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Abstract: Steerable needles can be used in medical applications to reach targets
behind sensitive or impenetrable areas. The kinematics of a steerable needle are non-
holonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature.
In 3D, the needle can be interpreted as an airplane with constant speed and pitch
rate, zero yaw, and controllable roll angle.

We present a constant-time motion planning algorithm for steerable needles
based on explicit geometric inverse kinematics similar to the classic Paden-Kahan
subproblems. Reachability and path competitivity are analyzed using analytic com-
parisons with shortest path solutions for the Dubins car (for 2D) and numerical
simulations (for 3D). We also present an algorithm for local path adaptation using
null-space results from redundant manipulator theory. The inverse kinematics algo-
rithm can be used as a fast local planner for global motion planning in environments
with obstacles, either fully autonomously or in a computer-assisted setting.

1 Introduction

Steerable needles [18] form a subclass of flexible needles that provide steer-
ability due to asymmetric forces acting at the needle tip, for example due to
a beveled surface [18] or a kink near the end of the needle [7]. By rotating
the needle at the base, the orientation of the tip can be changed and hence
the trajectory of the needle can be controlled. Steerable needles differ in this
respect from symmetric flexible needles, which can only be controlled by ap-
plying asymmetric forces at the base [4], not at the tip. The extra mobility
of steerable needles over rigid needles can be harnessed in medical applica-
tions such as brachytherapy [2] and brain surgery [7] to reach difficult targets
behind sensitive or impenetrable areas.
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Fig. 1. Model setup of a steerable needle and a kinematically equivalent airplane
with fixed speed and pitch rate, zero yaw, and controllable roll rate.

Experimental studies [17] show that the motion of steerable needles can be
approximated as having a constant radius of curvature that is independent of
insertion speed. The control inputs for the needle are the insertion speed and
rotation (roll) angle, although for motion planning (the topic of this paper)
insertion speed is often not important. The rotation angle is then the only
real control input and trajectories can be parameterized by insertion depth.
A steerable needle is thus kinematically equivalent to an airplane with fixed
speed and pitch rate, zero yaw, and controllable roll rate (Fig. 1b).

Motion planning for steerable needles is an important problem and has
been studied in several ways in literature. Most studies focus on planar motion,
for which the control input reduces to switching between curve-left and curve-
right. Alterovitz et al. [2, 1, 3] present a roadmap-based motion planning
framework that explicitly incorporates motion uncertainty and computes the
path that is most likely to succeed. Minhas et al. [12] show planning based
on fast duty cycle spinning of the needle, effectively removing the limitation
of a fixed-radius path but requiring continuous angular control input. Kallem
et al. [10] introduce a controller that stabilizes the needle motion to a plane,
allowing practical implementation of planar motion planning methods.

The first 3D motion planning algorithm was introduced by Park et al.
[14, 15] and used diffusion of a stochastic differential equation to generate
a family of solution paths. The authors also describe several extensions to
avoid obstacles. Duindam et al. [6] presented a second 3D motion planning
algorithm that uses fast numerical optimization of a cost-function to compute
feasible needle paths in 3D environments with obstacles.

This paper presents a different solution to the 3D motion planning prob-
lem for steerable needles, based on inverse kinematics. We propose a new
geometry-based algorithm inspired by the Paden-Kahan subproblems in tra-
ditional inverse kinematics algorithms [13]. Just as the Paden-Kahan sub-
problems, our algorithm (Section 3) can be fully described in geometric terms
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of intersecting lines, planes, and circles, and computing the solution simply
requires a few trigonometric functions. We analyze reachability and compet-
itivity of the solution (Section 4) using analytic comparison to the Dubins
car solution and numerical simulations. We also present a method to locally
adapt needle paths using null-motions (Section 5).

The proposed motion planning algorithms find feasible needle paths very
quickly and provide some capability for obstacle avoidance. As the current
accuracy of medical data is limited, these algorithms may be sufficient by
themselves, but we envision them being part of more general global motion
planning systems, as discussed in Section 6.

2 Problem statement and modeling assumptions

2.1 Model parameters and assumptions

Throughout this paper, we only consider the idealized kinematics of the needle
in a static environment. We assume that the motion of the needle is fully
determined by the motion of the needle tip, that the motion of the needle tip is
instantaneously along a perfect circle of constant radius r, and that rotations
of the base are instantly transmitted to rotations of the tip. Experimental
results [17] show that needle materials can be chosen such that the needle
indeed moves along an arc of approximately constant radius, but the effects
of tissue inhomogeneity, friction, and needle torsion can be significant and will
require compensation [10] in practical applications.

Under these assumptions, the motion of the needle is determined kine-
matically by two control inputs: the insertion velocity, denoted v, and the tip
rotation velocity, denoted ω. We present the kinematics model for general v(t)
but remove this redundant degree of freedom in the next section.

Fig. 1c illustrates the model setup. We rigidly attach a coordinate frame
Ψn to the tip of the needle, with axes aligned as in the figure, such that the
z-axis is the direction of forward motion v and needle orientation ω, and the
beveled tip causes the needle to rotate instantaneously around the line parallel
to the x-axis and passing through the point (0,−r, 0).

Following standard robotics literature [13], the position and orientation of
the needle tip relative to a reference frame Ψs can be described compactly by
a 4 × 4 matrix gsn(t) ∈ SE(3) of the form

gsn(t) =

[

Rsn(t) psn(t)
0 1

]

(1)

with Rsn ∈ SO(3) the rotation matrix describing the relative orientation, and
psn ∈ T (3) the vector describing the relative position of frames Ψs and Ψn.

The instantaneous linear and angular velocities of the needle are described
by a twist Vsn ∈ se(3) which in body coordinates Ψn takes the convenient form
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in equivalent vector and matrix notation. The twist relates to gsn as

ġsn(t) = gsn(t)V̂ n
sn(t) (3)

This kinematic model is the same as the unicycle model by Webster et al.
[16]. When the twist is constant, (3) becomes a linear ordinary differential
equation (ODE) that can be integrated as

gsn(t) = gsn(0) exp(tV̂ n
sn) (4)

for which a relatively simple analytic expression exists [13]. In the path plan-
ning algorithms, we construct paths for which V̂ n

sn is piecewise constant and
compute the resulting transformation using this efficient analytic expression.

2.2 Problem statement

The objective of the motion planning algorithms in this paper is to find feasible
paths between given start and goal configurations in the absence of obstacles1.
More precisely, the inputs to the algorithm are an initial needle pose gstart ∈
SE(3) and a desired needle pose ggoal ∈ SE(3). The outputs of the algorithm
are control functions v(·) and ω(·) and a finite end time 0 ≤ T < ∞, such that
the solution gsn(·) of the differential equation (3) with gsn(0) = gstart satisfies
gsn(T ) = ggoal. If no feasible path can be found, the algorithm returns failure.

The kinematics equations (2) and (3) are invariant to time scaling, in the
sense that the path traced out by the needle does not change if the control
inputs v(t) and ω(t) are scaled by the same (possibly time-varying) factor.
Therefore, we can simplify the motion planning problem by assuming without
loss of generality that v(t) ≡ 1, which is equivalent to parameterization by
insertion depth [10, 6]. The insertion time T thus represents the total path

length since
∫ T

0
|v(t)|dt =

∫ T

0
dt = T .

Although motion planning is based on connecting general 3D poses (full
position and orientation), solving a difference in initial or final roll angle is
trivial as this degree of freedom is directly controlled through ω(·). So although
the inputs to the algorithm are general elements of SE(3), we often mainly
focus on path planning between given start and goal position and direction of
the needle, i.e. only considering the z-axis of Ψn. Given a solution from the
start position and direction to the goal position and direction, the full motion
plan from a start pose to a goal pose follows directly by adding the required
roll-rotations to the beginning and end of this solution.

1 Section 5 discusses a way to avoid obstacles using path adaptation.



3D Motion Planning Algorithms for Steerable Needles 5

ω

t0
t1 t2 t3

π π

(a) Planar (2D) path.

ω

t0
t1 t2 t3 t4

θ1

θ2

θ3 =π θ4 =π

(b) Spatial (3D) path.

Fig. 2. Structure of the solution ω(·) for the 2D and 3D motion planning problems.

3 Path planning using inverse kinematics

We present two motion planning solutions based on inverse kinematics, one
for the planar (2D) case and one for the general spatial (3D) case. The motion
planning problem is considered planar if the start position ps, start direction
zs, goal position pg, and goal direction zg are all in the same plane.

In both inverse kinematics solutions, we look for a control input function
ω(·) of a very specific form, namely a function that is zero everywhere except
for a fixed number of Dirac impulses (two in the planar case, four in the spatial
case, see Fig. 2). Geometrically, this means we look for trajectories that are
concatenations of a fixed number of circular segments with radius r: the needle
moves along a circle when ω = 0, and instantaneously changes direction at
the time instants that ω is a Dirac impulse. Furthermore, the magnitudes
of the Dirac impulses in the planar case are constrained to be exactly π,
corresponding to a change in direction between curve-left and curve-right. We
also choose a spatial solution for which the last two impulsive rotations are
π, making the last three segments of the spatial path co-planar as well.

The specific choices in the structure of ω(·) result in geometrically intuitive
solutions that are relatively straight-forward to compute. The simplicity of the
proposed solutions comes at the cost of not necessarily being optimal in terms
of path length or required control effort. Practical implementations should
clearly not use impulsive rotational control and constant insertion speed, but
alternate between pure insertion until the desired depth ti is reached, and
pure rotation to the desired angle θi.

3.1 Inverse kinematics in 2D

We first consider the planar path planning problem with ω(·) as in Fig. 2a.
The relative position of the start and goal are described by two displacements
x and y, their relative orientation by a single angle θ. The purpose of the path
planning algorithm is to find the three insertion depths t1, t2, t3 describing a
feasible needle path from start to goal. Note that the needle travels a distance
ti = rαi when moving along a circle of radius r for αi radians, and hence
we can equivalently look for the three angles αi in Fig. 3. These should be
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Fig. 3. Two geometric solutions for the same planar inverse kinematics problem,
both using sequential bevel-left, bevel-right, bevel-left motions.

such that if we start at ps in the direction zs heading left, move rα1 forward,
turn π, move rα2 forward, turn π, and move rα3 forward, we arrive exactly
at the desired goal pose. The mirrored case starting with a right turn can be
computed similarly.

We can solve for the angles αi by looking at the setup in Fig. 3 and realizing
that the three centers of rotation (marked by × in the figure) form a triangle
with known edge lengths. Using the cosine rule for this triangle, we can write

cos(α2) = 1 −
(x + r − r cos(θ))2 + (y − r sin(θ))2

8r2
(5)

This equation has two solutions for α2, which correspond to the two paths
shown in Fig. 3. With α2 known, the other two angles follow uniquely as

α1 = atan2 (y − r sin(θ), x + r − r cos(θ)) −
1

2
(π − α2) (6)

α3 = θ − α1 + α2 (7)

with atan2 the inverse tangent function solved over all quadrants. Since the
needle can only move forward, angles must be chosen as αi ∈ [0, 2π). The
required insertion distances ti follow immediately as ti = rαi.

3.2 Inverse kinematics in 3D

Now consider the 3D inverse kinematics problem of connecting two general
poses in SE(3) by a valid needle path. We propose one solution using eight
consecutive insert and turn motions as shown in Fig. 2b; an explicit geometric
solution using fewer motions is still an open problem.

The geometry of this solution is illustrated in Fig. 4. The problem is split
into two parts: first, the needle is turned and inserted such that its instanta-
neous line of motion (the instantaneous direction of the needle) intersects the
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Fig. 4. Geometric derivation of an inverse kinematic solution on SE(3).

line describing the goal position and direction. Second, the remaining planar
problem is solved using the solution from Section 3.1.

More precisely, we first choose any point q on the line defined by pg and
zg. This point q will be the intersection point of the two lines defining the
remaining planar problem. With q defined, the needle is first rotated by θ1 =
β1 until its (y, z)-plane contains q. The required angle β1 satisfies

tan(β1) = −
xT

s (q − ps)

yT
s (q − ps)

(8)

which has two solutions β1 that differ by π.
Second, the insertion distance t1 = rβ2 is solved such that the line through

the needle tip in the direction z2 contains the point q. If q is outside the circle
describing the needle motion along β2, two solutions exist, with z2 either
pointing towards (as in the figure) or away from q. These solutions are

β2 = atan2
(

zT
s qv, yT

1 qv

)

± arccos

(

r

|qv|

)

(9)

with qv := q − ps + ry1. No solution exists if q is inside the circle (|qv| < r).
Third, the needle is rotated by θ2 = β3 until pg (and hence the whole line

through q and pg) is contained in the needle’s (y, z)-plane:

tan(β3) = −
xT

2 (pg − p2)

yT
2 (pg − p2)

(10)

which again gives two solutions that differ by π. The remaining angles
β4, β5, β6 (corresponding to the time segments t2, t3, t4) can then be solved
using the 2D planner from Section 3.1.



8 Duindam, Xu, Alterovitz, Sastry, Goldberg

4r
4r

p

q

θa

θb

θc

θe

θe

θd
θd

IK path

Dubins path

(a) Left-straight-left Dubins path. (b) Left-straight-right Dubins path.

Fig. 5. Paths generated by the 2D IK algorithm vs. optimal paths for a Dubins car.

In this algorithm, we have the following degrees of freedom to choose a
solution. First is the choice of the point q: this can be anywhere on the line
containing pg and zg, which means varying q generates a one-dimensional
subspace of possible inverse kinematics solutions. Second, we can choose one
of two possible solutions βi for each of the four angles in equations (8–10) and
(5), resulting in 24 possible combinations. Not all of these choices may give
feasible paths for a given start and end pose, and it is also not directly obvious
which choice will result in the ‘best’ path between the two poses. Nevertheless,
since the inverse kinematics equations can be computed very quickly, one can
simply compute all combinations for a number of choices of q and pick the
best solution, with ‘best’ defined for example using a cost function [6].

4 Reachability and competitivity

To evaluate the quality of the paths generated by the presented inverse kine-
matics (IK) solutions, we study the set of reachable needle poses and com-
petitivity [9, 8] of the computed solutions. Competitivity in this case refers to
the path length of the computed solution; it has no relation to competitivity
in the sense of computational speed (the IK algorithm runs in constant time).

4.1 Reachability and competitivity in 2D

Consider first the solution to the planar problem as described in Section 3.1.
The algorithm will clearly only find a solution if the right-hand side of (5)
has norm less than or equal to one, or geometrically, if the centers of the
circles tangent to the start and goal poses are no farther than 4r apart. This
condition defines the set of reachable relative needle poses.

To describe competitivity of the algorithm for these reachable poses, we
compare the IK solutions to the trajectories generated by allowing an infinite
number of direction changes. In that case, a trajectory can be generated with
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an arbitrary radius of curvature larger than or equal to r, by asymmetrically
cycling between heading-left and heading-right and taking the limit of this
cycling frequency to infinity. This means that in the limit, the needle can
behave like a Dubins car [5] with minimum radius of curvature r.

The optimal path for a Dubins car is known to consist of two circular arcs
with radius r connected by another circular arc or a straight line [5]. For a
given start and end pose, the IK solution only differs from the Dubins path if
the connecting segment for the Dubins path is a straight line; the IK solution
will still contain a (sub-optimal) circular arc. Furthermore, the Dubins path
may start and end with circular arcs in the same direction or in opposite
directions (Fig. 5), whereas the IK solution always starts and ends with a
turn in the same direction. It is intuitively clear that the largest difference in
path length occurs at the border of the reachable space where the three circles
of the IK solution are aligned. In the first case (Fig. 5a), the maximum ratio
of the path lengths is

sup
‖IK path‖

‖Dubins path‖
= sup

θi≥0

rθa + rθb + 2πr

rθa + rθb + 4r
=

π

2
(11)

For the second case (Fig. 5b), we can compute the length of the straight-line
segment q − p as

‖q − p‖2 = 4r2 (2 − sin(θd) − sin(θe))
2

+ 4r2 (cos(θd) − cos(θe))
2

(12)

from which we find that the maximum path length ratio equals

sup
‖IK path‖

‖Dubins path‖
= sup

θi≥0

rθc + 2πr − rθe

rθc + 2rθd + rθe + ‖q − p‖
≈ 1.63 >

π

2
(13)

The degree of competitivity of the 2D IK solution is hence approximately 1.63.
Note that this is a bound on the competitivity that does not take into account
the number of direction changes; for medical applications, this number should
be kept small to avoid excessive tissue damage.

4.2 Reachability and competitivity in 3D

Continuing with the 3D IK solution from Section 3.2, we present a reachability
and competitivity analysis based on numerical simulation. Formal geometric
proofs and bounds of the algorithm are subject of future research; at this
point we do not have a good approximation for the optimal path and simply
compare the IK solutions to the Euclidean distance between the start and
goal positions. Future work could compare the presented solution to the paths
generated by the method of Park et al. [15]. We take q = pg throughout the
analysis; different choices give qualitatively similar results.

First consider Fig. 6. This illustrates the lengths of the IK trajectories
starting at the center of the figure and ending at goal positions in the plane
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Fig. 6. Reachability and relative path lengths obtained using the inverse kinematics
algorithm. The algorithm tries to find a path from the center of the image to each
pixel in the image, with both start and goal direction aimed to the right.

of the figure, with start and goal directions equal and pointing to the right.
The brightness of each pixel indicates the length of the IK path divided by the
Euclidean distance between the start and goal locations: dark colors represent
small ratios (good paths) while light colors represent large ratios (bad paths).
Fig. 6b illustrates several examples of solution trajectories.

A set of reachable states shows up in the figure as the ‘figure-eight’ around
the start location. Points outside this shape cannot be reached for the given
goal direction. The figure also shows a distinction between poses that can be
reached with reasonably short curves (darker region) and poses that require
significantly longer paths (lighter region). This distinction is sharp in the area
in front of the needle (right side of the figure) but is more diffuse for poses
on the sides of the needle (top and bottom of the figure). If we consider com-
petitivity in an informal way, meaning whether the algorithm can generated
paths of reasonable lengths, we can say that the algorithm is competitive in
the darker region of the figure; relative poses that are in the lighter region may
be reachable, but the paths are so unwieldy that they are of little practical
use in our brachytherapy application.

Fig. 7 shows additional plots generated by varying the two remaining de-
grees of freedom in placing the goal pose: the in-plane yaw angle and out-of-
plane pitch angle (the inverse kinematics solution is invariant to roll about
the initial and final needle directions).

The figure shows that as the goal direction is turned away from the
straight-ahead case (change in yaw), the set of reachable and competitive
paths rotates in the same direction while maintaining a roughly similar shape.
As the goal direction is rotated out of plane (change in pitch), the compet-
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Fig. 7. Reachability and relative path lengths as in Fig. 6 for various relative yaw
and pitch angles for the goal pose. Grid lines are 2r units apart.

itive paths near the starting pose disappear until only poses at a significant
distance (three to five times the radius of curvature) are competitive.

In the three-dimensional case, it remains a difficult task to precisely char-
acterize the set of poses that can be reached with a reasonably short path.
Comparing the solutions to the Euclidean distance provides some insight but
no global bound on the solutions: competitivity measures are unbounded when
comparing to the Euclidean distance, since for infinitely close but non-collinear
needle orientations the path length of the IK solution remains finite.

To use the inverse kinematics planner as a local planner in global roadmap-
based planning methods such as the Probabilistic Roadmap method [11], it is
important to characterize the set of goal poses that are reachable from a given
needle pose. Numerical simulations such as those shown in Fig. 7 can be used
to construct an approximation of the set of goal poses that can be reached with
a competitive path (with ‘competitive’ in the informal meaning of ‘reasonably
short path’). This set can be used as the definition of ‘neighborhood’, i.e.
those needle poses that are likely to be connectible and can become edges in
the roadmap if they do not intersect obstacles.

5 Path adaptation using null-motions

The presented inverse kinematics (IK) solution can be computed very quickly
but is generally not the optimal solution in the sense of avoiding obstacles
or minimizing path length or required control effort. Earlier work considered
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Fig. 8. Representation of a needle path as a robot with eight joints, and use of its
null motions to generate a family of solution curves by pulling in different directions.

path planning as a pure numerical optimization problem [6], but in this section
we show how sub-optimal paths such as those generated by the IK planner
can be locally optimized and adjusted using null-motions.

Consider an IK solution between two general 3D needle poses. By con-
struction, this solution describes a path from start to goal consisting of eight
consecutive turning and insertion control actions. We can think of this path
as a redundant serial robot manipulator arm with eight joints (Fig. 8a). Since
the relative pose of the goal is given by six parameters, standard robotics the-
ory [13] tells us that the robot has a two-dimensional space of null-motions,
provided it is not at a singularity. If the joints are moved in this null-motion
space, the shape of the robot (i.e. the shape of the needle path) will change
without changing the pose of the end effector (i.e. the needle tip).

The set of null motions is described by the null space of the geometric
Jacobian J(q) ∈ R

6×8 of the robot, which relates the spatial twist V s
sn to

the joint velocities q̇ as V s
sn = J(q)q̇ [13]. Given the Jacobian, we can change

the shape of the path by changing the joint angles in such a way that q̇ ∈
Null(J(q)) at all times.

Fig. 8b shows an example of how one inverse kinematics solution can be
locally transformed in this way into a family of solution curves. Intuitively,
this set of curves was generated by starting from the IK solution indicated
in the figure (the dashed line), and ‘pulling’ on the curve from several points
laid out in a circle, while holding the start and end pose of the needle fixed.
More precisely, we model the robot as a viscous system with damping in each
joint that counteracts applied forces, and write the governing equations as

q̇ = B(q)JT
i (q)Fi + B(q)JT (q)λ (14)

0 = J(q)q̇ (15)
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with Fi the wrench [13] corresponding to the (known) externally applied
pulling force, Ji(q) the Jacobian of link i at which Fi is applied, λ the required
constraint wrench acting at the tip to constrain its motion, and B(q) > 0
the symmetric positive-definite inverse damping matrix that relates the joint
torques τ to the joint velocities as q̇ = B(q)τ . The first equation relates the
total torque (due to external forces Fi and λ) to the change in the joint an-
gles, the second equation describes the end point constraint that should be
satisfied. Note that these equations do not relate to any actual physical needle
motions and only represent a mathematical procedure.

Substituting (14) into (15), solving for λ, and substituting back into (14)
results in an unconstrained equation for q̇ that no longer contains λ:

q̇ =
(

I − BJT (JBJT )−1J
)

BJT
i Fi (16)

This ODE describes the evolution of q under the influence of an external
wrench Fi and tip constraint Jq̇ = 0. It has a unique solution if B is invertible
and J has full rank (no singularity). Equation (16) projects the velocity BJT

i Fi

due to the wrench Fi along the columns of BJT onto the null space of J . The
matrix B(q) defines a metric on the space of torques that can be chosen in
any appropriate way, e.g. as a function that drives the system away from
configurations that are singular or contain negative-length path segments.

For the example of Fig. 8b, we chose B diagonal with Bjj(q) → 0 as qj → 0
for all joints j describing insertion path segments, thus avoiding negative-
length path segments. We applied a linear force in the middle of the kinematic
chain (link 5), directed toward one of the dots, and integrated (16) over time
to obtain the pod-shaped family of needle paths shown in the figure.

This method of path adaptation can be used in fully automated motion
planning (e.g. to perform gradient descent on some cost function with penalty
costs for obstacle penetration) with changes in q constrained to be null mo-
tions. More directly, for computer-assisted motion planning as described in
Section 6, it can provide the user with an intuitive path adjustment tool sim-
ilar to the control points on a spline curve that can be moved to change its
local shape. Although there is no guarantee this approach will always work, it
provides the user with an additional tool to construct suitable needle paths.

6 Application in computer-assisted motion planning

The inverse-kinematics based motion planning algorithm quickly computes
feasible needle paths and allows the user to focus on specifying higher-level
objectives in terms of start and goal needle poses. Indeed, the main motivation
and reason for computer-assistance in this motion planning problem is the
degree of under-actuation and nonholonomicity, which can be dealt with using
the presented approach.

Nevertheless, the algorithms provide no guarantees for a solution or a
structured incremental way to search for other trajectories in case of failure
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(a) Planning problem with
marked intermediate pose.

(b) First motion plan us-
ing inverse kinematics.

(c) Second motion plan us-
ing inverse kinematics.

Fig. 9. Difficult motion planning problem solved using semi-automated planning.

due to obstacles or other complications. The only possibilities are to choose
different parameter settings or, for the null-motion based method, to try ap-
plying external forces at a different point or in a different direction.

When it comes to global motion planning, computers are severely limited
in cognitive abilities and can require large amounts of computation power and
time to solve problems that are easy for humans (experiments using Rapidly
Exploring Random Trees required up to half an hour of computation time
[19]). Consider for instance the motion planning problem of Fig. 9a: for the
reader it is instantly clear that any feasible path should pass near the interme-
diate point marked in the figure, but computer-based planners such as those
described in the previous sections may not be able to find a feasible solution.

One way to solve this problem is to combine human cognitive abilities
for global planning with computer power for local planning. If a human path
planner indicates the desired intermediate point as in Fig. 9a, the automatic
motion planning algorithms can be applied to solve the resulting two subpaths.
Finding a path from the start location to the intermediate location is trivial,
as is finding a path from the intermediate location to the goal. Figs. 9b and
9c show the resulting subpaths obtained using the inverse kinematics planner;
comparable results are obtained when using direct numerical optimization [6].
For this example, the algorithms are not sensitive to the exact position and
orientation of the intermediate pose, but the approach could be extended to
iterate over several intermediate poses near the one indicated.

7 Conclusions and future work

This paper presents constant-time geometrically motivated motion planning
algorithms for steerable needles and airplanes with constant speed and pitch
rate, zero yaw, and controllable roll. The first algorithm uses inverse kine-
matics (IK) to explicitly compute feasible paths in 3D, the second uses null-
motions to adapt paths to avoid obstacles or achieve other objectives.
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As briefly discussed, these algorithms can be used as components in larger
computer-assisted motion planning schemes that use limited user-input to
guide automatic local planning. In future work, we also plan to use the IK
algorithm as a local planner in (autonomous) roadmap-based algorithms such
as PRM [11]. Recent results using Rapidly-Exploring Random Trees [19] are
encouraging, although computation requirements are several orders of magni-
tude larger than with direct optimization-based algorithms [6].

Another main future direction of our research is to find a systematic way
to include uncertainty during motion planning. Our application of steerable
needles contains several sources of uncertainty, including needle motion un-
certainty, tissue flexibility and friction, and sensing inaccuracies. These un-
certainties should be taken into account in the motion planning stage, as dis-
cussed and implemented for the 2D case in previous work [3]. The presented
fast local motion planning algorithm can be used to quickly test connectivity
and iteratively study the effect of perturbations.

Finally, reachability and competitivity analyses were presented for the 2D
and 3D inverse kinematics algorithms. In future work, we plan to extend the
analysis of the 3D algorithm to provide bounds on the competitivity compared
to the optimal shortest-path solution. A promising direction is the comparison
with paths generated by the approach of Park et al. [15].
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3. R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion roadmap: A
sampling framework for planning with Markov motion uncertainty. In Proceed-

ings of Robotics: Science and Systems, June 2007.
4. S. P. DiMaio and S. E. Salcudean. Needle steering and motion planning in soft

tissues. IEEE Transactions on Biomedical Engineering, 52(6):965–974, June
2005.



16 Duindam, Xu, Alterovitz, Sastry, Goldberg

5. L. E. Dubins. On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American

Journal of Mathematics, 79(3):497–516, July 1957.
6. V. Duindam, R. Alterovitz, S. Sastry, and K. Goldberg. Screw-based motion

planning for bevel-tip flexible needles in 3D environments with obstacles. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 2483–2488, May 2008.

7. J. A. Engh, G. Podnar, D. Kondziolka, and C. N. Riviere. Toward effective
needle steering in brain tissue. In Proc. 28th Annu. Intl. Conf. IEEE Eng. Med.

Biol. Soc, pages 559–562, 2006.
8. Y. Gabriely and E. Rimon. Algorithmic Foundations of Robotics VI, volume 17

of STAR, chapter Competitive Complexity of Mobile Robot On Line Motion
Planning Problems, pages 155–170. Springer-Verlag, 2005.

9. C. Icking and R. Klein. Competitive strategies for autonomous systems. In
Modelling and Planning for Sensor Based Intelligent Robot Systems, pages 23–
40, 1995.

10. V. Kallem and N. J. Cowan. Image-guided control of flexible bevel-tip needles. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 3015–3020, April 2007.
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