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Abstract— Steerable needles that are able to follow curvi-
linear trajectories and steer around anatomical obstacles are
a promising solution for many interventional procedures. In
the lung, these needles can be deployed from the tip of a
conventional bronchoscope to reach lung lesions for diagnosis.
The reach of such a device depends on several design param-
eters including the bronchoscope diameter, the angle of the
piercing device relative to the medial axis of the airway, and the
needle’s minimum radius of curvature while steering. Assessing
the effect of these parameters on the overall system’s clinical
utility is important in informing future design choices and
understanding the capabilities and limitations of the system.
In this paper, we analyze the effect of various settings for these
three robot parameters on the percentage of the lung that the
robot can reach. We combine Monte Carlo random sampling of
piercing configurations with a Rapidly-exploring Random Trees
based steerable needle motion planner in simulated human lung
environments to asymptotically accurately estimate the volume
of sites in the lung reachable by the robot. We highlight the
importance of each parameter on the overall system’s reachable
workspace in an effort to motivate future device innovation and
highlight design trade-offs.

I. INTRODUCTION

Robotically-deployed steerable needles that are capable of
following curvilinear trajectories have the potential to im-
prove clinical outcomes in numerous applications including
lung nodule biopsy [1], liver radiofrequency ablation [2],
and direct therapeutic delivery to brain tumors [3]. These
systems offer several advantages, including increased biopsy
accuracy through real-time trajectory correction, multi-target
reach from a given insertion point, and the ability to steer
around anatomical obstacles to access clinical targets that are
not easily accessible with traditional rigid tools.

Given the high incidence of lung cancer in the United
States (over 220,000 new cases per year [4]) and the lim-
itations of existing diagnostic tools [5], [6], developing a
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Fig. 1. A visualization of the reachable workspace (green) and unreachable
regions (red) for two designs of the steerable needle robot in a human lung
environment with anatomical obstacles. The top and bottom rows represent
results for the most constrained design and most capable design we consider,
respectively.

steerable needle system for this application could signifi-
cantly improve early diagnosis and patient survival. One such
previously described system consists of three components: a
conventional bronchoscope for airway navigation, a piercing
mechanism that exits the airway into the lung parenchyma,
and a steerable needle for target biopsy [1]. Developing
an understanding of how the different system components
contribute to the overall reachable workspace of such a
device is important in assessing their clinical utility and in
informing future innovation. In this paper, we evaluate the
effect of several design choices for such a bronchoscopically-
deployed robotically-actuated steerable needle system on its
reachable workspace. By doing so, we quantitatively evaluate
the clinical accessibility capabilities of the system.

The reachable workspace of a robot can be described by
all points in the environment that can be reached by the
end effector of the robot via a collision-free motion starting
from a valid start configuration. If a target falls within this
workspace, then there exists some sequence of collision-
free configurations of the robot that ultimately reach it. For
the lung robot system, the environment we are interested in
includes the lung parenchyma, which contains anatomical
obstacles. Several key parameters influence the reachable
workspace including the bronchoscope radius which affects
the airway depth that can be accessed, the piercing angle



through the airway wall into the parenchyma that determines
the starting pose for needle deployment, and the minimum
radius of curvature of the steerable needle which allows the
needle to steer around obstacles.

There has been work done towards improving the indi-
vidual system parameters mentioned above. For example,
bronchoscope development has resulted in ultrathin broncho-
scopes measuring just 3.0 mm in diameter [7], with several
studies in cadavers showing improved lung access using
these devices [8]. Likewise, extensive research efforts have
developed steerable needles that can curve with lower radius
of curvature, with the newest designs able to achieve a radius
of curvature in gel of 60.1 mm and even lower in specific ex-
vivo tissue [9], [10], [11]. However, little work has been done
to quantify how characteristics of the different parameters
contribute to overall lung access in a single system. Fig. 1
shows a visualization of what this reachable workspace looks
like for two different system designs in a lung environment,
highlighting the importance of good design choices.

In this work, we use Monte Carlo random sampling of
piercing poses and a motion planning algorithm for the steer-
able needle inspired by the Rapidly-exploring Random Trees
(RRT) algorithm [12] to characterize the clinical reachable
workspace of a bronchoscopically-deployed steerable needle
lung biopsy robot. We specifically analyze the contributions
of three system parameters to overall lung reachability and by
doing so highlight system requirements and areas for future
improvement. We use motion planning to approximate the
reachable workspace which guarantees that all points in the
reachable space are accessible with a collision-free trajectory
with relation to the surrounding anatomy (i.e., blood vessels,
bronchial tree, lung fissures, lung pleura). This is critical for
clinical evaluation of this device. We also use a measure of
reachable redundancy to determine the robustness of system
designs and lung regions to piercing variability.

To our knowledge, this is the first evaluation of the
reachable workspace for a steerable needle system in human
lungs.

II. RELATED WORK

Our work to determine the effects of various parameters
on the system’s overall capabilities parallels work done in
the space of design optimization. The concept of design
optimization for medical robots has been applied to various
systems, including surgical robotic arm carriers [13], ankle
rehabilitation systems [14], [15], surgical tool manipulators
[16], [17], novel surgical robots [18], exoskeletons [19], and
soft robots [20], to name a few. Kuo et al. [21] published
a meta-analysis of design considerations for minimally inva-
sive surgical robots.

Concentric tube continuum robots, a class of surgical
robots, have received significant attention in design opti-
mization because of their many design parameters [22].
Many of the related works have considered design with
respect to anatomically defined environmental constraints
[23], [24], [25], [26], including lung environments [27],
[28]. The approaches across these papers include geometric

Fig. 2. The three components of the robot along with the design parameters
considered in this paper.

approaches, genetic algorithms, simulated annealing [29],
and even human-in-the-loop approaches [30].

Several works on design optimization leverage motion
planning because it allows for accurate consideration of
obstacles in the workspace throughout the entire robot de-
ployment [18], [23], [27]. For this reason, we also use
motion planning in our analysis. There has been substantial
work regarding motion planning for steerable needles [31],
[32], [33], including approaches that consider optimization
[34], inverse-kinematics [35], replanning during needle de-
ployment [36], [37], [38], and uncertainty in the motion
[39], [40]. Xu et al. were the first to introduce an RRT-
based motion planner for needle steering [41]. Kuntz et
al. introduced an RRT-based motion planner for a three-
stage lung robot system with a steerable needle [42]. More
recently, Pinzi et al. introduced an algorithm for needle
steering based off of the Adaptive Fractal Tree algorithm [43]
and optimized geometric Hermite curves that incorporates
heading constraints for both the start and goal poses [44]. The
motion planner used in this work builds off of the approach
introduced in Patil et al. [45].

Evaluating the workspace of a robot can help describe the
capabilities of a system or evaluate design choices [28], [46].
Burgner-Kahrs et al. characterize the reachable workspace of
a concentric tube robot in free space without considering any
specific environment or obstacles [47]. They use Monte Carlo
sampling to capture a comprehensive distribution of the joint
space inspired by prior work [48]. Adebar et al. evaluated
the reachable workspace of a steerable needle system for
radiofrequency ablation in a simulated human liver model.
They concluded that 50mm minimum radius of curvature
needles would be sufficient for the specific operation, and
argued for future innovation towards this goal [11]. Inspired
by this work, we characterize the reachable workspace for
a steerable-needle robot in simulated human lungs with real
anatomical obstacles. We parameterize the system by three
parameters and consider each of their effects on the system’s
reachable workspace.

III. PROBLEM DEFINITION

The bronchoscopically-deployed steerable needle system
we consider here is composed of three components: a
bronchoscope, a piercing mechanism, and a steerable needle



(as shown in Fig. 2). We capture the space in which the
system operates by segmenting the anatomy from a preop-
erative CT scan. The CT scan is represented as a three-
dimensional array consisting of voxels of fixed size. The
segmentation process can be done automatically or manually,
and the resulting segmented anatomy is represented as three-
dimensional arrays of the same size as the original CT scan
with voxel coordinates indicating the presence or absence of
the segmented anatomy in the space. We define the set of
obstacles O ∈ R3 by the union of all voxels that make up
major blood vessels, airways, lung fissures separating lung
lobes, and the space outside of the pleural boundary in the
segmentation arrays.

A. Design Space

We model the bronchoscope by its axial cross-sectional
radius rb, which determines the depth it can reach in the
airways. The piercing mechanism is modeled as a straight
stylet with a fixed length ls and a maximum achievable exit
angle relative to the medial axis of the airway, θmax, that
can be achieved by flexing the distal tip of a bronchoscope.
The steerable needle is modeled by a minimum radius of
curvature rcurve and a maximum insertion length ln.

In this work, we assume the lengths of the stylet and
steerable needle are fixed. We define the design d of a
system as a vector consisting of the bronchoscope’s radius,
the piercing mechanism’s maximum actuation angle, and the
steerable needle’s minimum radius of curvature,

d = {rb, θmax, rcurve}. (1)

B. Workspace

For a given system design, we evaluate the quality of the
design by measuring the reachable workspace as a percentage
of the lung volume. We define the set of all reachable
configurations given a design d from a given piercing start
pose p ∈ SE(3) as

Qd(p) = (q1, q2, ..., qn) (2)

where qi ∈ SE(3) is a configuration of the steerable needle
modeled by the pose of its tip. Each qi ∈ Qd is collision-
free and is reachable by some collision-free path. The start
configuration p is sampled from a set of m piercing start
poses, Pd, for design d.

We define the set of points in discrete image space that a
system design can reach as W (d) ⊂ R3, which consists of all
positions in the lung parenchyma that are reachable by the tip
of the deployed steerable needle. Since the configurations in
Qd are in a continuous space, we define a function Voxelize()
to convert their positional coordinates to discrete image
space. This gives us a countable set of voxel coordinates
in three-dimensional image space {v1, v2, ..., vk} , vi ∈ R3

that are accessible via a collision-free path by the system.
Formally,

W (d) =
⋃
p∈Pd

Voxelize(Qd(p)). (3)

The total space that is potentially accessible is defined by
the voxels inside the lung parenchyma, excluding voxels in
O and in the airways. This set of voxels is represented by
V ⊂ R3. Therefore, the percent of reachable voxels Xd for
a specific system design d is determined by

Xd =
|W (d)|
|V |

∗ 100. (4)

C. Reachable Redundancy

Given the challenging nature of millimeter-level accuracy
in piercing during diagnostic bronchoscopy, the more robust
a system is to minor changes, the more likely it is that a
procedure will be successful. Similar to Burgner-Kahrs et
al. [47], we define a notion of reachable redundancy that
measures for each voxel the number of unique piercing start
configurations from which it is reachable, given a design d.
We use this notion to measure the robustness of a design and
of lung region access to variability in the piercing start pose.
This redundancy is measured by the following equation

Id(x, y, z) =
∑
p∈Pd

{
1, if(x, y, z) ∈ Voxelize(Qd(p))

0, otherwise
(5)

where Id is a three-dimensional array with the same dimen-
sions as the CT scan.

IV. METHOD

In this section, we present our process for determining the
reachable workspace given a system design.

A. Lung Anatomy Dataset

To assess the effect of bronchoscope diameter, piercing
angle, and needle minimum radius of curvature on the sys-
tem’s reachable workspace, we simulate device deployment
in human lungs. We downloaded CT scans from the Lung
Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) image collection [49], [50], a public
database for medical image analysis available in The Cancer
Imaging Archive (TCIA) [51]. We selected a subset of 35
CT scans with a series identifier of “NLST TLC VOL B30F”
due to the stated relationship to the National Lung Screening
Trial (NLST) study from 2011 [52]. We excluded scans with
poorly visible lung anatomy, and then randomly selected 5
scans from those remaining for inclusion in our study. Table
I shows the characteristics of the CT scans.

To identify viable piercing poses and to provide an en-
vironment with obstacles for the needle motion planner, we
segmented lung anatomy using the method in Fu et al. [53].
The bronchial tree, major blood vessels, and lung pleura were
segmented automatically. Lung fissures separating lung lobes
were manually segmented in 3D Slicer [54]. We labeled all
voxels making up these anatomical tissues and outside of
the lung pleural boundary as obstacles in O. Fig. 3 shows
an example of the environment with the obstacles.



TABLE I
DATASET CHARACTERISTICS.

LIDC-IDRI Identifier CT Dimensions (pixels) Voxel Dimensions (mm) Voxels in the Lung Parenchyma (|V |)
LIDC 297 (512, 331, 497) 0.5507 x 0.5507 x 0.7 29,123,470
LIDC 344 (503, 411, 510) 0.6875 x 0.6875 x 0.7 25,123,852
LIDC 487 (376, 420, 512) 0.4609 x 0.4609 x 0.7 28,003,772
LIDC 524 (408, 428, 512) 0.5313 x 0.5313 x 0.7 25,752,601
LIDC 525 (429, 390, 512) 0.5371 x 0.5371 x 0.7 27,423,786

B. Generating Reachable Needle Configurations

Using the motion planner described in [42], we randomly
sample m piercing start poses along the airway wall for each
system design. This set of piercing start poses is Pd. This
set represents a subset of all possible piercing poses in the
airway that are accessible by a bronchoscope of the specified
radius rb and are within the maximum achievable piercing
angle θmax. We determine bronchoscope accessibility by
comparing rb with the radius of each airway lumen. Fig. 4
shows the differences between the reach of the three different
bronchoscope radii considered.

We evaluate Qd for all piercing start configuration p ∈ Pd
using the RRT expansion without an explicit goal con-
figuration. We use the RRT-based steerable needle motion
planner described in [45]. The motion planner builds a tree
in configuration-space from a given start pose where nodes
are reachable collision-free end effector poses and edges
are collision-free motions between configurations under the
kinematic constraints of the needle set by the minimum
radius of curvature rcurve and insertion length ln. A needle
pose is considered collision-free if it is at least some distance
from its nearest-neighbor obstacle voxel. The minimum
distance from an obstacle is defined by the radius of a
sphere inscribing a voxel, and is determined according to
the dimensions of voxels in each CT scan.

Since we expand the RRT without a goal, Qd is an
unordered set of all nodes in the tree, not necessarily any
specific motion plan. By not specifying a goal, we allow the
algorithm to expand the tree in all possible directions while
obeying the kinematic constraints of the system.

The motion planner is implemented using the Motion

Fig. 3. A sample lung environment showing the segmented anatomy that
includes the pleural boundary (gray), major blood vessels (red), airway (tan),
and lung fissures that separate lung lobes (blue). These serve as obstacles to
the motion planner and create a challenging environment where maximizing
reachability will depend on the system design.

Fig. 4. Effect of bronchoscope diameter on the accessible airway depth
(bronchoscope radius, rb, from left to right: 2.5mm, 2.0mm, 1.5mm).

Planning Templates (MPT) library [55] and Nigh [56], a
library for efficient nearest-neighbor search.

C. Computing Reachable Workspace and Reachable Redun-
dancy

To determine the percentage of the lung, Xd, that is reach-
able for a given design, we first need to calculate W (d) using
(3). To do so, we run the needle motion planner for t seconds
per piercing pose and record all points in configuration space
that are reached in that time. Given the nature of the RRT,
we are guaranteed to never over approximate the reachable
workspace of the system. Additionally, the RRT expansion
asymptotically approaches the true reachable workspace as
more time passes.

We convert from continuous configuration space to dis-
crete image space using Voxelize(). This is done by de-
termining which voxel contains the continuous positional
coordinate of each needle tip configuration. Thus, we count
a voxel as reachable if the RRT expansion by the motion
planner reaches a point within that specific voxel. These
voxels represent the points in the lung that are reachable
via a collision-free path.

We dilate the reachable workspace of the system to
approximate 6mm diameter nodules around reachable vox-
els. The sphere size is motivated by the smallest nodule
that is considered clinically significant [57]. The dilation
is done in voxel space using a cuboid inscribed by a
6mm diameter sphere centered at the reachable voxel. This
voxel neighborhood is appropriately sized with relation to
the voxel dimensions of each specific CT scan. For each
reachable voxel, we consider its neighboring voxels within
this diagnostic region of interest as reached. This reflects the
clinical scenario where a successful biopsy need not access
the nodule center. This set of reachable dilated voxels is
W (d). We determine V by counting voxels within the pleural
boundary that are not in O, and then calculate Xd using (4).

We calculate the reachable redundancy of a design d
for a specific voxel v by counting the number of piercing



Fig. 5. Estimated percentage of reachable lung for all 27 robot designs, averaged across the five lung environments.

poses whose RRT expansion contains v, as defined in (5).
This allows us to define the robustness of a design d by
evaluating the number of voxels with a redundancy score
above a certain threshold. We can also use this redundancy
score to identify the robustness of access to specific lung
regions under piercing pose variability.

D. Convergence
We performed a convergence analysis on the estimated

percentage of the lung that is reachable for a design d
to determine the values for the number of piercing start
configurations, m, and for the time of RRT expansion per
start configuration, t. We define convergence as a 1% change
or less in the estimated percentage of the lung that is
reachable. We increased the number of start configurations
by an increment of 1000 and the time allotted to the RRT
by an increment of 10 seconds, starting from m = 1000 and
t = 10 seconds, respectively. We determined that m = 5000
and t = 30 seconds resulted in convergence for both the most
constrained and most capable system designs we consider.

V. RESULTS

We evaluate the reachable workspace in 5 human
lung environments using all permutations of the follow-
ing parameter settings: rb ∈ {2.5mm, 2.0mm, 1.5mm},
θmax ∈ {30 degrees, 45 degrees, 60 degrees}, and rcurve ∈
{200mm, 100mm, 50mm}. These values are informed by
existing hardware and literature and are meant to capture
a wide range of capabilities for the three individual system
components. This leads to a total of 27 unique system
designs per lung. The stylet maximum insertion length and
the needle maximum insertion length are set to 15mm and
135mm, respectively, for all simulations. All experiments
were performed on a PC with two 3.4 GHz Intel Xeon E5-
1680 processors (16 cores total) with 64GB RAM running
Ubuntu 18.04.4.

A. Reachability
The estimated percentage of the lung that is reachable

across the 27 different design parameter settings and aver-
aged across the 5 lung environments is shown in Fig. 5. The

most capable system design we considered is able to reach
approximately 89.3% of the lung volume on average.

In general, as the design becomes more capable (i.e.
thinner bronchoscope, greater piercing angle limit, curvier
needle), more of the lung becomes reachable. However, the
trend is not strictly linear, with some design considerations
and trade-offs becoming apparent.

One visible trend is that increased piercing angle capabil-
ities can often overcome limitations in the bronchoscope’s
diameter. This can be seen when comparing any design
with {rb = 2.0mm, θmax = 45 degrees} to a design with
{rb = 1.5mm, θmax = 30 degrees} within the same mini-
mum radius of curvature setting.

Similarly, a decrease in bronchoscope diameter can make
up for lower piercing angle capability. This can be seen when
comparing a design with {rb = 1.5mm, θmax = 30 degrees}
to a design with {rb = 2.5mm, θmax = 45 degrees} within
the same minimum radius of curvature value.

(a) 18.8% of the target space is reachable (green) with the
most constrained system design d = {rb = 2.5mm, θmax =
30 degrees, rcurve = 200mm}. Uncolored regions in the lung are
unreachable (81.2%).

(b) 15.8% of the target space is unreachable (red) with the
most capable system design d = {rb = 1.5mm, θmax =
60 degrees, rcurve = 50mm}. Uncolored regions in the lung are
reachable (84.2%).

Fig. 6. Visualization of the reachable and unreachable workspace of two
system designs.



Another way to visualize the results of the reachable
workspace analysis is to generate 3D representations of
the segmented anatomy and color each voxel based on the
system’s ability to reach it or not. This helps identify the
specific regions of the lung that are reachable, and also the
regions that remain challenging to reach for even the most
capable systems.

Fig. 6a shows the reachable workspace of the most con-
strained design {rb = 2.5mm, θmax = 30 degrees, rcurve =
200mm} while Fig. 6b shows the unreachable space
of the most capable design {rb = 1.5mm, θmax =
60 degrees, rcurve = 50mm} in our analysis. The uncolored
space in the lung parenchyma represents the unreachable
space and reachable space for the two designs, respectively.
Fig. 1 shows both the reachable and unreachable regions to-
gether. These results show that posterior and inferior regions
are easily accessible, and that increased device capabilities
allow for more comprehensive reach of these regions in
addition to access to the middle lung lobe. However, the
upper lobes, where a majority of lesions present in patients,
are challenging to reach even for the most capable design.

Ideally, we would want 100% of the lung to be reachable.
However, analyzing specific lung region access could be used
to visualize a given system design’s reach on a per-patient
basis and determine if a target lesion falls within this space.

The above results included the dilation using 6mm diame-
ter spheres around each reachable voxel, as described earlier.
When we loosen this restriction to consider lesions that are
10mm in diameter, we see approximately 93% reachability
on average across the five lung environments for the system
design {rb = 1.5mm, θmax = 60 degrees, rcurve = 50mm}.

B. Redundancy

The reachable redundancy metric serves as a way to
measure the robustness of a design and of access to specific
lung regions given piercing pose variability. As formalized
earlier, we assign every voxel in the reachable lung space
a value corresponding to the number of piercing start poses
that are able to reach it using a specific system design.

Fig. 7. A visual representation of the reachable redundancy metric on scan
LIDC525 for the most constrained system design (top row) and most capable
system design (bottom row). White indicates higher reachable redundancy
score on a per-design basis.

Fig. 7 shows a visual depiction of the reachable redun-
dancy on scan LIDC525 after the dilation for 6mm diameter
nodules. The whiter the voxel the higher the reachable
redundancy values, with black indicating zero reach per
voxel. The top row represents the reachable redundancy for
the most constrained system design, {rb = 2.5mm, θmax =
30 degrees, rcurve = 200mm}, and the bottom row represents
the reachable redundancy for the most capable system design,
{rb = 1.5mm, θmax = 60 degrees, rcurve = 50mm}. The
constrained design has a higher maximum redundancy count
because it explores less of the workspace and therefore
repeatedly reaches the same confined regions. The three
slices from left to right show views from the transverse
plane, sagittal plane, and coronal plane, respectively. The
lung regions that are most robust to variability in the piercing
pose are generally in the posterior and inferior regions, while
the upper lobes are less robust to piercing variability. This
is consistent with the results in Fig. 6a and Fig. 6b.

VI. CONCLUSION

We presented a method for evaluating the clinical reach-
able workspace of a bronchoscopically-deployed steerable
needle lung biopsy robot. We used Monte Carlo random
sampling to capture a large subset of possible piercing sites
in the airways, and used an RRT-based motion planner to
assess the reachability of several system designs, taking into
consideration anatomical obstacles. We introduced a method
for specific lung region access evaluation that could be used
to visualize a system design’s reach on a per-patient basis.
We showed that the most capable design we considered
(which to our knowledge is not yet feasible in hardware) is
able to reach approximately 89.3% of the lung parenchyma
on average when considering 6mm diameter nodules, and
93% when considering 10mm diameter nodules.

We showed that the upper lung lobe regions, which are
known to be challenging to reach and are the site of roughly
60% of lung cancer presentations, remain the most challeng-
ing to reach for the system we considered. These findings
show that novel approaches may be necessary to address
these limitations. Coupling commercial robotic systems that
have shown improved reach in these regions [58], [59] with
enhanced puncturing mechanisms and curvier needles may
be a worthwhile effort.

These results provide insight into the trade-offs and
importance of several device parameters. For example, it
appears that increased piercing angle capabilities are more
meaningful for overall reach than a thinner bronchoscope.

In the future, we plan to perform this analysis in simulation
with varying needle length values and in lung phantom
models with a real bronchoscopic system. We plan to assess
the fidelity of our simulated results when compared to the
experimental results where effects like tissue deformation or
shearing could play an important role in limiting reachability.
We also plan to model more of the system parameters,
such as bronchoscope maneuverability, so as to better reflect
clinical capabilities.
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