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Abstract. We present Task-Guided Gibbs Sampling (TGGS), an approach to ac-
celerating motion planning for mobile manipulation tasks learned from demon-
strations. This method guides sampling toward configurations most likely to be
useful for successful task execution while avoiding manual heuristics and pre-
serving asymptotic optimality of the motion planner. We leverage the learned
task model, which is already used by the motion planner to evaluate path quality,
to also guide sampling, yielding plans with high rates of success faster than un-
biased or goal-biased sampling. This is accomplished by tightly integrating sam-
pling with a hybrid motion planner that builds separate base and arm roadmaps
using Gibbs sampling. Such an approach allows the sampled arm configurations
to depend on the reachable base configurations and vice-versa. We evaluate our
method on two household tasks using the Fetch robot and achieve a 90% success
rate on each, greatly improving upon a planner relying on unbiased sampling or
either of two goal-biased planners when using the same cost metric.

1 Introduction

For a mobile manipulator performing a task, the problems of navigation and manipu-
lation are inherently coupled. On the one hand, the manipulator may need to be repo-
sitioned to navigate through a narrow passage (e.g., moving between furniture in Fig. 1)
while adhering to task constraints (e.g., levelness of the grasped pitcher to avoid spilling).
On the other, the robot may need to reposition itself to enable the manipulator to ac-
complish a given task (e.g., pouring liquid from the pitcher into a bowl). This cou-
pling presents multiple challenges, mostly stemming from the associated increase in
dimensionality. While a traditional robot arm might have only six degrees of freedom,
a mobile manipulator like the Fetch robot [32] might have eleven or more.

Sampling-based motion planners have previously been applied to the execution of
tasks based on a learned model. We introduce Task-Guided Gibbs Sampling (TGGS)
to accelerate such a motion planner in the context of mobile manipulation tasks by uti-
lizing the same learned task model. TGGS enables the motion planner to more quickly
sample configurations that are likely to be important for task success without relying
on manual heuristics, thereby producing successful plans faster than sampling methods
that do not explicitly consider the task and environment together, like goal-biasing or
obstacle-biasing.
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Fig. 1. (a) The Fetch robot’s task is to pour liquid from the grasped pitcher into the green bowl
on the table. (b) Roadmap of base motions biased towards those most likely to be useful (yel-
low) while avoiding the obstacle point cloud (white). (c) End-effector positions for sampled arm
configurations biased towards those most likely to be useful (blue). (d) End-effector positions
for configurations in the hybrid roadmap (green) with the base (yellow) and end-effector (red)
motion of the final plan.

Our method depends on a model of the task learned from demonstrations per-
formed in varying environments. This same model, which is used by the motion planner
to generate plans that successfully perform the task, also informs the sampling strat-
egy. Specifically, the method we propose combines local optimization with a Markov
Chain Monte Carlo (MCMC) approach to effectively project the task space distribution
learned from the demonstrations into the robot’s configuration space. This sampling
strategy is applicable to both the bounded subspace of the manipulator as well as the
unbounded subspace of the mobile base. While the task model we consider is based on
prior work [6] and the Fetch robot is used in the experiments, we believe TGGS could
also be adapted to a number of other models and robots.

Like many low-cost mobile manipulators, the Fetch robot’s mobile base uses dif-
ferential drive, which presents the challenge of nonholonomy. Fast motion planning
for nonholonomic robots with 10 or more degrees of freedom remains computationally
difficult, especially when asymptotic optimality is desirable, as when soft task con-
straints are present. Fortunately, the configuration spaces of many mobile manipulators,
including the Fetch robot, have a large subspace that is holonomic: that of the manipu-
lator arm. TGGS leverages this property by partitioning the sampling across holonomic
and nonholonomic degrees of freedom, which accelerates sampling-based motion plan-
ners for learned mobile manipulation tasks while preserving their asymptotic optimality
guarantees.

We validate our new approach analytically and then empirically using the Fetch
robot to perform two household tasks in randomly-generated scenarios.
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2 Related Work

Motion planning for mobile manipulation is challenging because of the high number
of degrees of freedom. Various methods that lack completeness address this problem,
including potential fields [30, 12] and local optimization [20]. However, completeness
guarantees are crucial in more complex environments and higher-dimensional spaces.
Probabilistically complete sampling-based motion planners are effective in such spaces
[25, 1] and can incorporate a class of task constraints [28, 17], even at reactive rates
using elastic roadmaps [34].

Only some sampling-based motion planners consider plan cost, and asymptotic op-
timality guarantees become important when planning for tasks where feasibility is no
longer sufficient for success [31]. Furthermore, in high-dimensional spaces, the conver-
gence of asymptotically optimal motion planners may still be impractically slow. Even
when only completeness is required, biased sampling may improve performance [2],
particularly in narrow passages [24, 7, 29, 14] and other challenging motion planning
problems. Similarly, cost-based task constraints [23] may induce narrow passages in
cost space that make planning more challenging, and biased sampling is again effective
[4, 16, 11, 5].

In this paper, we introduce a sampling strategy designed specifically for construct-
ing roadmaps for a given environment and learned model of a mobile manipulation task
that retains asymptotic optimality. Although we apply this approach to one task model
[6] here, it could be readily adapted to planning tasks represented by other generative
models that may be learned from demonstrations [8, 13].

Additionally, our approach relies on decomposing the configuration space of the
robot. Related approaches have been considered in the contexts of hierarchical planning
[10, 26] and hybrid planning [27], but without asymptotic optimality guarantees. We
also note that high-level methods have considered this problem in a more traditional
task planning framework [9, 33, 19], but these approaches depend on methods that can
plan low-level actions, which is precisely the domain of our method.

3 Problem Definition

We consider a mobile manipulator that consists of a holonomic arm with darm degrees
of freedom and a mobile base (which may be holonomic or nonholonomic) with dbase
degrees of freedom. Given a set of arm configurations Qarm ⊂ Rdarm and a set of base
configurations Qbase ⊆ Rdbase , let Farm ⊆ Qarm denote those arm configurations which
are potentially free for some base configuration (i.e., those that are not in self-collision).
Similarly, let Fbase ⊆ Qbase denote those base configurations which are potentially free
for some arm configuration (i.e., those for which the base itself does not collide with
the environment). Finally, let Q = Qarm×Qbase ⊂Rdarm+dbase denote the combined con-
figuration space and F ⊆ Farm×Fbase denote the free configuration space.

In addition to the above sets, we assume as input to the method an initial con-
figuration q0 ∈ F and a task model. The task model depends on a feature function
fa(q) ∈ Y ⊆ Rb where a is an environment description that encodes the positions of
salient objects (e.g. the bowl in Fig. 1). We call Y the feature space, and the task
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model consists of a finite sequence of feature space multivariate Gaussian distributions
{µ1,Σ1,µ2,Σ2, . . . ,µT ,ΣT}. One can think of these feature space distributions as defin-
ing distributions over configurations when pulled back along f , conditional on a given
environment described by a. Task models of this form can be estimated from expert
demonstrations for a variety of useful tasks [6, 8, 13].

The output of the motion planner is a feasible configuration space path π comprising
a sequence of local plans which maximizes similarity to this task model. In this paper,
we use a specific definition of similarity [6] which we summarize in Sec. 4.2.

4 Motion Planning using the Learned Model

The problem of planning motions for mobile manipulation tasks presents a number of
challenges but also a degree of structure. Notably, any mobile base that uses differential
drive (e.g. the Fetch robot) is nonholonomic and thus so is the robot as a whole. This
precludes a large class of motion planners [21], including probabilistic roadmaps with
linear edges. However, the subspace of configuration space that represents only the arm
is holonomic.

In Sec. 4.1, we first describe and analyze a hybrid roadmap that leverages this in-
herent structure by using different roadmap constructions for different subspaces of the
problem as appropriate. Next, in Sec. 4.2, we apply a learned task model to this hybrid
roadmap. Then, in Sec. 4.3, we describe how the nature of this construction lends it-
self to efficient sampling of high-quality configurations in both roadmaps using Gibbs
sampling.

Arm PRM

Base RRG

Fig. 2. Hybrid roadmap (green) formed by the Cartesian product of an arm PRM (blue) and a
base RRG (yellow) while avoiding obstacles (red).



Task-Guided Gibbs Sampling 5

4.1 Mobile Manipulation Hybrid Roadmap

Mobile manipulators are generally characterized by low-dimensional base motion, usu-
ally SE(2), combined with a high-dimensional manipulator, R5(S1)3 in the case of the
Fetch robot. The combined configuration space is often 11-dimensional or greater. Ad-
ditionally, we are not interested in merely feasible plans but ones which also have low
costs, ideally approaching the optimal solution in the limit.

Asymptotically-optimal variants of rapidly-exploring random graphs, e.g RRG*
[22], are applicable to such motion planning problems. However, in high-dimensional
spaces, these planners can exhibit very slow convergence to optimality. On the other
hand, less general methods like probabilistic roadmaps (e.g. PRM*) may exhibit faster
convergence for multiple queries but often rely on additional structure, like an optimal
local planner. Furthermore, applying PRM* to unbounded spaces, like SE(2), neces-
sitates additional heuristics because new configurations will be added from the entire
space unlike RRG* which only extends to configurations near those already explored.

We show that these planners can be combined to plan for mobile manipulation tasks
in such a way that their relative strengths are exploited in the subspaces where they are
most applicable. Specifically, we propose to build an RRG* of pure base motions and a
separate PRM* of pure manipulator motions. We then search in the Cartesian product
of the resulting graphs to find asymptotically-optimal motion plans. Additionally, this
approach allows for eager collision checking on the base during roadmap construction
but lazily checking for arm collisions during the shortest path search.

Let Cbase(ebase,qarm) denote the cost of traversing edge ebase in the base roadmap
with arm configuration qarm and Carm(qbase,earm) denote the cost of traversing edge
earm in the arm roadmap at base configuration qbase. Every edge in the Cartesian product
graph is composed of a vertex from one graph and an edge from the other. This implies
that the arm and base are never actuated simultaneously. Let C(e) be either Cbase or Carm
as applicable. We assume Cbase and Carm are non-negative and Lipschitz continuous. We
extend this cost to a path π in the obvious way:

C(π) = ∑
e∈π

C(e).

Algorithm 1 BUILDHYBRIDROADMAP(q0, nbase, narm)
Input: Initial configuration q0, number of samples n

Gbase← BUILDBASEROADMAP(Fbase, q0, nbase)
Garm← BUILDARMROADMAP(Farm, q0, narm)
return Gbase×Garm // graph Cartesian product

Theorem 1. If both BUILDBASEROADMAP and BUILDARMROADMAP are
asymptotically-optimal with respect to Cbase and Carm for all qarm and qbase respectively,
then BUILDHYBRIDROADMAP (see Alg. 1) is asymptotically-optimal with respect to C
with the restriction that only the base or arm are actuated at any given time.

Proof. For any ε > 0, consider a feasible path π such that C(π)<C∗+ ε

2 where C∗ is the
infimum of costs among feasible paths. Such a path must exist by definition. Let πbase
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denote the set of edges in π which correspond to base motions and πarm those which
correspond to arm motions. Observe that, by associativity, C(π) =C(πbase)+C(πarm).

We next note that because the base and arm do not actuate simultaneously, πbase
can be divided up into no more than |π| sub-paths, each with qarm constant in each
sub-path. Let Kbase denote the Lipschitz constant of Cbase. By assumption, for all δ > 0
there exists marm such that BUILDARMROADMAP(Farm, q0, marm) includes a reachable
configuration q′i,arm that is ε

8Kbase|π|
-close to a given qi,arm with probability 1− δ

4|π| . Thus,

with probability at least (1− δ

4|π| )
|π| ≥ 1− δ

4 this holds for each such qarm.
Now, consider one of these sub-paths πi,base with shared qi,arm. Again by assump-

tion, there exists nbase such that with probability at least 1− δ

4|π| there is a path π ′i,base in
BUILDBASEROADMAP(Fbase, q0, nbase) with C(π ′i,base,qi,arm)<C(πi,base,qi,arm)+

ε

8|π| .
By Lipschitz continuity of Cbase, we have C(π ′i,base,q

′
i,arm)<C(π ′i,base,qi,arm)+

ε

8|π| . To-
gether, these sub-paths form π ′base with C(π ′base)<C(πbase)+

ε

4 with probability at least
(1− δ

4 )
2 ≥ 1− δ

2 .
The above argument applies similarly to πarm, with π ′arm, mbase, and narm. So, for

n = max(mbase,nbase,marm,narm), with probability at least (1− δ

2 )
2 ≥ 1−δ there exists

a path π ′ in BUILDHYBRIDROADMAP(q0,n,n) such that C(π ′) =C(π ′base)+C(π ′arm)<
C(π)+ ε

2 <C∗+ ε . �

The condition that BUILDBASEROADMAP be asymptotically optimal with respect
to Cbase for all qarm and the corresponding condition for BUILDARMROADMAP may
initially seem too strong. However, these conditions are satisfied with many useful met-
rics for mobile manipulators. In the experiments we performed, we let Cbase be a scalar
multiple of execution time, which is independent of qarm and thus the assumption holds
using an RRG* with a closed-form local planner to optimally satisfy the non-holonomic
constraints [3]. Because the manipulator arm is holonomic, asymptotic optimality of
PRM* holds for all non-singular Carm by local metric equivalence, so the dependence
on qbase is similarly unproblematic. More generally, however, asymptotic optimality of
the method relies on that of the underlying methods, which may be chosen based on the
requirements imposed based on the cost metrics.

The Cartesian product graph of these roadmaps need not be explicitly constructed.
Rather an implicit representation can be lazily traversed by simply traversing the con-
stituent graphs. Note also that because F may be a subset of Fbase × Farm, collision
checking must still be performed on the edges of the hybrid roadmap. In our implemen-
tation, this is done lazily during the graph search described in the following subsection.

4.2 Task Roadmap

To extend the hybrid roadmap described above to motion planning for a task, we use
another Cartesian product to construct a spatio-temporal roadmap [5] as described in
Alg. 2. This approach extends an asymptotically-optimal planner to maximize similarity
to a learned task model comprising a finite sequence of time steps by permitting the cost
metric to depend on task progress in the form of the current time step.

The construction of the spatio-temporal roadmap Gst = Gs×Gt is necessitated by
our choice for Carm, which depends on the current time step t. The specific choice of
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yi−1
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yi

ti+1

yi+1

(a)

t=1

p1,1

t=2

p2,2

t=n

pn,n

p1,2 …

(b)

Fig. 3. (a) Hidden Markov model defining a distribution of sequences of feature space vectors
with the hidden state comprising discrete time steps. (b) Restricted structure of the hidden Markov
model.

Algorithm 2 MOTIONPLANFORTASK(q0, nbase, narm, T )
Input: Initial configuration q0, numbers of samples nbase and narm, number of time steps T

Gs← BUILDHYBRIDROADMAP(q0, nbase, narm)
Gt← TASKSTRUCTURE(T ) // Graph of time steps: linear graph with T vertices
v0← NEARESTVERTEX(Gs, q0)
return SHORTESTPATH(Gs×Gt, (v0,1), V (Gs)×{T})

Carm depends on the learned task model. In this paper, we consider a model defined
by a time-homogeneous hidden Markov model (HMM) with a restricted structure and
discrete state space of time steps that capture task progress [6]. We denote the time step
by t and number them sequentially 1,2, . . . ,T (see Fig. 3).

Under this model, an observation is a feature space vector y ∈ Y . Recall that y =
fa(q) lifts a configuration q into this feature space conditional on an environ description
a that encodes the positions of salient objects in the environment. This transformation
enables the model to capture relationships between the environment and configurations,
e.g. that the pitcher must be placed over the bowl before pouring in Fig. 1. The specific
choices of fa used for the experiments are discussed in their respective subsections of
Sec. 5, but the method requires only that it be differentiable. We model the observation
distribution by a multivariate Gaussian distribution with a per-time step mean µt and
covariance matrix Σt .

fai(qi) = yi ∼N (µti ,Σti)

Because the model was estimated from successful demonstrations, we expect a plan
which is similar to the task model to be likely to accomplish the task. Following this
intuition, we define edge costs Carm that when minimized, maximizes the probability
density function of the learned model. To do so, we first assign a cost to individual
configurations for each time step as follows:

c(q, t) = − log p( f (q) |µt ,Σt)

=
1
2

(
‖ f (q)−µt‖Σ

−1
t

+ logdet2πΣt

)
.

Then, we let Carm be simply the path integral over this cost
∫

c(q(s), t)ds. This is the
continuous analog of the summation that arises from the Markov assumption made by
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the task model. Specifically, rather than the following distribution over discrete paths:

p(q0, . . . ,qn | t) ∝

n

∏
i=0

p(qi | t) = e−∑
n
i=0 c(qi,t),

we instead define a distribution using a functional over configuration space curves:

p(q | t) ∝ e−
∫

c(q(s),t)ds.

Due to the structure of the spatio-temporal roadmap Gst, the cost of the same local
plan associated with an edge in the hyrbid roadmap is often needed under multiple
metrics, one for each time step. This structure allows the computation to be accelerated
by a pre-computation as follows:

‖ f (q)−µt‖Σ
−1
t

= Tr
(
( f (q)−µt)

TLtLT
t ( f (q)−µt)

)
= Tr

(
LT

t ( f (q)−µt)( f (q)−µt)
TLt
)

= Tr
(
LT

t
(

f (q) f (q)T−2µt f (q)T +µt µ
T
t
)

Lt
)

where LtLT
t = Σ

−1
t is the Cholesky decomposition of Σ

−1
t . So,∫ S

0 c(q(s))ds =

S logdet2πΣt +
∫ S

0 ‖ f (q)−µt‖Σ−1 ds = (1)
S logdet2πΣt +Tr

(
LT

t
(
A−2bµT

t +Sµt µ
T
t
)

Lt
)

whereA =
∫ S

0 f (q) f (q)T ds andb =
∫ S

0 f (q)ds .

Note that A and b are independent of t and can thus be precomputed numerically for
a local path. Once this is done, edge costs may be computed using only simple matrix
operations, making them very efficient to compute.

Under these definitions of Carm and Cbase, the cost of a plan can be rewritten as

C(π) =
∫ S

0
g(π(s), t)ds (2)

where g(q, t) = κ if the base is moving at time s and g(q, t) = c(q, t) if the arm is
moving. κ is the weight with which base movement is penalized.

4.3 Task-Guided Gibbs Sampling

While the method described in the previous section is asymptotically optimal, it con-
verges very slowly in high-dimensional configuration spaces. To improve convergence,
we employ biased sampling. Motivated by importance sampling, our goal is to effec-
tively project the task model from feature space into configuration space. To do so ex-
plicitly would require strong assumptions about the form of f . Rather, we observe that
we only need to sample from the projected distribution. Furthermore, these samples do
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(a) (b) (c)

Fig. 4. (a) Sweeping task using the Fetch robot. (b) Biased RRG* of base motions (yellow) around
the obstacle point cloud (white). (c) Hybrid roadmap (green) with the base (yellow) and end-
effector (red) motion of the final plan.

not need to be independent of each other, only approximate the desired distribution in
the limit. Following this insight, we propose to use a Markov Chain Monte Carlo sam-
pling strategy. Specifically, we employ a variant of Gibbs sampling tightly integrated
with the hybrid nature of the roadmap.

Gibbs sampling is simply an approach to sampling from the joint distribution of
two dependent variables by fixing one and sampling the other conditional on that value,
then repeating that process with the variables’ roles reversed. Following this approach,
we sample individual base and arm configurations separately while the distributions
as a whole are interdependent. To sample an arm configuration, we first select a base
configuration q̂base at random from the base roadmap Gbase. We then sample a feature
vector ŷ at random from the task model. Finally, we numerically solve for the arm
configuration that results in a feature vector most similar to ŷ given q̂base by solving the
following nonlinear least-squares minimization problem:

argmin
qarm
‖ fâ(q̂base,qarm)− ŷ‖

Σ−1

Sampling a base configuration proceeds similarly and different numbers of base and
arm samples can be accomodated by simply skipping some extension steps (see Alg. 3).
This entire procedure replaces Alg. 1. Because the configurations in Gbase are also in
Fbase, we are effectively biasing the distribution of arm configurations towards those
which achieve the task with the base in feasible locations. Similarly, we are sampling
base configurations which are useful when the arm is not in a self-colliding state.

The sampling approach described above can be readily adapted to sampling from
a sequence of multivariate normal distributions as found in the task model. We first
select a number of samples n to compute in a batch to ensure the samples are spread
evenly across the distributions. Rather than sampling a fixed number from each of the
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discrete distributions, we gradually alter the distribution from which ŷ is sampled at
each iteration. Specifically, we linearly interpolate between adjacent distributions in
the model, which can be computed by a simple procedure. For each i < n, we consider
continuous t = i(T−1)/n. Because normal distributions are additive, we can interpolate
between them in multiple equivalent ways. Perhaps the most intuitive way is by the
explicit parameters:

µ(i) = (t−btc) ·µbtc+(dte− t) ·µdte
Σ(i) = (t−btc) ·Σbtc+(dte− t) ·Σdte

However, sampling using Σ directly requires that we compute the Cholesky decom-
position which takes Θ(b3) time. This is reasonable to perform for each distribution in
the model, but unnecessary for each sample.

Instead, we observe that, similar to the previous section, we are only interested
in sampling from the distribution, not explicitly constructing it. So it suffices to sam-
ple y− ∼N (µbtc,Σbtc) and y+ ∼N (µdte,Σdte), and linearly interpolate between these
samples, yielding ỹi = (t−btc) ·y−+(dte−t) ·y+. This follows from the additive prop-
erty of normal distributions.

Algorithm 3 BUILDHYBRIDROADMAPGIBBS(q0, nbase, narm)
Input: Initial configuration q0, number of samples n

Gbase←{q0}
Garm←{q0}
n←max(nbase,narm)
for i← 1 to n do

q̂base← randomly from Gbase // sample arm using fixed base
ŷ1← SAMPLE(N (µ(i),Σ(i)))
qarm← argminqarm ‖ fâ(q̂base,qarm)− ŷ1‖Σ

−1
i

if (i ·narm rem n)< narm then
EXTEND(Garm, qarm)

end if
q̂arm← randomly from Garm // sample base using fixed arm
ŷ2← SAMPLE(N (µ(i),Σ(i)))
qbase← argminqbase ‖ fâ(qbase, q̂arm)− ŷ2‖Σ

−1
i

if (i ·nbase rem n)< nbase then
EXTEND(Gbase, qbase)

end if
end for
return Gbase×Garm

Examples of the resulting base roadmap and hybrid roadmaps are shown for a
sweeping task in Fig. 4 and for a liquid pouring task in Fig. 1d.
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4.4 Guiding Manifolds

In prior work [5], numeric optimization was used to seed the roadmap with local min-
ima of each distribution to find high quality paths quickly in unconstrained space. There
were generally finitely many such minima because the feature space was well-behaved
and higher-dimensional than the configuration space. This is not always the case for mo-
bile manipulators, where the configuration space may be larger than the feature space
or the Jacobian of f may be singular. One effect of this is that the local minima no
longer form a so-called guiding path but a guiding manifold for each distribution. Gen-
erally, this manifold is where the configuration exactly satisfies the learned means, that
is fâ(q) = µ .

We find it both intuitive and empirically effective to sample on these guiding mani-
folds to find good paths quickly in addition to the random sampling that ensures asymp-
totic optimality. Seeding in this way also improves the initial distribution of Gibbs sam-
ples, replacing the usual burn-in step for MCMC samplers. To accomplish this, we
locally-optimize randomly sampled configurations similarly to Sec. 4.3.

argmin
qarm
‖ fâ(q̂base,qarm)−µt‖Σ

−1
t

While this approach does not provide guarantees about the distribution of the re-
sulting samples, no such guarantee is required because these are only used to seed the
roadmap. We note that prior work has considered similar problems in greater depth [18,
15].

Fig. 5. Household environment used for both tasks, with the floor highlighted in yellow. The table
surface for the liquid pouring task is shown in green.

5 Results

We evaluated the method on two household tasks: a liquid pouring task and a sweeping
task. In both experiments, the salient objects and obstacles were sensed with the inte-
grated Primesense RGBD. To demonstrate the real-world applicability of the method,
we perform collision detection directly against the point cloud. The learned models
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for both tasks each had 12 time steps. All timings were performed on an Intel Xeon
E5-1680 CPU with 8 cores running at 3.40GHz and 64GB of RAM.

Example executions of both tasks are shown in the attached video, including a sce-
nario which required the robot to navigate a doorway, part of the environment which
was not included in any of the demonstrations.

Fig. 6. Sweeping task execution.

5.1 Sweeping Task

In this task, we required the robot to navigate while holding a broom which it then used
to sweep the floor toward a dustpan (see Fig. 6). In each of the demonstrations and the
subsequent evaluations, we indepdently sampled the initial position of the robot and
the dustpan uniformly at random from a 5.5m by 4.8m rectangle on the floor, rejecting
those positions in collision with the environment (see Fig. 5).

For the task, the feature function was given by:

fa(q) =

 q5...11
v(Kend(q)−1Kdustpan(a))

v(Kdustpan(a)−1Kgripper(q))


where v(K) denotes the translational part of affine transformation K, Klink(q) denotes
the forward kinematics of link in configuration q, and Kdustpan(a) denotes the pose of
the dustpan in the environment described by a.

The resulting feature space was 13-dimensional. We performed 14 kinesthetic demon-
strations of the task via teleoperation. The number of demonstrations was one greater
than the dimensionality of the feature space to avoid singular covariance matrices.

We compared our TGGS approach to uniform and goal-biased sampling strate-
gies. Goal-biasing was performed by sampling base positions in a Gaussian distribu-
tion around the dustpan and sampling arm configurations from a joint-space Gaussian
distribution estimated from the demonstrations. For all sampling strategies, we sampled
250 arm configurations and 50 base configurations in the hybrid roadmap. The full con-
figuration space RRG* used 7500 samples because this produced comparable planning
times. In all cases, a spatio-temporal roadmap was constructed from the resulting spa-
tial roadmap and used for planning using the same learned cost metric. Furthermore,
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Roadmap Sampling Success Planning Time

Hybrid

TGGS 90% 158s

TGGS w/o Cost Optimization 174s

Goal Bias 50% 288s

Uniform 0% 261s

RRG* Goal Bias 20% 281s

Table 1. Results for the sweeping task across 10 random scenarios.

because all of the methods considered were asymptotically-optimal, these results indi-
cate how quickly each method converges to successful plans while in the limit, they will
all converge to equally good solutions. The cost optimization is that described in (1),
which only affects planning time, not the resulting path, and thus not the success rate.

Because the number of samples was fixed for each roadmap type, the differences in
timings were largely caused by slower collision checks against the longer edges in the
non-task-guided strategies despite the slower sample computation when using TGGS.
The most common cause of failure for the goal bias and uniform methods was a lack of
samples low enough to sweep but high enough to avoid collision between the block of
the broom and the floor, which together form a long narrow passage. In contrast, TGGS
sampled densely in this region to produce high-quality sweeping motions.

Fig. 7. Liquid pouring task execution.

5.2 Liquid Pouring Task

In this task, we required the robot to navigate while holding a pitcher of water and pour
the water into a bowl on a table without spilling (see Fig. 7). In each of the demonstra-
tions and the subsequent evaluations, we independently sampled the initial position of
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the robot uniformly at random from a 5.5m by 4.8m rectangle, rejecting those positions
in collision with the environment (see Fig. 5). Similarly, we sampled the bowl’s position
uniformly at random from the 1.8m by 0.75m surface of the table.

For this task, the feature function was given by:

fa(q) =

 q6...11
v(Kend(q)−1Kbowl(a))

v(Kbowl(a)−1Kgripper(q))


where v(K) denotes the translational part of affine transformation K, Klink(q) denotes
the forward kinematics of link in configuration q, and Kbowl(a) denotes the pose of
the bowl in the environment described by a. We note that this differs from the fea-
ture function used for the sweeping task only in the omission of one joint, which was
found to be unnecessary for capturing this task. The resulting feature space was 12-
dimensional, and we performed 13 kinesthetic demonstrations using the same method
as for the sweeping task.

The resulting plans were successful in 90% of the evaluations we performed. The
single failure was due to the liquid missing the bowl during the pouring motion, in-
dicating that the method failed to converge to a sufficiently good plan in the alotted
time.

Additionally, we measured plan cost (as defined by (2)) with varying planning times
using different sampling approaches (see Fig. 8) on a representative scenario from the
liquid pouring task. While goal-biasing converged much more quickly than uniform
sampling, TGGS was faster still. Furthermore, using a hybrid roadmap improves con-
vergence even when using goal-biasing.

0
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Goal-Biased

Uniform

Goal-Biased RRG

Fig. 8. Plan cost with varying planning times using different sampling approaches on the liquid
pouring task. Solid lines indicate variants using hybrid roadmaps, and the dotted line indicates an
RRG* was used.

6 Conclusion

We described and analyzed TGGS, an approach to sampling configurations that incor-
porates information from a learned model of a mobile manipulation task. This sampling
strategy was tightly incorporated into a hybrid roadmap construction scheme that de-
composes the planning space into that of the manipulator arm and mobile base and uses
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sampling-based planners most appropriate to each. We demonstrated the efficacy of this
approach on two household tasks with the Fetch robot. In future work, we plan to ex-
tend TGGS to other task and robot models and explore optimizations with the goal of
replanning at reactive rates in response to changes in the environment.
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