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Abstract. Many existing methods that learn robot motion planning
task models or control policies from demonstrations require that the
demonstrations be temporally aligned. Temporal registration involves an
assignment of individual observations from a demonstration to the or-
dered steps in some reference model, which facilitates learning features of
the motion over time. We introduce probability-weighted temporal regis-
tration (PTR), a general form of temporal registration that includes two
useful features for motion planning and control policy learning. First,
PTR explicitly captures uncertainty in the temporal registration. Second
PTR avoids degenerate registrations in which too few observations are
aligned to a time step. Our approach is based on the forward-backward
algorithm. We show how to apply PTR to two task model learning meth-
ods from prior work, one which learns a control policy and another which
learns costs for a sampling-based motion planner. We show that incorpo-
rating PTR yields higher-quality learned task models that enable faster
task executions and higher task success rates.

1 Introduction

Registering a time sequence of observations to a reference model is a common
subproblem in many robotics algorithms, including algorithms for learning mo-
tion planning task models and control policies from demonstrations as in Fig. 1
(e.g., [8, 14, 7]). This subproblem may be referred to as time alignment, time
warping, or temporal registration (the term we use in this paper). Formally, tem-
poral registration is an assignment of individual observations (from a sequence of
observations) to the ordered steps in some underlying reference model. In the do-
main of robot learning from demonstrations, the observations correspond to the
time-ordered data collected during each demonstration, where each demonstra-
tion must be temporally aligned to an underlying task model (e.g., a reference
demonstration or task representation) to facilitate learning features of the mo-
tion over time from a set of demonstrations. Temporal registration abstracts
away differences in execution speed both between and within demonstrated tra-
jectories and is often a critical step to learning effective task models.

Many prior methods for learning synthesizable models rely on temporal regis-
tration using dynamic time-warping (DTW) [19] or its variants (discussed in Sec.
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Fig. 1. The Baxter robot performing a knot-tying task learned from demonstrations.
The temporal registration of demonstrations can have a significant impact on the qual-
ity of the learned task model, and better registration can improve task performance or
reduce the number of required demonstrations.
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Fig. 2. Comparison between traditional temporal registration (e.g., using dynamic
time warping (DTW)) and probability-weighted temporal registration (using our ap-
proach, PTR) to register a sequence of observations {y1, . . . ,y8} to a reference model
{θ1, . . . , θ5}. In our approach, we register all samples to the task model, avoid degener-
ate registrations, and assign probabilities to the alignment of each observation, which
can be utilized by a learning algorithm to improve the quality of a learned task model.

2), either as a preprocessing step (e.g., [8, 25, 23]) or interleaved with model esti-
mation (e.g., [4, 7]). DTW can be viewed as a maximum-likelihood approach to
temporal registration. However, maximum-likelihood approaches are inherently
prone to becoming caught in local minima, yielding suboptimal registrations
when a different initialization would produce better results. Furthermore, DTW
and many of its variants may drop some or even most observations from the tem-
poral registration, which can produce degenerate temporal registrations in which
a time step of the reference model has too few observations aligned to it. Most
importantly, DTW does not consider uncertainty in the temporal registration.

We introduce probability-weighted temporal registration (PTR), a more gen-
eral form of temporal registration that explicitly captures uncertainty in the
temporal registration. Instead of assuming each observation is registered to (at
most) one time step of the reference model, we instead compute probability-
weighted assignments (as shown in Fig. 2). These weighted assignments can be
leveraged in robot learning algorithms to yield more robust task models. Specifi-
cally, we propose to use the classical forward-backward algorithm [2] to compute
probability-weighted temporal registration. This approach is not new, but we
present a framework based on a tensor product graph in which DTW and the
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forward-backward algorithm are in fact remarkably similar in terms of imple-
mentation. Using this graphical approach, we describe a novel modification for
avoiding degenerate registrations that improves registrations across methods in
practical applications.

We apply PTR to two existing task learning methods from prior work, one
which learns a task model for a control policy [4] and another which learns a task
model that informs edge costs for a sampling-based motion planner [7]. We show
that incorporating PTR yields higher-quality learned task models that enable
faster task executions and higher task success rates on challenging tasks both in
simulation and on the Baxter robot.

2 Related Work

Temporal registration is necessary for solving many estimation, classificiation,
and clustering problems in robotics, signal processing, and other fields. The
most commonly used method for temporal registration is dynamic time warp-
ing (DTW), which has been successfully applied to problems such as gesture
recognition [6] and robot task learning using Guassian mixture models [8, 25]
as a preprocessing step. Similar approaches have been applied to the problem
of learning to manipulate deformable objects [14]. Other methods instead inte-
grate DTW or similar methods into an iterative estimation process [4, 7]. DTW
has also been used to learn and subsequently execute tasks in the presence of
external perturbations [5]. Collaborative tasks add an additional cause for vari-
able demonstration speed, which has been addressed using related modifications
to DTW [1] or gradient descent to overcome the non-smooth nature of DTW
[17]. That weakness of DTW, combined with the desire for a global solution
rather than one which relies on local optimization, is a motivator for our work.
Along these same lines, a probabilistic interpretation of DTW has been shown
to improve modeling accuracy and data efficiency [18].

When viewed more specifically as the problem of registering demonstrations
to an underlying hidden Markov model (HMM) [23] or semi-Markov model [21],
DTW is quite similar to the well-known Viterbi algorithm [24] for inference of the
hidden model variables. Work has been done to produce variants of the Viterbi
algorithm for finding registrations with specific properties [22], lower risk [15],
or approximations for switching linear dynamic systems (SLDSs). For SLDSs
in particular, alternative approaches to estimation have been explored [20], and
SLDSs have been combined with reinforcement learning to good effect [13].

Estimation of an HMM using the Viterbi algorithm in a simple expectation-
maximization framework yields the Viterbi path-counting algorithm [10]. How-
ever, the classical forward-backward algorithm has nicer properties. Prior work
has explored efficient forward-background algorithm computation for HMMs
[27]. We explore how use of the forward-backward algorithm versus DTW or the
Viterbi algorithm impacts learning and subsequent execution for HMM-based
task models.

In this paper, we describe and compare existing and new variants of tem-
poral registration on two robot learning methods from prior work [4, 7], and we
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find measurable improvements by using a temporal registration approach that
captures uncertainty and enforces non-degeneracy constraints.

3 Problem Definition

Consider a user-provided demonstration given by a sequence Y = {y1, . . . ,yn}
where each yi is an observation which might be in the state space of the robot or
some arbitrary feature space. It is often necessary for learning or recognition algo-
rithms to register such a demonstration to a different sequence Θ = {θ1, . . . , θT }
of time steps (e.g. in a learned task model) while abstracting away differences in
demonstration speed. We are generally interested in a registration which mini-
mizes some measure of loss L(yi, θt) between matched elements of each sequence
and where T ≤ n.

The most common approach to this problem in the domain of robotics is
DTW, which produces for each θt an assignment i = ιt (where ι is the Greek
letter iota) corresponding to yi (see Fig. 2(a)). In particular, this assignment

minimizes
∑T
t L(yιt , θt) subject to a strict monotonicity constraint ιt < ιt+1.

Stronger variants of this constraint may also be enforced as shown in Sec. 4.4.
However, this approach discards much of the demonstration and fails to en-

code uncertainty in the temporal registration. To address these weaknesses, we
consider probability-weighted temporal registrations which assign to each yi a
weight ωi,t for each θt (see Fig. 2(b)). These weights sum to one and so form

a distribution. Here, we minimize
∑n,T
i,t ωi,tL(yιt , θt) subject to a monotonicity

constraint similar to that above generalized to distributions (see Sec. 4.1).
To make these temporal registrations truly probability-weighted, we impose a

restriction on the loss L, namely that it be defined as the negative log likelihood
for some statistical model L (θt | yi): L(yi, θt) ≡ − logL (θt | yi). This model is
relevant to a variety of learning approaches including those we consider in Sec. 5.

The problem we consider of temporal registration of one user-provided demon-
stration to a sequence of time steps readily extends to the common problem of
registering multiple demonstrations. Each demonstration can be temporally reg-
istered to the model independently, the model can then be re-estimated given the
resulting registrations, and the process repeats in an expectation-maximization
loop until convergence, as done in other approaches (e.g., [9, 4, 7]).

4 Method

In this section, we describe a graphical approach to probability-weighted tem-
poral registration using the forward-backward algorithm along with a practical
improvement to any temporal registration method that fits into this graphical
framework. In Sec. 4.1 and Sec. 4.2, we discuss two maximum-likelihood tem-
poral registration methods: DTW and the Viterbi algorithm. We recast both
approaches as shortest paths on a tensor product graph. In Sec. 4.3, we next
discuss a true expectation-maximization algorithm that produces a temporal
registration with probability-weighted assignments for the observations. Again,
we reformulate this approach using the tensor product graph and show that it is
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in fact nearly the same algorithm as the Viterbi algorithm. Finally, in Sec. 4.4 we
show that any of these methods can be improved by modifying the tensor prod-
uct graph to enforce a non-degeneracy constraint, which is particularly valuable
when integrated with robot learning and using very few demonstrations as in-
put, as shown in Sec. 6. To our knowledge, the reformulation of these algorithms
in terms of a tensor product graph is novel, as is the modification to enforce
the non-degeneracy constraint. The combination of using the forward-backward
algorithm and enforcing the non-degeneracy constraint gives us our complete
method for probability-weighted temporal registration (PTR).

4.1 Dynamic Time Warping as a Graph Algorithm

The structure of the DTW algorithm follows the familiar dynamic programming
approach of iteratively solving each subproblem in a table. In particular, let
C[t, i] denote the cost of the best registration of the first t time steps {θ1, . . . , θt}
to the first i observations {y1, . . . ,yi}. We then have for all t ≤ T and i ≤ n:

C[0, 0] = 0 C[t, 0] = C[0, i] =∞ (1)

C[t, i] = min(C[t, i− 1] + cins(t), C[t− 1, i] + cdel(i), C[t− 1, i− 1] + c(t, i))

where cins(t) denotes the cost of not matching θt to any observation, cdel(i)
the cost of not matching observation yi to any time step, and c(t, i) the cost
of matching θt with yi. The actual registration ι may then be constructed by
traversing this table.

The best temporal registration is the one which maximizes L (ι | Y,Θ), that
is the likelihood of the entire registration given both sequences. Because the
loss function we assumed depends only yi and θt where ιt = i, it satisfies the
Markov property, and thus the joint likelihood is simply

∏T
t=1 L (θt | yιt), and

maximizing this is equivalent to minimizing
∑
− logL (θt | yιt). Substituting

cinsert(t) =∞ cmatch(t, i) = − logL (θt | yi) (2)

in the recurrence above yields C[t, i] = − logL (Θ | Y, ι1...t) where ιt′ ≤ i. By
monotonicity of log, minimizing C[T, n] maximizes L (Θ | Y, ι).

Letting cinsert(t) =∞ ensures that every time step is registered to an obser-
vation, but much of the prior work in robotics further assumes cdelete(i) = 0 [19].
That is, not every observation needs to be considered during registration, and
only the best T observations contribute to model estimation. Not only does this
not match the underlying model, it discards information which could otherwise
be useful for robust parameter estimation. In the next section, we will consider
an alternative, the Viterbi algorithm. But first, it will be convenient to recast the
DTW algorithm as a graph algorithm. This view will become an important step
in unifying and extending all the temporal registration algorithms we consider.

To view DTW as a graph algorithm, we first construct graphs representing
both the time steps and the demonstration. The demonstration simply becomes
a sequential graph of its observations (the demonstration graph). Time steps
encode a more complex relation, but one which can be described by a hidden
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Fig. 3. Discrete-time hidden Markov model in which time steps comprise the discrete
states and observations are those from the demonstrations.
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Fig. 4. (left) Tensor product of the time graph (vertical axis) and demonstration graph
(horizontal axis). Darker edges are more probable and blue vertices show the DTW
temporal registration. (right) Blue vertices show the maximum likelihood temporal
registration, which corresponds to the shortest path in the graph.

Markov model (HMM). To see this, consider the time steps to be the discrete
states, denoted τi, of a time-homogeneous hidden Markov model (HMM) with
observation distributions parameterized by {θ1, . . . , θm} and transition proba-
bilities given by pt,t′ . To enforce a monotonicity constraint, we restrict the state
transitions as shown in Fig. 3(b), and this forms the time graph. Finally, we then
consider the tensor product [26] of these two graphs (see Fig. 4).

Note that unlike the time graph, we omit self-edges in the demonstration
graph, which similar to setting cinsert(t) =∞ above, ensures that every time step
is matched with an observation. We will generalize this constraint in Sec. 4.4.

We next assign to each edge from (t, i) to (t′, i′) a cost as follows:

cDTW((t, i)→ (t′, i′)) =

{
− logL (θt′ | yi′) t 6= t′

0 t = t′
. (3)

Under these edge costs, the DTW registration can be recovered from the short-
est path from (1, 1) to (T, n), where a match occurs whenever the time step
changes along the path. We note that the cost itself will differ from the dynamic
programming approach by the cost of (1, 1), but this constant factor is unim-
portant for the purposes of minimization. Going forward, we will ignore similar
discrepancies by constant factors without note.

4.2 Temporal Registration Using the Viterbi Algorithm

As we alluded to previously, this variant of DTW does not accurately reflect
the underlying HMM because the result may not include some of the observa-
tions. However, there is a similar algorithm which does find the true maximum-
likelihood registration of a sequence of observations to an HMM, namely the
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Viterbi algorithm [24], which has previously been used in task learning and
recognition [9, 16]. This algorithm can be viewed as a specific instance of DTW
with an appropriate choice of costs, but it is more illuminating to describe using
the graph we introduced in the prior section.

To do so, we first need to reparameterize the registration, so that instead of
mapping time steps to observations via ιt, we map observations to time steps
via τi. Then we need only change the edge costs as follows:

c((t, i)→ (t′, i′)) =− logL (τi′ = t′ | τi = t, Y,Θ)

=− log pt,t′ − logL (θt′ | yi′) .
(4)

Recall that pt,t′ is the probability of transitioning from time step t to t′, so this is
not only arguably simpler than the DTW edge costs (3), but correctly considers
transition probabilities (estimated in Sec. 5). Under these edge costs, the Viterbi
registration is again the shortest path from (1, 1) to (T, n), but we consider θt
to be matched with yi whenever (t, i) occurs in this path. In particular, a time
step may be matched with multiple observations, while every observation will
be matched with exactly one time step (see Fig. 4). This coincides with the
underlying HMM model.

To see that the shortest path indeed corresponds to the maximum-likelihood
registration, we again rely on monotonicity and the Markov property as follows:

arg min
τ

n−1∑
i=1

− logL (τi+1 | τi, Y,Θ) = arg max
τ

n−1∏
i=1

L (τi+1 | τi, Y,Θ)

= arg max
τ

L (τ | Y,Θ) .

(5)

However, this approach still suffers from the issues associated with maximum
likelihood approaches, namely local minima and sensitivity to noise.

One question that arises is what shortest path algorithm to use. Because the
edge costs may be negative, Bellman-Ford [3] is a reasonable choice. However, we
can relate this better to DTW and the forward-backward algorithm by noting
that because the demonstration graph is a directed acyclic graph (DAG), so
must be the tensor product graph. Because the graph is acyclic, we need not
perform the multiple passes usually required by the Bellmann-Ford algorithm
thanks to the availability of a topological ordering. With this simplification, the
Bellmann-Ford algorithm may be described by a recurrence:

C(v) =

u→v⊕
e

C(u)⊗ c(e) (6)

where a ⊕ML b = min(a, b) and a ⊗ML b = a + b with initial condition on the
source vertex s ∈ V set to the identity of ⊗, that is R(s) = 1⊗. Expanding
this out again yields the general DTW algorithm. The ML subscripts on these
operators indicate that this choice produces maximum-likelihood estimates, and
in the next section, we will show that simply changing our choice of semiring
[11] (associative ⊕ and ⊗ with the distributive property) effectively yields the
forward-backward algorithm.
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Fig. 5. (left) Tensor product of the time graph (vertical axis) and demonstration
graph (horizontal axis). Darker edges are more probable and shaded vertices show the
distribution of likely registrations in PTR. (right) Modified to exclude degenerate
registrations (K∆ = 2).

4.3 PTR Using the Forward-Backward Algorithm

In contrast to the Viterbi algorithm, the forward-backward algorithm [2] com-
putes not only the most likely temporal registrations, but the posterior probabil-
ities of all possible temporal registrations. Rather than presenting this approach
in its original terms, however, we present an equivalent formulation using a
graph algorithm that is more amenable to further modifications. The graph is
the same as the one used in the previous section and shown in Fig. 4. However,
to implement the forward-backward algorithm, we instead use:

a⊕FB b = − log(e−a + e−b) a⊗FB b = a+ b (7)

which are simply the sum and product of the probabilities in negative log-space,
producing (unnormalized) distributions over registrations given prior observa-
tions. Specifically,

L (τi = t | Θ,y1, . . . ,yi−1) ∝ e−C(t,i) . (8)

To extend this to distributions over registrations given the entire sequence of
observations, one need only compute the value C′(v) of each vertex in the reverse
graph. The likelihood of an observation yi registering to time step t is then:

L (τi = t | Θ, Y ) ∝ e−(C(t,i)+C′(t,i)) . (9)

This view of these algorithms as recurrences over a tensor product graph
enables us to further improve registrations by modifying the graph in Sec. 4.4.

4.4 Non-degenerate Temporal Registration

For many practical use cases, it is desirable to ensure that a sufficient number K∆

of observations are registered to each time step. We say that such registrations
are non-degenerate because if they are subsequently used to estimate covariance
matrices as in prior learning methods [4, 7], this guarantee is necessary for the
problem to be well-posed. Even with other choices of parameters or estimators,
it may be desirable to enforce such a constraint because human demonstrators
naturally perform precise parts of a task more slowly. This can be thought of as
a stronger version of the Itakura parallelogram constraint used for DTW [12].
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This constraint can be enforced by modifying the structure of the graph
used in Fig. 5 to ensure that all paths satisfy the K∆ constraint. An example of
this modified graph structure is shown in Fig. 5. The edge costs must then be
modified similarly for the Viterbi and forward-backward algorithms:

c((t, i)→ (t′, i′)) = −(i′ − i− 1) · log pt,t − log pt,t′ −
i′−1∑
k=i

logL (θt | yk) . (10)

Note that this cost is identical to that given in (4) when i′ = i+ 1, that is, when
the time step does not change.

The observation weights may then be computed from the vertex values using
a similar approach to that used previously for the forward-backward algorithm:

L (τi = t | θ, Y ) = e−C(t,i)−C′(t,i) + (11)

i−1∑
i′=i+1−K∆

e−C(t,i′)−c((t,i′)→(t+1,i′+K∆))−C′(t+1,i′+K∆)

The combination of using the forward-backward algorithm and enforcing the
non-degeneracy constraint gives us our complete method for PTR.

5 Application to Robot Learning from Demonstrations

We apply PTR to the estimation of two different task models from prior work on
robot learning from demonstrations [4, 7]. These models were selected because
they both explicitly require temporal registration. The method of van den Berg
et al. [4] learns a task model encoding parameters of a control policy. The method
of Bowen et al. [7] learns a task model that is used by a sampling-based motion
planner to compute costs for edges in a roadmap such that the shortest path in
the roadmap will accomplish the learned task.

Consider a set of user-provided demonstrations {Y (1), . . . , Y (m)} where each

Y (j) is a sequence {y(j)
1 , . . . ,y

(j)
nj }, where we use a parenthesized superscript to

indicate per-demonstration parameters. We reproduce the core learning algo-
rithm of van den Berg et al. [4] in Algorithm 1 with small notational changes
for parity and to highlight the underlying HMM model. Next consider the mod-
erately abridged implementation of the method of Bowen et al. [7] shown in
Algorithm 2. We focus here on learning the task models; details on implement-
ing the controllers and motion planners using these models are in [4, 7].

Although each of these algorithms operates in a different space, we note that
both fit the general mold of expectation-maximization (EM) methods, interleav-
ing estimation of model parameters θ and latent parameters (τ or ι and R(j)).
More accurately, however, these are maximization-maximization methods, be-
cause their respective registration steps compute the best (in some sense) single
registration given θ rather than a distribution over all possible registrations.

To apply PTR to the methods of van den Berg et al. and Bowen et al.,
we need only replace DTW and extend the model parameter expectation steps
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Algorithm 1 EstimateVanDenBerg2010(T , Y (1), . . . , Y (m))

Initialize R(j) = I and ι
(j)
t =

⌈
|Y (j)|·t

T

⌉
.

while not converged do
for t = 1 to T do
Zt =

{
(y

(j)
i , R(j)) | i = ι

(j)
t

}
Θ̂ ← KalmanSmoother(Z1, . . . , Zn)
for j = 1 to m do

R(j) ← arg maxR L
(
R | Y (j), Θ̂

)
ι̂(j) ← arg maxι L

(
ι | Y (j), Θ̂

)
. Dynamic time-warping

Algorithm 2 Estimate Bowen 2015(T , Y (1), . . . , Y (m))

Initialize τ̂
(j)
i =

⌈
T ·i
|Y (j)|

⌉
.

while not converged do
for t = 1 to T do
Zt =

{
y
(j)
i | τ̂

(j)
i = t

}
θ̂t ←MaximumLikelihoodEstimator(Zt)

for j = 1 to m do

τ̂ (j) ← arg maxτ L
(
τ | Y (j), Θ̂

)
. Viterbi algorithm

of these methods to handle weighted observations to accommodate probability-
weighted temporal registrations. More specifically, when estimating θt, we use

all y
(j)
i , but weight each by its posterior likelihood of being registered to time

step t, ω
(j)
t,i = L

(
τ
(j)
i = t | Y (j)

)
, which is given by (8). This produces a true

expectation-maximization method, and in the method of Bowen et al., yields the
Baum-Welch algorithm, which has the general effect of smoothing the estimation
compared to the maximum likelihood approach, reducing (but not eliminating)
local minima and improving robustness (see results in Sec. 6).

The transition probabilities in the HMM (Fig. 3(b)) may be estimated by
applying Bayes’ rule, yielding:

pt,t′ = L (τi+1 = t′ | τi = t, Y ) =

∑
i,j ω

(j)
t,i ω

(j)
t′,i+1∑

i,j ω
(j)
t,i

. (12)

In the method of van den Berg et al., at each time step t the Kalman update

step can be performed once for each observation y
(j)
i , with weight ω

(j)
t,i applied

by scaling the covariance matrix R(j) of the observation by 1/ω
(j)
t,i . Equivalently,

and more efficiently, a single Kalman update step can be done at each time step
t by combining the weighted observations as follows:

Σ̂t =

∑
i,j

ω
(j)
t,i R

(j)−1

−1 µ̂t = Σ̂t

∑
i,j

ω
(j)
t,i R

(j)−1y
(j)
i
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Fig. 6. Learning a drawing task with reference trajectory shown in gray. (left) Example
demonstrations of the simulated drawing task with medium Gaussian observation noise.
Trajectories learned from these two demonstrations using the DTW-1 (center) and
PTR-3 (right) temporal registration algorithms.

6 Results

We evaluate the impact of PTR by applying it to two previously-developed
robot learning methods that require temporal registration of demonstrations. In
particular, we apply our temporal registration to the robot learning methods of
van den Berg et al. [4] and Bowen et al. [7]. We use Name-K∆ to indicate the
various temporal registration methods (e.g., DTW-1 or PTR-12). Note that when
K∆ = 1, as in DTW-1 or PTR-1, these are equivalent to their unconstrained
variants, DTW and the forward-backward algorithm respectively. Computation
was performed on an Intel Xeon E5-1680 CPU with 8 cores running at 3.40 GHz.

6.1 PTR Applied to the van den Berg et al. Method

We first apply PTR to the method of van den Berg et al. [4], which learns a task
model encoding parameters of a control policy and enables speedups on task
performance. We consider a drawing task and a knot tying task. In both tasks,
the number of time steps T was the length of the shortest demonstration divided
by K∆, which is the maximum number for which a temporal registration exists
and matches the original paper for K∆ = 1.

Simulated Drawing Task For the simulated drawing task, instead of using
human demonstrations, we perturbed a canonical figure eight using one of two
noise models. The goal then, was to recover this canonical motion, allowing
us to empirically evaluate different temporal registration approaches both in
terms of learning time and error. The first noise model is that assumed by the
underlying model, where observations within a demonstration are corrupted by
i.i.d. Gaussian noise as seen in Fig. 6. Results for low, medium, and high noise
amplitudes with various numbers of demonstrations are shown in Fig. 7.

We performed the same experiments with Brownian motion noise, effectively
adding Gaussian velocity noise, as shown in Fig. 8. While this does not match
the assumptions of the underlying model, it produces demonstrations much more
similar to what a human might. Results are shown in Fig. 9.

Under both noise models, our method of PTR exhibited lower error relative
to DTW, particularly with high noise and when only a small number of demon-
strations are available. The improvements were most dramatic when the noise
model matched the underlying method assumptions because noise which violates
the independence assumptions introduces bias that temporal registration alone
cannot correct. Both approaches required comparable learning time.
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Fig. 7. Results for the simulated drawing task with Gaussian observation noise. PTR
exhibited lower error relative to DTW, particularly when only a small number of
demonstrations are available.

Fig. 8. (left) Example demonstrations of the simulated drawing task with high Brow-
nian motion noise. Trajectories learned from these three demonstrations using the
DTW-1 (center) and PTR-3 (right) temporal registration algorithms.

Physical Knot Tying Task Our physical knot tying task was similar to that
described by van den Berg et al. However, it was demonstrated and executed
on the Baxter robot, which has more restrictive dynamics limitations than the
Berkeley Surgical Robot on which the original experiments were performed. As
in the original paper, we divided the task into three phases: an initial loop, a
grasp, and an extraction (see Fig. 1). Unlike in the original paper, we learned
models for all three phases rather than only the first and third. We performed
five demonstrations at 20 Hz of the first two phases and three of the third. These
demonstrations ranged from 16 to 30 seconds in length. For an execution to be
considered successful, we required the robot to tie a slip knot without exceeding
its kinematic or dynamics limitation, including avoiding self-collisions. To eval-
uate methods in the context of van den Berg et al.’s superhuman performance,
we executed the algorithms at progressively greater speeds until the method
failed and recorded the maximum multiple of the average demonstration speed
at which the task was still performed successfully. Results separated by task
phase are shown in Table 1.

A minimum of three samples was used for the non-degenerate variant, which
corresponds to a 0.15 second window. In the first phase of the task, DTW-1
failed first due to incorrect placement of the rope, while PTR-1 and DTW-3 en-
countered self-collisions. Only PTR-3 reached the velocity limits of the robot. In
the second and easiest phase, the cause of failure for every temporal registration
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Fig. 9. Results for the simulated drawing task with Brownian motion noise. PTR ex-
hibited lower error relative to DTW, particularly when only a small number of demon-
strations are available.

Fig. 10. Using the method of Bowen et al. [7] we learned a task wherein the Baxter
robot scooped powder from the yellow container and transferred it into the magenta
one without spilling while avoiding obstacles in the environment.

method was reaching the velocity limits of the robot. However, some methods
resulted in smoother registrations and subsequent motions, permitting overall
faster execution. In the third and most difficult phase, DTW-1 exceeded the
velocity limits of the robot while the other three methods failed to extract the
arm through the newly-formed loop in the rope. In the case of PTR-1, even at
1x demonstration speed, this was the cause of failure because the registration
failed to isolate a crucial part of the task. PTR-3 achieved the highest speedup
for all phases of the knot-tying task, showing the benefits of probability-weighted
temporal registration with the non-degenerate registration feature.

6.2 PTR Applied to the Bowen et al. Method

We next apply PTR to the method of Bowen et al. [7], which learns a task
model that is used by a sampling-based motion planner to compute costs for
edges in a roadmap such that the shortest path in the roadmap will accomplish
the learned task. For task model learning, [7] used the Viterbi algorithm for
temporal registration, so it is this approach we compare against. Similarly, we
set T = 24 to match the original paper.



14 Chris Bowen and Ron Alterovitz

Phase Registration Max Motion Speedup Learning Time (s)

1

DTW-1 2.5 0.40
PTR-1 2.3 0.64
DTW-3 2.4 0.33
PTR-3 3.3 0.52

2

DTW-1 2.2 0.05
PTR-1 3.0 0.35
DTW-3 2.7 0.04
PTR-3 3.1 0.19

3

DTW-1 1.1 0.85
PTR-1 - 0.57
DTW-3 2.0 0.35
PTR-3 3.2 1.20

Table 1. Results for the knot-tying task using the method of van den Berg et al. with
different temporal registration approaches. Motion speedup indicates the maximum
multiple of the average demonstration speed at which the task was still performed
successfully.

Demonstrations Registration Success Learning Time (s)

10
Viterbi-1 80% 2.86
PTR-1 90% 78.64
PTR-12 100% 87.31

5
Viterbi-1 60% 3.16
PTR-1 80% 36.37
PTR-12 90% 36.12

Table 2. Results for the powder transfer task using the method of Bowen et al. [7] with
different demonstration counts and temporal registration approaches. PTR-12 had the
highest success rate, regardless of the number of demonstrations.

We performed a powder transfer task on the Baxter robot shown in Fig. 10,
as specified in [7]. In this task, the robot is to scoop powder onto a spoon
from a source container (the yellow bucket) and transfer it to a destination
container (the magenta thermos) while avoiding obstacles (e.g., the plant on the
table and the white hanging lamp shade). The robot learned the task using the
method and features of Bowen et al. [7] from 10 kinesthetic demonstrations (in
which no obstacles were present). Task models were learned using three different
temporal registration approaches. To evaluate each model, we introduced the
obstacles and randomly sampled scenarios with container positions such that the
transfer would always cross the centerline of the table to ensure each scenario
was challenging. An execution was considered successful if it transferred powder
from one container to the other without spilling. Results are shown in Table 2.

As with the van den Berg method, the use of PTR yielded a measurably
better task model in terms of success rate relative to the Viterbi algorithm for
temporal registration. Learning times for PTR were substantially longer, but
still very reasonable for an off-line process. The primary cause of the failures
that occurred during task execution was slightly missing the cup during the
dumping motion, resulting in spilled powder. We observe that the number of
demonstrations had a marginally greater impact when using the Viterbi algo-
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rithm for registration than when using PTR. As with the method of van den
Berg et al., PTR-12 performed best.

7 Conclusion

Many existing methods for robot learning from demonstrations require regis-
tering a time sequence of observations to a reference model, either for aligning
demonstrations during preprocessing or as an integral part of task model estima-
tion. We introduced probability-weighted temporal registration (PTR), a more
general form of temporal registration that explicitly captures uncertainty in the
registration. Instead of assuming each observation is registered to (at most)
one time step of the reference model like DTW, we use the forward-backward
algorithm to compute probability-weighted assignments and avoid degenerate
registrations. We applied PTR to two learning methods from prior work on both
simulated and physical tasks and showed that incorporating PTR into robot
learning algorithms can yield higher-quality task models that enable faster task
executions and higher task success rates.

In future work, we would like to apply PTR to other robotics algorithms
that require temporal registration and to automatically determine the best non-
degeneracy parameter.
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