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Asymptotically Optimal Motion Planning for Tasks
Using Learned Virtual Landmarks

Chris Bowen and Ron Alterovitz

Abstract—Utilizing appropriate landmarks in the environment
is often critical to planning a robot’s motion for a given
task. We propose a method to automatically learn task-relevant
landmarks, and incorporate the method into an asymptotically
optimal motion planner that is informed by a set of human-guided
demonstrations. Our method learns from kinesthetic demonstra-
tions a task model that is parameterized by the poses of virtual
landmarks. The approach models a task using multivariate
Gaussian distributions in a feature space that includes the robot’s
configurations and the relative positions of landmarks in the
environment. The method automatically learns virtual landmarks
that are based on linear combinations or projections of sensed
landmarks whose pose is identified using the robot’s kinematic
model and vision sensors. To compute motion plans for the task in
new environments, we parameterize the learned task model using
the virtual landmark poses and compute paths that maximally
adhere to the learned task model while avoiding obstacles. We
experimentally evaluate our approach on two manipulation tasks
using the Baxter robot in an environment with obstacles.

Index Terms—Motion and Path Planning; Probability and
Statistical Methods

I. INTRODUCTION

ANY robot manipulation tasks require planning mo-

tions relative to specific landmarks in a scene. For
example, consider the task of moving a pitcher across a
table and pouring liquid into a bowl as shown in Fig. 1.
Successfully performing this task requires properly positioning
and orienting the pitcher relative the bowl, and this relative
position and orientation changes over time during the the
task (i.e., the pitcher’s orientation is initially level and then
changes so that the liquid pours out). Implicit in performing
this example task is that the robot must be aware of certain
task-relevant landmarks, including (1) awareness that the bowl
(rather than other landmarks in the scene, e.g., the paper
towel roll) is important to the task, and (2) awareness that
the position of the spout of the pitcher (as apposed to other
landmarks on the pitcher) is most important to successfully
pouring the liquid into the bowl. Utilizing appropriate task-
relevant landmarks is often critical to successfully performing
a task.
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Fig. 1. The Baxter robot executes the liquid pouring task while avoiding
obstacles, including the paper towel roll, vase, lamp shade, and books. Our
method automatically learns task-relevant virtual landmarks, such as the
relevance of the center of the bowl and the spout of the pitcher. The method
also learns a time-dependent task model parameterized by the poses of the
virtual landmarks, which is used by a sampling-based motion planner to
compute trajectories that accomplish the task while avoiding obstacles.

In this paper we propose a method to automatically learn
task-relevant landmarks, and incorporate the method into an
existing approach for motion planning for a learned task [1],
[2]. Prior approaches for learning manipulation tasks often
assume that task-relevant landmarks are manually specified
by a user (e.g., [1], [2], [3], [4], [5]). Our new method for
automatically learning task-relevant landmarks (e.g., selecting
the bowl and pitcher’s spout in the scenario in Fig. 1) reduces
the manual human effort required for a robot to learn and
perform a task.
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Our method aims to enable a robot to perform certain
tasks in environments with obstacles by using a sampling-
based roadmap informed by a set of human-guided demon-
strations. Following the general approach of learning from
demonstrations, during a learning phase a user provides a set
of kinesthetic demonstrations of a task. In our implementation,
we learn a task model that can be used in conjunction with
a sampling-based motion planner [1]. To execute the learned
task in a new environment where task-relevant objects may
have moved, we execute an asymptotically optimal sampling-
based motion planner that plans a trajectory that maximally
adheres to the learned task model while avoiding obstacles.

The time-variant parameters of the learned task model
encode, at discrete time steps, the means and covariances of
features, including the relative positions of landmarks. Low
variance features indicate aspects of the task that are likely
important for successful performance due to their consistency
across demonstrations. Proper selection of landmarks in the
environment and on grasped objects is critical to properly
capturing the relevant means and covariances, but there are
many potential landmarks in a cluttered environment, of which
likely only a few are relevant to the task.

In this paper we propose a method to automatically learn
time-invariant parameters which specify which landmarks on
the robot and in the environment should be considered during
execution. We assume the robot, using its kinematic model and
vision system, can sense landmarks on the robot and in the
environment, such as the poses of the robot’s end-effector and
significant objects in the scene, both during the demonstrations
and during motion planning in a new environment. During
the learning phase, our method learns virtual landmarks that
are based on linear combinations or projections of sensed
landmarks.

To perform the task in a new environment with obstacles, we
build a sampling-based roadmap and use a learned task model
parameterized by the virtual landmarks to compute costs for
edges in the roadmap. The costs are computed such that a path
that minimizes cost best adheres to the learned task model
while avoiding obstacles, including ones not present in the
demonstrations. We execute the motion planner in a closed-
loop manner, enabling the robot to execute the learned task in
new environments while quickly reacting to the movement of
sensed landmarks found to be relevant to the task.

We demonstrate the efficacy of our approach on two tasks
with the Baxter robot [6] in an environment with obstacles, a
powder transfer task and a liquid pouring task. Our method im-
proved the success rate compared to arbitrary or hand-selected
landmarks by automatically selecting virtual landmarks.

II. RELATED WORK

The problem of learning a task from human demonstrations
has been studied extensively, and many different approaches
have been considered [7], [8].

In [1], we presented an approach based on a user-specified
feature space which incorporated the position of a landmark
on the robot’s end-effector (or grasped object) relative to
landmarks in the environment. We extend that approach with

the addition of learned time-invariant parameters on which the
feature space is parameterized to reduce the amount of human-
provided information required. Specifically, these parameters
encode the definitions of landmark which were manually-
specified previously. The feature space then incorporates the
relative positions of these virtual landmarks.

One class of approaches for learning from demonstration are
regression methods which directly learn a reference trajectory.
This is the approach taken in [9], [10], and [3] using Gaussian
Mixture Regression in a feature space. The feature space
used in these works inspired the one used in [1], [2], and
this paper. The learning approach we present in this paper
could be adapted to learn virtual landmarks to establish coor-
dinate systems in the context of Gaussian Mixture Regression
methods as well. In [11], this was extended with a feature
space selection step from a finite pool of predefined features.
Instead, we effective incorporate feature space selection in
the learning as part of the optimization problem permitting
more general feature spaces to be learned. Additionally, these
approaches generally assume that the robot can always traverse
the reference trajectory and are thus not directly applicable
when new obstacles not present in the demonstrations are
introduced.

A second class of approaches learn a control policy, map-
ping robot states to control inputs. Because of the dimension-
ality of this space, the class of policies must be restricted.
In [12], [13], and [4] for example, the policies are restricted
to nonlinear equations of a specific form the authors call
Dynamic Movement Primitives, which are adapted to avoid
obstacles locally, but not globally (i.e., by considering multiple
homotopic classes of paths).

Finally, our approach can be contextualized in the class
of approaches which learn a mapping from robot state to a
cost (or reward). This can be thought of as a refinement of
the second class of approaches, wherein the control policy
learned is defined by the cost it optimizes. This is the approach
taken in inverse reinforcement learning (e.g., [14], [15], [16],
[17]), wherein this cost is assumed to be a parameterized
function of some features of the robot state. In [5], a time-
dependent multivariate Gaussian distribution is learned, and
the Mahalanobis distance is taken as the cost. This approach
was extended in [18] to incorporate feature space selection
from a finite pool by using all the possible features and
enforcing sparsity during the learning phase.

In this paper, we learn a probabilistic model based on a
Hidden Markov Model. HMMs have previously been applied
to motion recognition (e.g., [19], [20], [21]) and generation
(e.g., [9], [21]). By framing the learning method as an opti-
mization problem, we can simultaneously learn time-variant
and time-invariant parameters of the task, including what
virtual landmarks are most relevant to the task and produce
the most consistent model. We then derive a cost which,
when minimized, maximizes the probability that the path was
generated by the learned model.

Cost-oriented approaches, like ours, are more amenable
to global obstacle avoidance because asymptotically-optimal
sampling-based planners like PRM*, RRG, and RRT* [22]
are readily available, including variants designed to effectively
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explore low-cost regions (e.g., [23], [24]). Asymptotically opti-
mal sampling-based planners avoid the local minima inherent
in potential field methods [25], and can avoid the subopti-
mal plans resulting from sampling-based planners which are
merely probabilistically complete (e.g., RRT [22]). Because
we rapidly replan [26], [27] when landmarks move, it is
also useful to be able to access the best known plan at any
given time [28]. For these reasons, we use a variation on a
probabilistic roadmap (PRM), but do not allow it to grow
arbitrarily large. Nevertheless, we could still guarantee near-
optimality in finite time [29], [30].

III. PROBLEM
A. Inputs and Outputs

We consider a robot with a d-dimensional configuration
space Q C R?, In order to teach the robot a task, we
provide M demonstrations of the task in which the pose
of task-relevant objects vary across the demonstrations. Each
demonstration m € {1...M} is a sequence of S,, observed
configurations of the robot at fixed time intervals. Let q;, € Q
denote the s’th observed configuration in demonstration m.
Additionally, we assume we have for each demonstration
m, a description of the environment a,, which lists the
poses in SE(3) of Z sensed landmarks in the demonstration
environment. We assume that the landmarks may be distin-
guished from each other (e.g., via visual feature matching).
The resulting task model will ultimately specify which subset
of these landmarks is relevant to the task and must be present
in the execution environment.

Although we assume that obstacles in the execution environ-
ments do not move during execution, we do not require that
they be present in the demonstrations or known during the
learning phase. To enable the robot to successfully perform
the task in environments with never-before-seen obstacles, the
problem we consider is that of estimating the parameters in
a parametric probabilistic task model amenable to use by a
sampling-based motion planner given these demonstrations.

We consider the problem of estimating parameters defining
the task model of two distinct types:

o (-parameters, which will encode the position of a virtual
landmark on a grasped object (e.g., a tool) relative to
the robot’s end-effector and what linear combination of
the Z sensed landmarks define a virtual landmark in the
environment. Such parameters are time-invariant; they do
not vary with time or between demonstrations.

o 7n-parameters, which represent the dependence on task
progress, like the tendency for a landmark on a grasped
object to be at a specific position relative to a landmark
in the environment at some time point in the task. Specif-
ically, these parameters consist of means and covariances
in a (-parameterized feature space incorporating the posi-
tions of points on a grasped object relative to landmarks
(discussed in detail in Section IV-C). Such parameters
are time-variant; they vary during the task (although not
between demonstrations).

We note that the challenge of learning the n-parameters was
addressed in prior work [1], but that work assumed the (-
parameters were manually provided by a human user. To

Fig. 2. Bayesian network describing independence assumptions for the
learned task model. Note that for a specific demonstration, this generalizes a
Hidden Markov Model with the addition of {-parameters.

extend that work to consider time-invariant (-parameters,
which results in non-local interactions between time steps, we
explicitly re-frame the problem as an optimization.

Once the task has been learned, we then consider the
problem of executing the task in new environments with new
obstacles. This requires computing an obstacle-free path in
the robot’s configuration space from its start configuration
Qg € Q to a goal configuration gy, € Q which incorporates
learned information from the task model and considers the
sensed locations of the landmarks that were found to be
relevant to the task during learning. We compute paths by
constructing a notion of cost for which minimum cost paths
correspond to maximum probability paths given the model,
and applying this cost metric to an asymptotically optimal
motion planner.

B. Probabilistic Task Model

The (- and n-parameters form the basis for a task model
similar to a Hidden Markov Model (Fig. 2) with discrete states,
which we call fime steps, {1...T}, where the probability of
observing configuration q at time step ¢ during demonstration
m is given by p(q| ¢,n,) and the probability of transitioning
to time step ¢’ from ¢ is given by p(t’|t). We also consider
priors on each latent parameter, denoted p(¢) and p(n).

Let Q {q1 2"} denote the observed configurations
from each demonstration, and let A = {a; s} denote the
environment descriptions from each demonstration that list
the sensed landmark poses. Let H = {n; ,} denote the
set of n-parameters from each time step, and let p(H) be
given by p(nq,...,np) = Hthlp(nt) by independence. For
convenience of notation, we will let ], = m,. denote the 7-
parameter corresponding to the time step associated with the
s’th observation in demonstration m. There are still only T’
such parameters; this notation merely serves as a convenient
view of them. By the conditional independence properties of
the given model, we have the following:

p(Q,¢,H|A) = (1)
T M S,
¢)- Hp(m H H tSJrl [t5)P(dn, [ €, M0, am)).-
t=1 m=1s=1

Putting the model in this form separates the prior, transition,
and observation distributions to facilitate parameter estimation
in the following section.
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IV. LEARNING

We first define virtual landmarks as time-invariant param-
eters, and then describe our approach for simultaneously
estimating the time-variant and time-invariant parameters of
the task model. Although much of the problem is similar to our
prior work [1], the introduction of time-invariant parameters
necessitates a different, global, learning approach due to their
non-local nature.

A. Feature Space using Virtual Landmarks

We begin by defining the virtual landmarks that will be
learned as the (-parameters. These virtual landmarks are based
on linear combinations or projections of sensed landmarks a
whose pose is identified using the robot’s kinematic model and
vision sensors.

We first consider an environmental virtual landmark, which
is based on a linear combination of sensed landmarks in
the environment. ¢ includes the coefficients of this linear
combination. We denote this portion of ¢ as (™ and require
the sum of these coefficients be 1 by locally parameterizing
the tangent space of this constraint. In addition to being
an intuitive way to combine sensed landmarks, constraining
the L'-norm encourages sparsity. After learning, to further
enforce sparsity, we discard sensed landmarks with coefficients
less than 5% to form the set of sensed landmarks required
during task execution. Specifically, we compute the pose of
the environmental virtual landmark as follows:

Z Cenv KSZCHS B
where K

i .s(a) € SE(3) denotes the pose of the i’th sensed
landmark in the environment described by the input a from
1I-A.

The (-parameters may also encode the position of a point
relative to the robot’s end effector. We will denote this portion
of ¢ as ¢*°°!. This point defines a tool virtual landmark, i.e.,
a point on a grasped object (e.g., a tool).

Together, these virtual landmarks, combined with the robot’s
configuration q, serve to define a feature space that augments
that used in [2] by including the position of a tool virtual
landmark relative to an environmental virtual landmark. This
feature space incorporates both configuration and task spaces,
enabling the method to learn tasks which require both. Specif-
ically, we define a function f to lift configurations into the
feature space for learning (see Section IV-C):

VlI'T C?

q
,6,a) = — 00 ) 2
f(q C ) Kvirt(Caa) 1Kend(q)cl ! @
where K.nd(q) denotes the pose of the end effector when the
robot is in configuration q, and K,i(a) denotes the pose of
the environmental virtual landmark.

B. Maximum a Posteriori Estimation

Given a set of demonstrations, our goal is to find the
maximum a posteriori probability (MAP) estimates for ¢ and
H. To accomplish this, we combine dynamic time warping

(DTW) [31] and local optimization using an expectation-
maximization (EM) approach.

For numerical convenience, we first take the negative log-
arithm of Eq. (1), a common loss function in the machine
learning literature. By monotonicity, minimizing this quantity
is equivalent to maximizing the original function. To facilitate
this transformation, let L(-) denote —logp(:), yielding the
following:

LQ,¢HIA) =

T
L($)+ >  L(n,) +

M Sm
SO (T 65) + L€ | 6 am).
m=1 s=1

In this form, it is perhaps apparent that if we fix the time
step t7, corresponding to each observation q;,, the problem
of finding the most likely (- and n-parameters becomes one
of performing a simple, if high-dimensional, nonlinear opti-
mization. In our implementation, this is accomplished using
the Ceres nonlinear least-squares solver [32]. The transforma-
tion from this form to a nonlinear least squares problem is
discussed in Section I'V-C.

Dynamic time warping is used to find the most likely
sequence of time steps t1+Sm corresponding to the obser-
vations gl in each demonstration m using the current
best estimates for the latent parameters. This is analogous to
the time-alignment steps used in prior methods [5], [33]. The
value update equations for the dynamic time warping which
maximize likelihood are as follows:

L[] = min (1574 + Lt 1)) + Liag, | € 0y, 2m),

where [ [u] denotes the value of the best assignment of time
steps t1--* to observed configurations q':* from demonstra-
tion m with ¢J, = u.

Following the EM approach, this most likely sequence of
time steps is then fixed and used to estimate new (- and 7-
parameters as discussed above. This process is repeated until
convergence. Because EM approaches may become caught
in local optima, we employ random restarts with randomly-
chosen initial alignments.

The transition probabilities p(¢’ | t) may either be fixed (the
approach taken in [1]), estimated from the alignments, or a
combination of the two approaches with a fixed set of permit-
ted transitions with estimated probabilities (the approach taken
in [2]). In the experiments, we use the last of these approaches.

C. Estimation via Minimization

We consider a specific class of distribution based on the
assumption that observations have multivariate Gaussian dis-
tributions in a feature space at each time step. We cannot
estimate time steps independently as in prior work because
we simultaneously estimate time-invariant parameters.

Given the differentiable function f(q,¢,a) defined in Sec-
tion IV-A which lifts a configuration into feature space R,
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we consider 77 which captures the mean g € R and
covariance matrix 3 € R¥*¥ in feature space. Specifically,
1 = [uT,vec[o~!]T]T where vec[o—!] € RF(F+1/2 denotes
a vector containing the components of the inverse of the
lower-triangular Cholesky factorization of ¥ = oo T. In this
feature space model, we consider p(q|¢,m,a) defined by
f(q,¢,a) ~ N(w,X). We then have the following negative
log conditional probability:

L(q|¢,m,a) =
L(f(q,¢a) |, X) ~
log ||E|| + (f(q747a) - u)TE_l(f(qaC7a) - ll’) =

Vel + o (flaca)—w*. @)

Minimizing this is explicitly a nonlinear least-squares prob-
lem.

The choice of representation in terms of o~ ! is particularly
convenient because it admits fast computation of the residual
of the transformed problem. Specifically, to compute the first
term, we use the fact that log || X|| = —2 Zf;l log |U;i1| by
the multiplicative property of the determinant and triangularity
of o (and thus of o~ 1). In the second term, the residual is
linear in both o~! and p and thus multilinear in 1. This
not only decreases the computation time needed to evaluate
the residual, but greatly improves the convergence rate and
reduces local minima.

We note that the first term depends only on o ! and so need
not be recomputed for each observation. For computational ef-
ficiency, it can even be incorporated into the prior (effectively
treating the conditional as an unnormalized distribution). In
fact, this term is proportional to the logarithms of multiple
classical priors [34], so such a prior can be incorporated simply
by changing the scale on this term.

The only restriction we place on the priors is that they be log
differentiable and note that they may be transformed similarly
to the way the normalization term was above, although they
may also admit more elegant forms (e.g., exponential distribu-
tions). In the experiments conducted in Section VI, we used
(unnormalized) uniform priors for all parameters.

V. MOTION PLANNING

After the task model has been learned, we use it to plan
motions for the robot in new environments with obstacles.
We assume we can sample the obstacle-free configuration-
space Qpee C Q (e.g., via rejection sampling). We additionally
assume we are given a new vector & encoding the sensed
poses, in the new environment, of those landmarks found
to be task-relevant during the learning phase. The planning
method we employ is a simple adaptation of [2] to incorporate
the learned (-parameters, which we briefly summarize below
before deriving the adaptation.

A. Roadmap

To accommodate obstacles not present in the demonstra-
tions, we use a sampling-based motion planner with path costs
based on the learned task model. Specifically, we employ
an asymptotically-optimal variant of a probabilistic roadmap

(PRM) [22] with a biased sampling distribution [2]. A PRM
consists of randomly sampled configurations in Qge. Which
are treated as vertices in a graph. Nearby configurations are
connected by edges if an obstacle-free local plan can be
found between them. This effectively discretizes configuration
space as a graph similar to the way in which the task model
discretizes time as a graph.

For the purposes of motion planning, the state depends not
only on the configuration of the robot, but on the current time
step in the task model. For this reason, we need to perform
planning in space-time, which we discretize with the graph
Cartesian product of the probabilistic roadmap and the task
model as in [2]. In the Cartesian product graph, each vertex is
defined by a pair of vertices, one from each constituent graph.
Edges are defined by a vertex v from one graph and an edge
u — w from the other, forming an edge (v,u) — (v, w). We
call this graph a spatiotemporal roadmap.

[

\/

O—-0—-0

Fig. 3. Left. A very small probabilistic roadmap with edges shown in
green. Bottom. A very simple task model with edges shown in blue. Center.
Cartesian product of these graphs where edge color indicates from which
constituent graph the edge was derived.

B. Search

Motion planning can be thought of as the reverse of the
learning process. We wish to find the maximum probability se-
quence of configurations given the learned (- and n-parameters
given & while satisfying additional constraints imposed by
obstacles.

To find the most probable path in the spatiotemporal
roadmap, we again consider the negative logarithm of the
probability. By independence (notably the Markov property),
we have:

argmax p(tlvqla <o tn,dy |thqO,CaH»é) =

t1,qq,5-5tn,q,

arg max TLott: ol | Comy o 8) =

t1,dy,-.- ruqnl 1

arg min E

LZRL PRTEPI 20N Py

L(ti | tic1) + L(q; | .y, &)

which yields the following cost for a single edge from con-
figuration g at time step ¢ to configuration q’ at time step
t':

L(t'|t)+ L(d'| ¢,y &).

Finally, we note that edges in the roadmap may take varying
times to traverse based on the limitations of the robot, whereas
the observations in the demonstrations were taken at fixed time

cost(t,q — t',q’'|a) =
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Fig. 4. The Baxter robot performing the powder transfer task with the spoon being used as a tool in blue, the source container in yellow, and the destination

container in green. Both the lamp and paper towel obstacles are white.

intervals. To account for this, we use the line integral of this
cost across time as the actual edge cost.

We then employ a classical bidirectional shortest path search
algorithm [35] in parallel on the spatiotemporal roadmap to
find the minimum cost path, which by the derivation above
corresponds to the most probable path given the learned task
model. When new sensed landmark poses become available,
we invalidate the roadmap edge costs and then perform a
search, lazily recomputing new edge costs. This allows the
robot to react in a closed-loop manner to the motion of the
relevant landmarks during task execution at interactive rates.

VI. RESULTS

We evaluated our method on two simplified food preparation
tasks on the Baxter research robot [6]. All computation was
performed on two 2.0 GHz 6-core Intel Xeon E5-2620 pro-
cessors. Because we do not solve the full vision problem in
this paper, sensed landmarks were continually tracked using a
Kinect sensor by estimating the centroids of blobs with similar
pre-defined colors.

A. Powder Transfer Task

We first tested our method on the same task as in [2],
wherein the Baxter robot learned to transfer powder from one
container to another (see Fig. 4) while the bowl moved. How-
ever, unlike prior work, a human did not specify a landmark
on the spoon, which previously was manually specified as the
tip. Instead, we automatically learned a tool virtual landmark
via ¢! specifying a position relative to the pose of the robot’s
gripper. Additionally, we synthetically introduced 4 sensed
landmarks into each demonstration in addition to the bowl,
randomly sampled in the reachable space of the robot, bringing
Z to 5 and the dimensionality of the (-parameter to 8. The
feature space for learning included the robot’s configuration
specified by its 7 joint angles as well as the position of the tool
virtual landmark relative to a learned environmental virtual
landmark based on Eq. 2.

As mentioned in Section IV-C, the n-parameters used were
means and covariance matrices in this feature space. For this
task, we used 7" = 24 time steps. The learning algorithm
was then used to estimate these parameters from the same 11
demonstrations used to evaluate the previous method [2], but
with the 4 synthetic new sensed landmarks added to the set
A = {a; s} for each demonstration.

Fig. 5. A spoon being used as a tool in the powder transfer task with an
arbitrary landmark at the robot’s gripper marked in blue, the hand-picked
landmark at the tip marked in red, and the tool virtual landmark learned by
our method marked in green.

Tool Environment Success Learning Planning
Landmark Landmark Rate Time Latency
(on spoon) (bowl)
Arbitrary Manual 60% 26s 201ms
Manual Manual 80% 26s 226ms
Learned Manual 100% 1,658s 182ms
Learned Learned 100% 1,686s 182ms
(No Obstacle Avoidance) 10% 1,686s 108ms
TABLE I

POWDER TRANSFER TASK RESULTS AVERAGED ACROSS 10 SCENARIOS.

The actual virtual tool landmark learned for the spoon
differed notably from the hand-picked point at the tip used
previously (see Fig. 5). The point estimated by the learning
method corresponded roughly to the average point of rotation
on the spoon during the dumping motion. The method also
correctly learned a virtual environmental landmark which
consisted only of the sensed landmark corresponding to the
bowl, with effectively no contribution from the other sensed
landmarks. This was because the standard deviation of the
tool landmark relative to the bowl in the facing direction of
the robot in one time step was only 7 cm, while for the other
landmarks, it was as high as 78 cm.

We tested the new learned model using the same planner on
the same 10 scenarios as in the previous method’s evaluation
[2]. The scenarios included uniformly random paper towel
obstacle and bowl locations as well as a hanging lamp obstacle.
The bowl was moved to another random location midway
through the task, requiring the closed-loop motion planner to
react quickly. An execution was considered successful if the
robot avoided obstacles in the environment and transferred the
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Fig. 6. Baxter robot performing the liquid pouring task with the pitcher (being used as a tool) with blue liquid and the green bowl. The lamp, vase, and

paper towel obstacles are white.

Tool Environment Success Learning Planning
Landmark Landmark Rate Time Latency
(on pitcher) (bowl)
Arbitrary Manual 40% 216s 225ms
Learned Learned 90 % 71,462s 200ms
(No Obstacle Avoidance) 30% 71,4625 132ms
TABLE II

LIQUID POURING TASK RESULTS AVERAGED ACROSS 10 SCENARIOS.

powder without spilling. A video of the robot executing this
task is attached and quantitative results are provided in Table I.

Surprisingly, the new learned model resulted in a higher
success rate than the previous method even though less infor-
mation was manually provided, likely because the relevant co-
variances were better captured with the new virtual landmarks
in ¢. This also slightly improved planning latency because
lower variances imply narrower low-cost regions, which allow
the path search to explore and consequently lazily evaluate
fewer edges.

To further demonstrate the importance of appropriately
choosing the tool virtual landmark, we also ran the learner
arbitrarily fixing ('°°! = 0 corresponding to the robot’s gripper.
This was only successful near the center of the table and not
at the extremes where the robot completely missed the bowl.

Finally, we evaluated planning using only local optimization
of the learned task model without any obstacle avoidance. As
expected, this resulted in many failures due to collisions with
obstacles. The results of each approach are shown in Table I.

B. Liquid Pouring Task

We next tested our method on the task of pouring liquid
from a grasped pitcher into a bowl. The pose of the bowl and
4 other sensed landmarks (a pair of scissors, a spoon, a vase,
and a roll of paper towels) varied between executions, bringing
Z to 5. The feature space used to construct the probabilistic
model was the same as for the powder transfer task, again with
T = 24 time steps and the dimensionality of the (-parameter
was again 8.

We performed 11 demonstrations of the task which we then
supplied to the learning method with the pose of each sensed
landmark, including the bowl, selected uniformly at random
from a 30-inch square on the surface of the table. Additionally,

the extra sensed landmarks were lifted up to 10 inches off
the table surface. The learning phase took significantly longer
than for the transfer task (see Table II) because the demon-
strations were sampled at 50Hz rather than 10Hz, resulting in
significantly more observations per demonstration. This could
have been mitigated simply by subsampling during learning.
However, this does show that the learning method is robust to
different sampling rates. We note that learning only has to be
done once after the demonstrations are provided, and does not
need to be performed again when the robot executes the task
in a new environment using the motion planner.

The method found a tool virtual landmark corresponding
to a point just below the spout of the pitcher (distinct from
that learned in Section VI-A). The only sensed landmark with
a learned contribution to the environmental virtual landmark
was the bowl. So the objects corresponding to the other sensed
landmarks served only as obstacles during execution.

We tested the motion planner on 10 randomly selected
scenarios which included the same objects as the demon-
strations as well as a hanging lamp obstacle. An execution
was considered successful if the robot avoided obstacles in
the environment and poured the liquid into the bowl without
spilling. During execution, the large size of the pitcher resulted
in more constrained motion planning problems in some of the
scenarios than in the powder transfer task, which caused one
trial to result in failure to pour the liquid. A video of the robot
successfully executing this task is attached and quantitative
results are provided in Table II.

VII. CONCLUSION

We presented a method for performing tasks relative to ini-
tially unknown landmarks using a task model which encodes
both the task motion and the landmarks required by it. We
showed that such a model can be learned from human-guided
demonstrations by simultaneously estimating time-variant and
invariant parameters. Furthermore, this model is amenable to
fast, global sampling-based motion planning.

Our method requires less user-provided information com-
pared to prior work by enabling the robot to learn, from
demonstrations, relevant virtual landmarks both on tools and
in the environment. These virtual landmarks help define the
feature space of the learned task model. We demonstrated
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the efficacy of our approach by learning and executing two
manipulation tasks on the Baxter robot, including a powder
transfer task and a liquid pouring task.

In future work, we plan to consider per-demonstration latent
parameters and how this impacts the planning phase. We
would also like to use SIFT (or similar) features to auto-
matically identify visual landmarks. Additionally, we would
like to consider more general task models for which execution
would incorporate aspects of task planning. To scale to more
complex problems or problems with more landmarks, we
will investigate customizing the optimization method in the
learning phase to achieve better performance.
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