes C in the
absence of obstacles. The configuration at time t along the
guiding path is given by

q̂t = argmin
q∈Q

(f(q, â)− µt)TΣ−1
t (f(q, â)− µt). (2)

Efficient methods exist for locally approximating this compu-
tation [36]. Computing the guiding path is fast and can be
used to speed up computation time in several ways.

First, we implemented seeding which adds configurations
along the guiding path to the initial roadmap. These waypoints
serve as local minima in regions of configuration space that
are collision-free.

Second, we use the guiding path to bias configuration space
sampling to reduce computation time in environments with
obstacles. In the expansion step of DGPRM, rather than using
uniform sampling from Q, we sample configurations based
on the learned model, sampling more densely in regions of
the configuration space that are more likely to result in high
quality plans. Specifically, we sample q from a Gaussian in
configuration space with mean at the guiding path configura-
tion at that time step q̂t. The covariance matrix is chosen to
be the sample covariance of all the configurations across all
the demonstrations.

In addition to the speedups based on the demonstrations,
we note that our use of layers provides a speedup for prob-
lems in static environments with time dependence. When a
configuration is added to the roadmap, we add corresponding
waypoints and edges to all layers but only need to check for
collisions once, which reduces computation time compared to
prior approaches that sample in the product of configuration
space and time and require collision checking for each sample.

D. Analysis

In this section, we will provide an outline of a proof
showing that, under certain assumptions and for suitable
choices of parameters, the method is guaranteed to converge
to an optimal trajectory with probability 1 as computation
time increases. For the full proofs of the lemmas and theorem
below, see the included supplementary material (also available
at http://robotics.cs.unc.edu/DGMP2).

To simplify the analysis, we consider a modified version of
the method in which a new roadmap is constructed at each
iteration and time partitions are evenly distributed. In this
section we assume that a minimal feasible trajectory Φ∗ exists.
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Assumption 1. The cost map c is Lipschitz continuous.
∃Kc ∈ R+, ∀q1,q2 ∈ Q, ∀t1, t2 ∈ [0, 1],
|c(q2, t2)− c(q1, t1)| < Kc max(|q1 − q2| , |t2 − t1|).

We note that the DGMP cost map satisfies this assumption
if the function f which lifts from configuration space to
feature space is Lipschitz continuous and none of the learned
covariance matrices are singular.

Where π = (q1, t1, . . . ,qk, tk) is a path in the roadmap
defined by the sequence of configurations (qi) at times (ti),
let Φπ be the trajectory constructed by linearly interpolat-
ing between configurations in π. Specifically, let Φπ(t) =

qi +
t− ti

ti+1 − ti
(qi+1 − qi) where ti ≤ t ≤ ti+1. By

construction of the roadmap, all ti are distinct and ∀i <
k, |qi+1 − qi| < ∆qmax so Φπ is Lipschitz continuous with

KΦ =
∆qmax

min
1≤i<k

ti+1 − ti
. Furthermore, edges are only added

to the roadmap if the line segment between the waypoints
is contained in Qfree, so Φπ is feasible. For a given path
π = (q1, t1, . . . ,qk, tk), the weight of a path, denoted W (π),
is given by

∑k
i=1(ti+1 − ti)c(qi, ti).

Lemma 1. For every path π in the roadmap, W (π) ap-
proaches C(Φπ) as ∆tmax and ∆qmax approach 0 where
∆tmax denotes the length of the longest time partition and
∆qmax denotes the longest distance between adjacent way-
points in the roadmap.

The proof of this lemma follows fairly simply from the
observation that the Lipschitz continuity of c implies that
as both ∆qmax and ∆tmax approach 0, the rectangle rule
becomes arbitrarily accurate.

Assumption 2. The distribution from which samples are
drawn has probability density function D ∈ Q → R+ which is
everywhere nonzero. Furthermore, D is Lipschitz continuous
with constant KD.

This assumption holds for the sampling distribution de-
scribed in Sec. V-B2 if none of the learned covariance matrices
are singular.

Lemma 2. For any error bound ε > 0, there exists a choice
of N as a function of ε, ∆tmax, and ∆qmax such that the
probability that there exists a path in the roadmap constructed
from N waypoints with weight less than C(Φ∗)+ε approaches
1 as ∆tmax and ∆qmax approach 0.

The proof of this result revolves around a few key observa-
tions. First, the non-zero density of the sampling distribution
implies that the probability of sampling arbitrarily close to
any configuration along Φ∗ approaches 1. Second, the Lip-
schitz continuity of c implies that as samples approach the
configurations along Φ∗, their costs approach the costs of these
configurations. Third, the Lipschitz continuity of Φ∗ implies
that as a path with sufficiently small time steps approaches
Φ∗, the cost of this path approaches the cost of Φ∗. Finally,
as shown in [4] the expansiveness of Qfree implies that the
probability that there exists a path arbitrarily close to Φ∗ in
a sufficiently-connected roadmap approaches 1 as the number

Fig. 6. Left: Three example input demonstrations (blue, violet, teal) are
shown as well as the sampling regions for the beacon (yellow) and goal
(green). Middle and right: The trajectory (blue) computed by our method for
two environments with obstacles (red), a beacon (yellow), and a goal (green).

of samples approaches infinity.

Theorem 1. As ∆qmax → 0 there will exist a path π in the
roadmap, the piecewise linear interpolation of which has cost
C(Φπ) arbitrarily close to that of the optimal trajectory with
probability 1 when N is of order Ω(kd+2) and ∆tmax → 0
asymptotically faster than ∆qmax.

Lemma 2 shows that under these conditions, the weight of
the minimum weight path π in the roadmap will approach a
cost no greater than that of optimal trajectory with probability
1, and Lemma 1 shows that this weight becomes an arbitrarily
good approximation of C(Φπ). Therefore, with probability 1,
C(Φπ) approaches C(Φ∗).

VI. RESULTS

We applied DGMP to a simulated 2D point robot and to
the Aldebaran NAO small humanoid robot [3]. In the physical
experiments, we used 6 joints of the NAO robot: 5 in the right
arm and 1 at the hip. Collision detection for motion planning
was done using Bullet [37] to detect intersections between a
cylindrical approximation of the NAO robot’s links and point
cloud data obtained from a Microsoft Kinect sensor mounted
next to the robot. All computation was performed on a PC
with two 6-core 2.0 GHz Intel Xeon E5-2620 processors.

A. Simulated 2D Navigation Task

We consider a point robot that is to navigate on a 2D
plane by starting at a fixed location, moving counter-clockwise
completely around a beacon without intersecting it, and then
stopping at a specified goal. In the learning phase, we used
one configuration feature and two landmark features corre-
sponding to the beacon and intended goal position specified
by the annotations, each of which had dimension 2. For 6
linearly independent features, the method requires at least 7
demonstrations, which we performed by manually drawing
successful trajectories. For the demonstrations, we randomly
sampled the beacon location from the yellow region and the
goal location from the green region in Fig. 6(left).

In the execution phase, the test environment included 32
circular obstacles which were not present in the demonstra-
tions. We randomly generated 20 test cases with different
obstacle locations and with randomly chosen beacon and goal
locations (sampled independently from the locations chosen
for demonstrations but using the same regions). As can be
seen in Fig. 6, the trajectories computed using our method
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consistently navigate clockwise around the beacon and reach
their intended goal. DGMP was successful in all 20 test cases
while the method was never successful when using Euclidean
time alignment, indicating that our EM-based approach is
important for learning non-trivial tasks.

B. Physical Task 1: Left-to-Right Powder Transfer Task
In the first physical task, the NAO robot used a spoon to

transfer a powder from one container to another in the presence
of obstacles as shown in Fig. 7. In our test environment, we
placed on a table an instant coffee canister, a cup, and, in
some cases, other objects to serve as obstacles. The task was
to scoop instant coffee using a spoon and transfer it to the cup
without spilling coffee or displacing any objects on the table.

We evaluated DGMP for scenarios in which the coffee
canister was always on the right side of the table and the
cup was always on the left. This is a simplified version of
the general task in which the coffee canister and cup can
be anywhere on the table, which will be discussed in Sec.
VI-C. We conducted 7 kinesthetic demonstrations for this task,
and the locations of the objects on the table were randomized
for each demonstration. We drew the positions of the coffee
canister and cup from uniform distributions based on 4 inch
line segments on the left and right sides, respectively, of the
reachable surface of the table.

In the learning phase, we used the configuration motion
feature defined by the robot’s 6 DOF as well as landmark-
based motion features based on the sensed locations of the two
task-relevant objects, the canister and cup. For the landmark-
based motion features, we considered two points on the robot’s
end effector (the spoon): the top and bottom surface of the tip
of the spoon. (We note that at least two points are required
to learn end effector orientations.) We enforced independence
between the configuration and each of the landmark-based
motion features, as described in Sec. IV-C, so that the largest
dependent block in Σ was 6×6. Other than the demonstrations,
we did not provide the method any input regarding task
constraints; e.g., we never explicitly expressed the constraint
that the spoon must be level. The learning phase took 2.5
seconds of computation time.

We then created 20 test cases in which the locations of the
coffee canister and cup were drawn randomly from the same
distribution as the demonstrations. We also placed a bottle on
the table as an obstacle at a position drawn uniformly from
the reachable surface of the table. The bottle was sufficiently
tall that it created a narrow passageway in the NAO’s feasible
configuration space when the NAO attempted to carry a level
spoon over it. A test case was considered successful if the
robot (1) scooped coffee from the canister and transferred it to
the cup without spilling, and (2) did not displace the obstacle,
canister, or cup. We considered a test case to be feasible if it
was possible for the robot to successfully accomplish the task
given its kinematic limitations. Of the 20 test cases, 4 were
not feasible due to the obstacles being too close to the coffee
canister or cup and the robot not having sufficient range of
motion. We report statistics for the 16 feasible test cases.

As shown in Fig. 8, the robot running DGMP successfully
accomplished the task in 14 of the 16 feasible test cases. The

two failures were both due to the Kinect sensor failing to prop-
erly sense the extent of the bottle. We also evaluated DGMP
using the demonstrations aligned using a simple Euclidean cost
metric in configuration space which only considers similarity
in joint angles when aligning demonstrations (as in most prior
work). Because this Euclidean cost metric does not depend
upon the task model, there is no need for EM. Our results show
that this approach is ineffective for this task and succeeded in
only 9 test cases, indicating that time-alignment that explicitly
considers the task model as in the full DGMP approach is
beneficial to task success. We also executed the guiding path
without motion planning, which resulted in only 8 successful
runs due to collision with obstacles.

C. Physical Task 2: General Powder Transfer Task

We also evaluated DGMP on a more difficult variant of
the powder transfer task in which the coffee canister and cup
were each permitted to be anywhere on the reachable surface
of the table, approximated by a rectangular region spanning
7 inches left to right and 4 inches front to back. This meant
that the robot’s motions were no longer strictly following a
left-to-right trajectory, and thus were more difficult to align.
We performed 20 new kinesthetic demonstrations with the
coffee canister and cup positions drawn uniformly from the
reachable table surface. After completing the demonstrations,
the learning phase took 2.6 seconds of computation time. We
then created 20 test cases, drawing coffee canister, cup, and
bottle obstacle positions randomly from the reachable table
surface. Of the 20 test cases, 17 were feasible.

When employing all 20 demonstrations, DGMP succeeded
in 16 of the test cases, resulting in a success rate of 94%
of the 17 feasible test cases (see Fig. 9). In the one failure
case, the obstacle was very close to both the coffee canister
and cup, which resulted in a narrow passage in the robot’s
configuration space that was too narrow for the planner to find
a feasible plan in the maximum time allotted (20 seconds).
We also evaluated the performance of DGMP for different
numbers of demonstrations. When fewer demonstrations are
used, the performance of the method degrades gracefully, with
a greater than 80% success rate even for just 7 demonstrations.

To illustrate the need for motion planning for this scenario,
we also executed the guiding path with no motion planning,
resulting in a success rate of under 60%. We also evaluated
DGMP using the demonstrations aligned using the simplified
Euclidean distance metric and achieved a success rate of 0%.
This highlights the benefit of aligning demonstrations by max-
imizing log-likelihood using our EM-based approach rather
than by using the more traditional Euclidean metric, which
fails to properly align demonstrations in which the direction of
end effector motion varies substantially across demonstrations.
A video of a NAO robot performing this task using DGMP is
available at: http://robotics.cs.unc.edu/DGMP2.

To illustrate the impact of each component of the DGMP
framework, we executed different variants of the motion
planner and plot in Fig. 10 the cost of the computed plan based
on the learned DGMP metric. Each curve is the average of 6
runs for the same randomly selected test case. As expected,
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Fig. 7. Execution of DGMP for the powder transfer task. The robot successfully keeps the spoon level while avoiding obstacles not seen in the demonstrations.
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Fig. 8. The performance of DGMP on the left-to-right powder transfer task.
We also evaluate the performance of DGMP using Euclidean time alignment
(rather than maximizing learned likelihood) and also executing the guiding
path (without sampling-based motion planning).
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Fig. 9. The performance of DGMP on the general powder transfer task when
20, 10, and 7 demonstrations are provided to the learning phase. We also
evaluated the performance of DGMP using Euclidean time alignment (rather
than maximizing learned likelihood) and the guiding path (without sampling-
based motion planning). DGMP performed better with more demonstrations,
but still exceeded an 80% success rate when only 7 demonstrations were
provided.

allowing more computation time results in lower cost plans.
As described in Sec. V, the DGMP cost metric can be used
with either PRM or RRG against which we will compare our
proposed extensions that accelerate performance by biasing
sampling based on the learned metric, seeding along the
guiding path, and incorporating layers. DGPRM and DGRRG,
which both include all the speedups, are roughly equivalent
for this application. We also show DGPRM with some of
its components removed (i.e., removing speedups gained by
layers and/or seeding). The results show that the biggest
speedup in DGPRM comes from biasing configuration samples
based on the learned cost metric during roadmap expansion.
DGPRM and DGRRG are both over 20 times faster than the
traditional PRM algorithm for plans of equivalent cost.
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Fig. 10. The cost of the best solution found as a function of roadmap planning
time for different variants of the method applied to the general powder transfer
task. Note the logarithmic scale on the vertical axis.

D. Physical Task 3: Push a Button

We also considered the task of pressing a button, where the
button may be positioned on a table, a slanted surface, or even
a vertical wall. To correctly perform the task, the robot needed
to learn how to push a button in any of these orientations
from the same set of demonstrations. Furthermore, additional
obstacles were introduced into the execution environment.

To train the method, we performed 9 demonstrations of
pressing a 3 cm diameter button. In 3 of these demonstrations,
the button was placed randomly on the reachable surface of
a table; in another 3, the button was randomly placed on
the reachable surface of a plane inclined 40 degrees; and in
the final 3, the button was randomly affixed to the reachable
surface of a vertical wall in front of the robot.

The motion features we used were the 6 joint angles of the
robot’s right arm and hip and the 3-dimensional positions of
both the hand and finger relative to the pose of the button. As
before, we enforced independence in the covariance matrix
between the configuration motion feature and each of the two
landmark-based motion features. The learning phase took 0.9
seconds of computation time.

To test the method, we considered 4 scenarios, and per-
formed 3 random tests on each for a total of 12 test cases. The
scenarios, shown in Fig. 11, included (1) placing the button
and a non-convex obstacle randomly on the reachable surface
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Fig. 11. Scenarios for the button pushing task.
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Fig. 12. The cost of the best solution found as a function of roadmap planning
time for different variants of the method applied to the button pushing task.

of the table, (2) placing a shelf over the table and placing the
button randomly on the table under the shelf, (3) placing the
button randomly on a plane inclined at 40 degrees and placing
a non-convex obstacle randomly beside the inclined plane such
that it hung over the inclined plane, and (4) placing the button
on a vertical wall and placing a tall obstacle randomly on the
surface of the table.

In Fig. 12 we show the rapid convergence of DGPRM com-
pared to regular RRG and PRM without layers or accelerations
based on the learned task model. While DGRRG did find
lower cost paths for the same number of samples, we see in
the figure that DGPRM performed better because each sample
could be generated more quickly due to greater opportunities
for parallel execution. We believe this is because the biased
sampling distribution derived from the demonstrations largely
subsumes the role of RRG’s roadmap expansion approach in
effectively biasing samples towards the relevant portions of
the configuration space.

Fig. 13 shows the execution of a DGMP plan. We con-
sidered an execution successful if it avoided obstacles and
depressed the button. DGMP succeeded in 11 of the 12 test
cases, a greater than 90% success rate. The sampling-based
motion planner was crucial to success in this task as the
guiding path was successful in only 1 of the 12 tests cases.

VII. CONCLUSION AND FUTURE WORK

We presented demonstration-guided motion planning
(DGMP), a new framework for planning motions for assis-
tive robots to perform tasks in unstructured environments
such as homes or offices. DGMP combines the strengths

Fig. 13. Execution of a DGMP plan for one of the button pushing scenarios.

of demonstration-based learning and sampling-based motion
planning to generate motion plans that (1) aim to satisfy
learned features of the motion that are required for the task
to be successfully accomplished and (2) avoid obstacles in
unstructured environments. We use kinesthetic demonstrations
and statistical modeling methods to learn a time-dependent
cost metric that encodes features of a task’s motion that are
consistent across the demonstrations and, hence, are likely
required to successfully execute the task. We formalize the
cost metric as a Mahalanobis distance between a planned
trajectory and the distribution of demonstrations in a feature
space parameterized by the locations of task-relevant ob-
jects. Our new asymptotically-optimal sampling-based motion
planner computes plans that simultaneously avoid obstacles
and asymptotically globally minimize the learned cost metric.
The planner also leverages the demonstrations to significantly
reduce motion plan computation time. We showed the effec-
tiveness of combining learning with sampling-based motion
planning on the NAO robot performing assistive tasks.

In future work, we plan to extend DGMP to work effectively
for a broader class of problems. The method currently is
designed for static execution environments; we plan to extend
it to dynamic environments with moving obstacles, which
will require real-time perception. Extensions for partial and
noisy sensing would be beneficial. Also, the method currently
is designed for tasks which can be modeled as Gaussians
in the motion feature space. We plan in future work to
consider automatic identification of relevant motion features
along with non-Gaussian distributions, which will impact both
the learning and execution phases. We will also investigate
integrating our approach with task-level planning.
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