
Robotics: Science and Systems 2019
Freiburg im Breisgau, June 22-26, 2019

1

Toward Asymptotically-Optimal Inspection Planning
via Efficient Near-Optimal Graph Search

Mengyu Fu∗, Alan Kuntz∗, Oren Salzman†, and Ron Alterovitz∗
∗Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Email: {mfu,adkuntz,ron}@cs.unc.edu
†Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Email: osalzman@andrew.cmu.edu

Abstract—Inspection planning, the task of planning motions
that allow a robot to inspect a set of points of interest, has
applications in domains such as industrial, field, and medical
robotics. Inspection planning can be computationally challenging,
as the search space over motion plans grows exponentially with
the number of points of interest to inspect. We propose a
novel method, Incremental Random Inspection-roadmap Search
(IRIS), that computes inspection plans whose length and set of
successfully inspected points asymptotically converge to those
of an optimal inspection plan. IRIS incrementally densifies a
motion planning roadmap using sampling-based algorithms, and
performs efficient near-optimal graph search over the resulting
roadmap as it is generated. We demonstrate IRIS’s efficacy on
a simulated planar 5DOF manipulator inspection task and on
a medical endoscopic inspection task for a continuum parallel
surgical robot in cluttered anatomy segmented from patient CT
data. We show that IRIS computes higher-quality inspection plans
orders of magnitudes faster than a prior state-of-the-art method.

I. INTRODUCTION

We consider the problem of inspection planning, or cover-
age planning [1, 19]. Here, we consider the specific setting
where we are given a robot equipped with a sensor and
a set of points of interest (POI) in the environment to be
inspected by the sensor. The problem calls for computing
a minimal-length motion plan for the robot that maximizes
the number of POI inspected. This problem has a multitude
of diverse applications, including industrial surface inspec-
tions in production lines [43], surveying the ocean floor by
autonomous underwater vehicles [3, 20, 26, 52], structural
inspection of bridges using aerial robots [4, 5], and medical
applications such as inspecting patient anatomy during surgical
procedures [32], which motivates this work.

Naı̈vely-computed inspection plans may enable inspection
of only a subset of the POI and may require motion plans
orders of magnitude longer than an optimal plan, and hence
may be undesirable or infeasible due to battery or time
constraints. In medical applications, physicians may want
to maximize the number of POI inspected for diagnostic
purposes. Additionally, the procedure should be completed as
fast as is safely possible to reduce costs and improve patient
outcomes, especially if the patient is under anesthesia during
the procedure. For example, a robot assisting in the diagnosis
of the cause of a pleural effusion (a serious medical condition
which causes the collapse of a patient’s lung) will need to

Fig. 1: Inspection planning in human anatomy. Top Left: The
Continuum Reconfigurable Incisionless Surgical Parallel (CRISP)
robot [2, 38] is composed of needle-diameter tubes assembled into
a parallel structure inside the patient’s body (in which a tube uses
a snare system to grip a tube with a camera affixed to its tip)
and then robotically manipulated outside the body, allowing for
smaller incisions and faster recovery times compared to traditional
endoscopic tools (which have larger diameters). Top Right: The
CRISP robot in simulation inspecting a collapsed lung, a scenario
segmented from a CT scan of a real patient with this condition.
The visualization shows the robot (orange), the lungs (pink), and the
pleural surface visible (green) and not visible (blue) by the robot’s
camera sensor in its current configuration. Bottom: Our method, IRIS,
constructs a tree representing collision-free configurations (orange
nodes) and motions (solid lines) of the robot. For each node, the
robot (orange) can see points of interest (yellow) on the segmented
anatomy (blue). IRIS then searches over an implicit graph structure
(dashed lines) to compute asymptotically-optimal inspection plans.

visually inspect the surface of the collapsed lung and chest
wall inside the body in as short a time as possible (see Fig. 1).
We note that it may not be possible to inspect some POI due
to obstacles in the anatomy and the kinematic constraints of
the robot. Our goal is to compute high-quality inspection plans
that maximize the number of POI inspected, and of the motion
plans that inspect those POI we compute a shortest plan that
is kinematically feasible and avoids obstacles.

Inspection planning is computationally challenging because
the search space is embedded in a high-dimensional config-

uration space X (space of all parameters that determine the
shape of the robot) [10, 33, 34]. Even finding the shortest
plan between two points in X that avoid obstacles (without
reasoning about inspection) is computationally hard.1 If we
want a minimum-length motion plan that maximizes the
number of POI inspected, our problem is accentuated as we
have to simultaneously reason about the system’s constraints,
motion plan length, and POI inspected.

There are multiple approaches to computing inspection
plans. Optimization-based methods locally search over the
space of all inspection plans [4, 7]. Decoupled approaches first
independently select suitable viewpoints and then determine a
visiting sequence, i.e., a motion plan for the robot that realizes
this sequence [11, 17]. Finally, recent progress in motion
planning [28] has enabled methods to exhaustively search over
the space of all motion plans [6, 27, 41] thus guaranteeing
asymptotic optimality, a key requirement in many applications,
including medical ones. Roughly speaking, asymptotic opti-
mality for inspection planning means these methods produce
inspection plans whose length and number of points inspected
will asymptotically converge to those of an optimal inspection
plan, given enough planning time.

Of all the aforementioned methods, only algorithms in the
latter group provide any formal guarantees on the quality
of the solution. This guarantee is achieved by attempting
to exhaustively compute the set of Pareto-optimal inspection
plans embedded in X . In our setting, the set of Pareto-optimal
inspection plans is the minimal set of inspection plans such
that each plan is either shorter or has better coverage of the
POI than any other inspection plan2. Unfortunately, this comes
at the price of very long computation times as the search space
is exponential in the number of POI.

To this end, we introduce Incremental Random Inspection-
roadmap Search (IRIS), a new asymptotically-optimal
inspection-planning algorithm. IRIS incrementally constructs
a sequence of increasingly dense roadmaps—graphs embed-
ded in X wherein each vertex represents a collision-free
configuration and each edge a collision-free transition be-
tween configurations—and computes an inspection plan on the
roadmaps as they are constructed (see Fig. 2). Unfortunately,
even the problem of computing an optimal inspection plan on
a graph (and not in the continuous space) is computationally
hard. To this end, our key insight is to compute a near-optimal
inspection plan on each roadmap. Namely, we compute an
inspection plan that is at most 1 + ε the length of an optimal
plan while covering at least p-percent of the number of POI
(for any ε ≥ 0 and p ∈ (0, 1]). This additional flexibility
allows us to improve the quality of our inspection plan in an
anytime manner, i.e., the algorithm can be stopped at any time
and return the best inspection plan found up until that point.

1Computing the shortest plan for a point robot moving amidst polyhedral
obstacles in 3D is NP-hard, and many variants of the general motion planning
problem are PSPACE-hard. For further details, see [22].

2More formally, a plan P connecting two configurations q,q′ ∈ X is said
to be Pareto optimal in our setting if any other plan connecting q to q′ is
either longer or does not inspect a point visible to P .

Fig. 2: Overview of the IRIS algorithmic framework

We achieve this by incrementally densifying the roadmap and
then searching over the densified roadmap for a near-optimal
inspection plan—a process that is repeated as time allows.
By reducing the approximation factor between iterations, we
ensure that our method is asymptotically optimal.

The key contribution of our work is a computationally-
efficient algorithm to compute provably near-optimal inspec-
tion plans on graphs. By pruning away large portions of the
search space, this algorithmic building block enables us to
dramatically outperform Rapidly-exploring Random Tree Of
Trees (RRTOT) [6]—a state-of-the-art asymptotically-optimal
inspection planner. Specifically, we demonstrate the efficacy
of our approach in simulation for a continuum robot with
complex dynamics—the needle-diameter Continuum Recon-
figurable Incisionless Surgical Parallel (CRISP) robot [2, 38],
working in a medically-inspired setting involving diagnosis of
a pleural effusion (see Fig. 1).

II. RELATED WORK

A. Sampling-based motion planning

Motion planning aims to compute a collision-free motion for
a robot to accomplish a task in an environment cluttered with
obstacles [22, 34, 37]. A common approach to motion planning
is by sampling-based algorithms that construct a roadmap. Ex-
amples include the Probabilistic Roadmaps (PRMs) [29] (for
solving multiple queries) and the Rapidly-exploring Random
Trees (RRTs) [35] for solving single queries. These methods,
and many variations thereof, are probabilistically complete—
namely the likelihood that they will find a solution, if one
exists, approaches certainty as computation time increases.

Recent variations of these methods, such as PRM* and
RRT* [28], improve upon this guarantee by exhibiting asymp-
totic optimality—namely that the quality of the solution
obtained, given some cost function, approaches the global
optimum as computation increases. Roughly speaking, this is
achieved by increasing the (potential) edge set of roadmap ver-
tices considered as its size increases [28, 50]. One such algo-
rithm is the Rapidly-exploring Random Graphs (RRGs) [28]
which will be used in our work. RRG combines the explo-
ration strategy of RRT with an updated connection strategy
that allows for cycles in the roadmap. It requires solving
the two-point boundary value problem [34], which is only
available for some robotic systems (including ours).

Guaranteeing asymptotic optimally can come with heavy
computational cost. This inspired work on planners that trade
asymptotic optimality guarantees with asymptotic near opti-
mality (e.g., [36, 39, 47]). Asymptotic near optimality states
that given an approximation factor ε ≥ 0, the solution obtained
converges to within a factor of (1+ ε) of the optimal solution
with probability one, as the number of samples tends to in-
finity. Relaxing optimality to near optimality allows a method
to improve the practical convergence rate while maintaining
desired theoretic guarantees on the quality of the solution.

B. Inspection planning

Many inspection-planning algorithms, or coverage planners,
decompose the region containing the POI into multiple sub-
regions, and then solve each sub-region separately [19]. These
methods have limitations, however, such as when occlusions
play a significant role in the inspection [16], or when kinematic
constraints must be considered [14].

Other approaches simultaneously consider all POI. One
approach decouples the problem into the coverage sampling
problem (CSP) and the multi-goal planning problem (MPP),
and solves each independently [4, 11, 14, 16, 17]. In CSP,
a minimal set of viewpoints that provide full inspection
coverage is computed. In MPP, a shortest tour that connects
all the viewpoints is computed. These corresponds to solving
the art gallery problem and the traveling salesman problem,
respectively. Several of these variants have been shown to be
probabilistically complete [16], but none provide guarantees
on the quality of the final solution.

The set of viewpoints and the inspection plan itself can also
be generated simultaneously. Papadopoulos et al. propose the
Random Inspection Tree Algorithm (RITA) [41]. RITA takes
into account differential constraints of the robot and computes
both target points for inspection and the trajectory to visit
the targets simultaneously. Bircher et al. propose Rapidly-
exploring Random Tree Of Trees (RRTOT) which constructs a
metatree structure consisting of multiple RRT* trees [6]. Both
methods, which were shown to be asymptotically optimal,
iteratively generate a tree, in which the inspection plan is
enforced to be a plan from the root to a leaf node. However,
each inspection plan does not consider configurations from
other branches in the tree which may cause long planning
times. This motivates our RRG-based approach.

C. Path planning on graphs

Planning a minimal-cost path on a graph is a well studied
problem. When the cost function has an optimal substructure
(namely, when subpaths of an optimal path are also optimal),
efficient algorithms such as Dijkstra [13], A* [23] and the
many variants there-of can be used. However, in certain
settings, including ours, this is not the case. For example
Tsaggouris and Zaroliagis [53] consider the case where every
edge has two attributes (e.g., cost and resource), and the cost
function incorporates the attributes in a non-linear fashion.

Inspection planning also bears resemblance to multi-
objective path planning. Here, we are given a set of cost

functions and are required to find the set of Pareto-optimal
paths [42]. Unfortunately, this set may be exponential in
the problem size [15]. However it is possible to compute
a fully polynomial-time approximation scheme (FPTAS) for
many cases [54]. For additional results on path-planning with
multiple-objectives or when the cost function does not have an
optimal substructure, see e.g., [9, 45] and references within.

III. PROBLEM DEFINITION

In this section we formally define the inspection planning
problem. The robot operates in a workspace W ⊂ R3 amidst
a set of obstacles Wobs ⊂ W . The robot’s configuration q is
a d-dimensional vector that uniquely defines the shape of the
robot (including, for example, rotation angles and translational
extension of all joints). The set of all such configurations is
the configuration space X . The geometry of the robot is a
configuration-dependent shape Shape(q) ⊂ W and we say
that q ∈ X is collision free if Shape(q) ∩ Wobs = ∅. In
this work we define a motion plan for the robot as a path P
in X , which is represented as a sequence of n configurations
{q0, . . . ,qn−1} (vertices) connected by straight-line segments
(edges) in X . And we say that P is collision free if all
configurations along P (vertices and edges) are collision free.
We assume that we have a distance function ` : X × X → R
and denote the length of a path P as the sum of the distances
between consecutive vertices, i.e., `(P) :=

∑
i `(qi,qi−1).

We assume that the robot is equipped with a sensor S
and we are given a set of k points of interest (POI) I =
{i1, . . . , ik} in W . We model the sensor as a mapping S :
X → 2I , where 2I is the power set of I and S denotes
the subset of I that can be inspected from each configura-
tion. By a slight abuse of notation, given a path P we set
S(P) :=

⋃n−1
i=0 S(qi) and note that in our model, we only

inspect I along the vertices of a path.

Definition 1: A point of interest i ∈ I is said to be covered
by a configuration q ∈ X or by a path P if i ∈ S(q) or if
i ∈ S(P), respectively. In such a setting, we say that q (or P)
covers the point of interest i.

Given a start configuration qs ∈ X , POI I, and a sensor
model S, the inspection planning problem calls for computing
a collision-free path P starting at qs which maximizes |S(P)|
while minimizing `(P). Note that this is not a bicriteria
optimization problem—our primary optimization function is
maximizing the coverage of our path. Out of all such paths
we are interested in the shortest one.

IV. METHOD OVERVIEW

In this section we provide an overview of IRIS—our
algorithmic framework for computing asymptotically-optimal
inspection plans. A key algorithmic tool in our approach is
to cast the continuous inspection planning problem (Sec. III)
to a discrete version of the problem where we only consider
a finite number of configurations from which we inspect
the POI, and a discrete set of feasible movements between
those configurations. Thus, we start in Sec. IV-A by formally

defining the graph inspection problem and then continue in
Sec. IV-B to provide an overview of how IRIS builds and
uses such graphs. We then describe the method in detail in
Sec. V, and in Sec. VI show that IRIS’s solution converges to
the length and coverage of an optimal inspection path.

A. Graph inspection problem

Similar to the (continuous) inspection problem, a graph
inspection problem is a tuple (G, I,S, `, vs) where G = (V, E)
is a motion-planning roadmap (namely, a graph embedded
in X , in which every vertex v ∈ V is a configuration and every
edge (u, v) ∈ E denotes the transition from configuration u
to v), I and S are defined as in Sec. III, ` : E → R denotes
the length of each edge in the roadmap, and vs is the start
vertex (corresponding to the start configuration qs). A path P
on G is represented by a sequence of vertices vi ∈ V such
that P = {v0, . . . , vn−1}, v0 = vs and (vi, vi+1) ∈ E . It is
important to note that there can be loops in a path, so it is
possible that vm = vk for m 6= k. The length and coverage
of P are defined as the total length of P ’s edges and the
set of all points inspected when traversing P , respectively.
Namely, `(P) :=

∑n−2
i=0 ` (vi, vi+1) and S(P) := ⋃v∈P S(v).

The optimal graph inspection problem calls for a path P ∗ that
starts at vs and maximizes the number of points inspected. Out
of all such paths, P ∗ has the minimal length. Finally, a path
is said to be near-optimal for some ε ≥ 0 and p ∈ (0, 1] if
|S(P)|/|S(P ∗)| ≥ p and `(P) ≤ (1 + ε) · `(P ∗).

B. Overview of IRIS

Our algorithmic framework, depicted in Fig. 2, interleaves
sampling-based motion planning and graph search. Specifi-
cally, we incrementally construct an RRT T rooted at qs

which implicitly defines a corresponding RRG G. All edges
in T are checked for collision with the environment during its
construction (so the roadmap is guaranteed to be connected)
while all the other edges of G are not explicitly checked for
collision. Lazy edge evaluation, common in motion-planning
algorithms [8, 24, 12, 46], allows us to defer collision detection
until absolutely necessary and reduce computational effort.
This is critical in our domain of interest where computing
Shape() typically dominates algorithms’ running times [40].

The roadmap G = (V, E) induces the subset of the POI that
can be inspected, denoted as IG :=

⋃
v∈V S(v). Given two

approximation parameters ε ≥ 0 and p ∈ (0, 1], we compute
a near-optimal inspection path for the graph-inspection prob-
lem (G, IG ,S, `, vs) by casting the problem as a graph-search
problem on a different graph GS (to be defined shortly).

As we add vertices and edges to T incrementally, the
roadmap G is incrementally densified. In addition, we tighten
approximations by decreasing ε and increasing p between
iterations. As we will see (Sec. VI), this will ensure that IRIS
is asymptotically optimal.

V. METHOD

In this section we detail the different components of IRIS.
Sec. V-A and V-B describe how we construct a roadmap and

then search it, respectively. After describing in Sec V-C how
we modify the approximation parameters used by IRIS, we
conclude in Sec. V-D with implementation details.

A. Roadmap construction
We construct a sequence of graphs embedded in X . Specif-

ically, denote the RRT constructed at the i’th iteration as Ti
defined over the set of vertices Vi. We start with an empty
tree rooted at qs and at the i’th iteration sample a random
configuration, compute it’s nearest neighbor in Ti, and extend
that vertex toward the random configuration. If that extension
is collision free we add it to the tree. If not, we repeat this
process (see [31, 34] for additional details regarding RRT).

The tree Ti implicitly-defines an RRGGi = (Vi, Ei) defined
over the same set of vertices where every vertex is connected
to all other vertices within distance ri. Here, we define ri
as in [49, Thm. IV.5] which will allow us to prove that our
approach is asymptotically optimal (see Sec. VI).

B. Graph inspection planning
We use the RRG described in Sec. V-A to define a graph

inspection problem, and then compute near-optimal inspection
paths over this graph. Before describing how we compute near-
optimal inspection paths, we first describe how we compute
optimal paths given a graph inspection problem.

1) Optimal planning: Given a graph inspection prob-
lem (G, IG ,S, `, vs), we compute optimal inspection paths by
formulating our inspection problem as a graph-search problem
on an inspection graph GS := (VS , ES). Here, vertices are
pairs comprised of a vertex u ∈ V in the original graph
and subsets of IG . Namely, VS = V × 2IG , and note
that |VS | = O

(
|V| · 2|IG |

)
. An edge e between vertices (u, Iu)

and (v, Iv) exists if (u, v) ∈ E and Iu∪S(v) = Iv . If it exists,
its cost is simply `(u, v).

Any (possibly non-simple) path PG in the original graph G
from vs to u can be represented by a corresponding
path PGS in the inspection graph GS , from (vs,S(vs)) ∈ VS
to (u,S(PG)) ∈ VS , and `(PG) = `(PGS). Thus, our
algorithm will run an A*-like search from (vs,S(vs)) ∈ VS
to any vertex in the goal set Vgoal = {(v, IG)|v ∈ V}. An
optimal inspection path is the shortest path between (vs,S(vs))
and any vertex in Vgoal. For a visualization, see Fig. 3. Note
that here we assume the graph G is connected and that the set
of points to be inspected is IG . This implies that an optimal
inspection path always exists.

We can speed up this naı̈ve algorithm using the notion
of dominance, which is used in many shortest-path algo-
rithms (see, e.g., [48]). In our context, given two paths P, P ′

in our original roadmap G that start and end at the same
vertices, we say that P dominates P ′ if `(P) ≤ `(P ′)
and S(P) ⊇ S(P ′). Clearly, P is always preferred over P ′.
Thus, when searching GS , if we compute a shortest path to
some node (u, Iu) of length `u, we do not need to consider
any path of length larger than `u from all vertices (u, I ′u)
such that I ′u ⊆ Iu. For pseudo-code describing a general A*-
like search algorithm to optimally solve the graph-inspection
problem, see Alg. 1 without lines 17-27.

a, ∅ c, {1}

b, {0}
d, {1}

1 2

2
3

{0, 1}

{1}

{0}

∅ c

b

ad

c

b

ad

c

b

ad

c

b

ad

Fig. 3: Computing optimal inspection paths on graphs by casting a
graph-inspection problem (bottom) to a graph-search problem (top).
Grey layers corresponds to the set of all vertices in VS that share the
same set of points inspected. Edges connecting vertices in the same
(different) layer are depicted in dashed (dotted) lines, respectively.
The start is (a, ∅) and the goal set Vgoal contains all vertices in the
top layer. Notice that the optimal path (blue) visits vertex a twice.

P

{3}
{2}
{1}
{0}
∅

{0, 1}
{0, 2}
{0, 3}
{1, 2}
{1, 3}
{2, 3}
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{0, 1, 2, 3}
{1, 2, 3}

Length
`

In
sp
ec
te
d
p
oi
nt
s

`/(1 + ε)

(a) Dominance (b) (ε, p)-dominance

Fig. 4: Visualization of the notion of dominating paths by considering
a path P from vs to some vertex u as a two-dimensional point
(`(P),S(P)). Here IG = {0, 1, 2, 3} and P is depicted using the
purple circle with `(P) = ` and S(P) = {2, 3}. (a) All paths from vs
to u that are dominated by P (solid red), (b) All paths from vs to u
that are ε, p-dominated by P . Paths that are ε, 1-dominated by P
and that are 0, p-dominated by P for p = 60% are depicted in solid
blue and dashed red, respectively. Dashed blue lines depict paths that
are ε, p-dominated by P for ε > 0 and p = 60%.

While path domination may prune away paths in the open
list of the A*-like search, this algorithm is hardly practical due
to the exponential size of the search space (recall that |VS | =
O(|VS | · 2|IG |)). In the next sections, we show how to prune
away large portions of the search space by extending the notion
of dominance to approximate dominance.

2) Near-optimal planning: Let P, P ′ be two paths in G that
start and end at the same vertices and let ε ≥ 0 and p ∈ (0, 1]
be some approximation parameters.

Definition 2: We say that path P ε, p-dominates path P ′

if `(P) ≤ (1 + ε) · `(P ′) and |S(P)| ≥ p · |S(P) ∪ S(P ′)|.
Note that it is possible that both P ε, p-dominates P ′

and P ′ ε, p-dominates P . For a visualization of the notions
of dominance and the approximate dominance, see Fig. 4.

Intuitively, approximate dominance allows to dramatically
prune the search space by only considering paths that can sig-
nificantly improve the quality (either in terms of length or the
set of points inspected) of a given path. When pruning away
(strongly-) dominated paths, it is clear that they cannot be
useful in the future. However, if we prune away approximate-
dominated paths, we need to efficiently account for all paths

Length
` ` + `(e)

P

P̃
P + e

In
sp
ec
te
d
p
oi
nt
s

PP = (P, P̃)

PP + e

{3}
{2}
{1}
{0}
∅

{0, 1}
{0, 2}
{0, 3}
{1, 2}
{1, 3}
{2, 3}
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{0, 1, 2, 3}
{1, 2, 3}

P̃ + e

(a) Extending a path pair

P̃2

P̃1

P1

P2

PAP of PP1 ⊕ PP2

Length
`1

In
sp
ec
te
d
p
oi
nt
s

PP2 = (P2, P̃2)

PP1 = (P1, P̃1)

`2˜̀
1

˜̀
2

{3}
{2}
{1}
{0}
∅

{0, 1}
{0, 2}
{0, 3}
{1, 2}
{1, 3}
{2, 3}
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{0, 1, 2, 3}
{1, 2, 3}

(b) Subsuming a path pair

Fig. 5: Depiction of operations on path pairs. (a) PP extended by
an edge e = (u, v) with S(v) = {2}. (b) PP1 subsuming PP2.
Note that P1 is the achievable path of PP1 ⊕ PP2 thus only the
potentially-achievable path is explicitly marked.

that were pruned away in order to bound the quality of the
solution obtained. We do this using the notion of potentially-
achievable paths or PAP’s.

Definition 3: A potentially-achievable path (PAP) P̃ to
some vertex u ∈ V is a pair (˜̀, Ĩ) such that ˜̀ ≥ 0 and
S(u) ⊆ Ĩ ⊆ IG . By a slight abuse of notation, we extend the
definitions of `(·) and S(·) such that `(P̃) = ˜̀and S(P̃) = Ĩ.

It may seem that a PAP is simply a path but note (as the
name PAP suggests) that we do not require that there exists
any path P from vs to u such that `(P) = `(P̃) and S(P) =
S(P̃). It merely states that such a path may exist.

We now use PAP’s to define the notion of a path pair:

Definition 4: Let P and P̃ be a path and a PAP from vs to
some v ∈ V such that `(P̃) ≤ `(P) and S(P̃) ⊇ S(P). Their
path pair is PP := (P, P̃) and we call P and P̃ the achievable
and potentially-achievable paths of PP, respectively.

Let us define operations on PAP’s and on PP’s, visualized
in Fig. 5. The first operation we consider is extending a
PAP P̃u by an edge e = (u, v), denoted as P̃u + e. This can
be thought of as appending e to P̃u, had it existed and thus
accounting for the length `(e) and additional coverage S(v).
Formally, extending P̃u + e yields a PAP P̃v such that
`(P̃u) = `(P̃v) + `(e) and S(P̃u) = S(P̃v)∪S(u). Extending
the path pair PPu = (Pu, P̃u) by the edge e = (u, v) (denoted
as PPu+ e) simply extends both Pu and P̃u by e. This yields
the path pair PPv = (Pv, P̃v) where `(Pv) = `(Pu) + `(e),
S(Pv) = S(Pu) ∪ S(v) and P̃v = P̃u + e.

The second operation is subsuming a path pair by an-
other one which can be thought of as constructing a PAP
that dominates the PAPs of both path pairs. Formally, Let
PP1 = (P1, P̃1) and PP2 = (P2, P̃2) be two path pairs such
that both connect the start vertex vs to some vertex u ∈ V .
The path pair defined by PP1 subsuming PP2 is

PP1 ⊕ PP2 := (P1, (min{`(P̃1), `(P̃2)},S(P̃1) ∪ S(P̃2))).

We now define the notion of bounding a path pair which
will be crucial for ensuring near-optimal solutions:

Definition 5: A path pair PP := (P, P̃) is said to be ε, p-
bounded for some ε ≥ 0 and p ∈ (0, 1] if P p, ε-dominates P̃ .

{0, 2}

{1}

{0}

∅ a

db

d

c

e

b, {0}
1

a, ∅

c, {1}

d, ∅
2

e, {0, 2}

f, {1, 2}
1

1 1

3

PP1 = (P1, P̃1)

PP2 = (P2, P̃2)

(a)

{0, 2}

{1}

{0}

∅ a

db

d

c

e

b, {0}
1

a, ∅

c, {1}

d, ∅
2

e, {0, 2}

f, {1, 2}
1

1 1

3

PP1 = (P1, P̃1)

PP2 = (P2, P̃2)

(b)

{0, 2}

{1}

{0}

∅ a

db

d

c

e

b, {0}
1

a, ∅

c, {1}

d, ∅
2

e, {0, 2}

f, {1, 2}
1

1 1

3

PP1 = (P1, P̃1)

PP2 = (P2, P̃2)

(c)

{0, 2}

{1}

{0}

∅ a

db

d

c

e

b, {0}
1

a, ∅

c, {1}

d, ∅
2

e, {0, 2}

f, {1, 2}
1

1 1

3

PP1 = (P1, P̃1)

PP2 = (P2, P̃2)

(d)

Fig. 6: Visualization of Alg. 1 initialized with ε = 2/3 and p = 1/2 (only the relevant parts of the inspection graph are depicted). The
search starts from (a, ∅) with the trivial PAP of length zero and no points inspected. (a) Two paths (red and blue) are extended from the
start node to (b, {0}) and (c, {1}) with path pairs PP1 and PP2, respectively (the PAP’s of each path have the same length and coverage
as the paths themselves). (b) Blue path extended to (d, {0}) with `(P1) = `(P̃1) = 2 and S(P1) = S(P̃1) = {0}. (c) Red path extended
to (d, {1}) with `(P2) = `(P̃2) = 3 and S(P2) = S(P̃2) = {1}. Here, PP1 ⊕ PP2 ε, p-dominates PP2 and the red path is discarded
and PAP1 is updated to have length 2 and coverage {0, 1} (d) Blue path extended to vertex (e, {0, 2}). Here, `(P1) = `(P̃1) = 3 and
S(P1) = {0, 2}, S(P̃1) = {0, 1, 2}. The algorithm terminates with the path a − b − d − e whose length is 3 and has coverage of {0, 2}.
Notice that the path a− c− d− e (not computed) is optimal as its length is four and it has complete coverage. The computed path is within
the bounds ensured by the approximation factor p and ε.

To compute a near-optimal inspection path (Alg. 1 and
Fig. 6), we extend each path considered by our search al-
gorithm to be a path pair and use this additional data to
prune away approximately-dominated paths. Similar to A*, our
algorithm uses two priority queues OPEN and CLOSED to
track the nodes considered by the search. It starts by inserting
the start vertex (vs,S(vs)) to the OPEN list together with the
path pair PPs = (Ps, Ps) (here Ps is a path containing only
start vertex vs) (line 2).

Our algorithm proceeds in a similar fashion to A*—we
pop the most promising node n = (u, Iu,PPu) from OPEN
(line 4) and move it to CLOSED (line 5). If the PAP of this
node is in the goal set Vgoal (line 6), we terminate the search
and return the achievable path of PPu (line 7). If not, we
consider all neighboring edges e of u in G and extend the
node n (line 9). This is akin to computing n’s neighbors in GS .

At this point our algorithm deviates from the standard A*
algorithm. For each newly-created node (v, Iv,PPv) we check
if there exists a node in CLOSED that dominates it. If so,
this node is discarded (lines 11-14). If no such node exists in
the CLOSED list, we check if there exists a node in OPEN
that may subsume it. If so, that node is updated and this
node is discarded (line 17-21). Finally, we check if this node
can subsume nodes that are in OPEN. If so, such nodes are
discarded and this node is updated. (line 24-27).

It is straightforward to see that (i) the first path pair is ε, p-
bounded and hence by induction (ii) all path pairs in the search
are ε, p-bounded. Furthermore, when the algorithm terminates,
it has found a valid solution whose potentially-achievable path
is in the goal set. This yields the following corollary:

Corollary 1: Alg. 1 computes a path P that ε, p-dominates
the optimal inspection path P ∗. Namely, that `(P) ≤ (1+ ε) ·
`(P ∗) and |S(P)| ≥ p · |S(P) ∪ S(P ∗)|.

C. Tightening approximation factors

Recall that our algorithm starts with approximation param-
eters p0 and ε0. We endow our algorithm with a tightening
factor f ∈ (0, 1], and at the i’th iteration we set our ap-

Algorithm 1 Near-optimal inspection planning
Input: (GS , vs,Vgoal, ε, p)

1: CLOSED← ∅
2: OPEN← (vs,S(vs),PPs)

3: while OPEN 6= ∅ do
4: (u, Iu,PPu)← OPEN.extract min()
5: CLOSED.insert(u, Iu,PPu)
6: if S(P̃u) ∈ Vgoal then . P̃u is the PAP of PPu

7: return Pu . Pu is the achievable path of PPu

8: for e = (u, v) ∈ neighbors(u,G) do
9: (v, Iv,PPv)← extend((u, Iu,PPu), e)

10: valid = True
11: for (v, I ′v,PP′v) ∈ CLOSED do
12: if P ′v dominates Pv then
13: valid = False
14: break
15: if !valid then
16: continue
17: for (v, I ′v,PP′v) ∈ OPEN do
18: if PP′v ⊕ PPv is ε, p-bounded then
19: (v, I ′v,PP′v)← (v, I ′v,PP′v ⊕ PPv)
20: valid = False
21: break
22: if !valid then
23: continue
24: for (v, I ′v,PP′v) ∈ OPEN do
25: if PPv ⊕ PP′v is ε, p-bounded then
26: OPEN.remove(v, I ′v,PP′v)
27: (v, I,PPv)← (v, I,PPv ⊕ PP′v)

28: OPEN← (v, Iv,PPv)

29: return NULL

proximation parameters as pi = pi−1 + f · (1 − pi−1) and
εi = εi−1 + f · (0 − εi−1). As we will see (Sec. VI), the

tightening allows our method to achieve asymptotic optimality.

D. Implementation details

1) Lazy computation in graph inspection planning: We run
our search algorithm on G (Alg. 1) without checking if its
edges are collision free or not (recall that only the edges
of T were explicitly checked for collision). Once a solution
is found, we start checking edges one by one until the entire
path was found to be collision free or until one edge is found
to be in collision, in which case we remove it from the edge
set. This approach is common to speed up motion-planning
algorithms when edges are expensive to evaluate [12, 21].

2) Node extension in graph inspection planning: Any opti-
mal inspection path can be decomposed into a sequence of ver-
tices that improve the coverage of the path called milestones.
It is straightforward to see that an optimal inspection path will
(i) terminate at a milestone and (ii) connect a pair of milestones
via a shortest path in G. Following this observation, instead of
extending each path P from a vertex u by all outgoing edges
in G (Alg. 1, line 8), we run a Dijkstra-like search from u and
collect all first-met vertices that can be milestones.

3) Heuristic computation in graph inspection planning:
Recall that A* orders nodes in the OPEN list according to their
computed cost-to-come added to a heuristic estimate of their
cost to reach the goal. The heuristic function that we use for
vertex (u, Iu) is computed as follows: we run a Dijkstra search
on G from u and consider the vertices Vu encountered during
the search. We terminate when

(⋃
v∈Vu S(v)

)
∪Iu = IG and

use the maximal distance between u to any node in Vu as our
admissible [23] heuristic function.

VI. THEORETICAL GUARANTEES

We provide a proof sketch showing that, asymptotically,
the length and coverage of the path produced by IRIS will
converge to the length and coverage of an optimal inspection
path. For ease of exposition, we state our results for the
following simplified variant of IRIS where we start with an
empty roadmap G0 and some initial approximation factors
ε0 and p0. At each iteration i we (i) sample a collision-free
configuration qi uniformly at random from X , (ii) add qi to
roadmap Gi and connect it to all samples within radius ri, and
(iii) compute a near-optimal inspection path on this roadmap
with parameters εi and pi. (Namely, instead of implicitly
constructing an RRG, we implicitly construct a PRM. While
not identical, both roadmaps exhibit similar properties which
are typically easier to show for PRMs.)

Roughly speaking, the connection radius ri was chosen to
ensure that as i→∞ an optimal inspection path may be traced
arbitrarily well by the roadmap {Gi}∞i=1. The approximation
factors were chosen such that εi > εi+1, pi < pi+1, lim

i→∞ εi = 0
and lim

i→∞ pi = 1. This will ensure that as i→∞ the inspection
path found will converge to an optimal inspection path in Gi.

A key result that we rely on is probabilistic exhaustivity
(see, [49, Thm. IV.5] and [25, 51]). Roughly speaking, it is the
notion that given a sufficiently large set of uniformly sampled
configurations, any path can be traced arbitrarily well.

(a) Planar manipulator (b) Pleural effusion

Fig. 7: Simulation scenarios. (a) A 5-link planar manipulator (orange)
inspects the boundary of a square region (blue) where rectangular
obstacles (red) may block the robot and occlude the sensor. The
sensor’s field of view (FOV) is represented by the yellow region.
S(q) are the points on the boundary in the sensor’s unobstructed FOV,
and are shown in purple. (b) The pleural effusion inspection scenario
involves the CRISP robot (orange) inspecting the inner surface of a
pleural cavity, including the POI that are covered (green) and non-
covered (blue) from the current robot configuration.

Finally, we assume that for every configuration along an
optimal inspection path, there exists a neighborhood of con-
figurations that share the same visibility. This is critical as we
will not be able to exactly trace an optimal inspection path
but only to iteratively approximate it. When this assumption
holds we say that our inspection problem is well behaved.

The combination of (i) probabilistic exhaustivity, (ii) the
ε, p-dominance of our graph inspection algorithm (Cor. 1)
(iii) that lim

i→∞ εi = 0 and lim
i→∞ pi = 1, and (iv) that our in-

spection problem is well behaved ensures that asymptotically,
our algorithm will converge to an optimal inspection path.

VII. RESULTS

We evaluated IRIS on two simulated scenarios: (1) a pla-
nar manipulator inspecting the boundary of a square region
(Fig. 7a) and (2) a CRISP robot inspecting the inner surface
of a pleural cavity (Fig. 7b). All tests were run on a 3.4GHz
8-core Intel Xeon E5-1680 CPU with 64GB of RAM.

A. Planar manipulator scenario

In this scenario, depicted in Fig. 7a, we have a 5-link planar
manipulator fixed at its base that is tasked with inspecting
the boundary of a rectangular 2D workspace. We start by
evaluating IRIS for fixed p and ε and then compare it with
RRTOT using our approach for dynamically reducing the
approximation factors. For every set of parameters we ran ten
experiments for 1000 seconds and report the average value
together with the standard deviation.

When p = 1 and we vary ε (Fig. 8a), we can see that
even small approximation factors (e.g., ε = 0.5) allow to
dramatically increase the coverage obtained as each search
episode takes less time and more configurations can be added
to the RRT tree. While using ε = 0 did not result in 80%
coverage even after 1000 seconds, this was achieved within
one second for ε ≥ 1.0. This comes at the price of slightly
longer inspection paths. When ε = 0 and we vary p (Fig. 8b),
we get roughly the same coverage per time but at the price of
much longer paths for higher values of p.

Following the above discussion, when reaching high cover-
age is the sole objective, one should use large initial values

(a) (b) (c)

Fig. 8: Quality of inspection paths computed for the planar manipulator. (a) IRIS running with p = 1, f = 0 and varying values of ε.
(b) IRIS running with ε = 0, f = 0 and varying values of p. (c) Comparison of IRIS and RRTOT. IRIS running with two input parameter
settings, both with f = 0.03.

of p0 and ε0. When we want initial solutions to also be
short, one should start with smaller approximation factors. We
compared IRIS with different initial approximation factors to
RRTOT [6] (Fig. 8c). We can see that our approach allows
to produce higher-quality paths than RRTOT. For example,
IRIS obtains more than a 2450× speedup when compared
to RRTOT when producing the same quality of inspection
planning for the case of roughly 83% coverage and path length
of 53 units. Final inspection paths obtained by IRIS are both
shorter and inspect larger portions of I.

B. Pleural effusion scenario for the CRISP robot

The anatomical pleural effusion environment for this sim-
ulation scenario was obtained from a Computed Tomography
(CT) scan of a real patient suffering from this condition, and a
fine discretization of the internal surface of the pleural cavity
is used as the set of POI. We also use the internal surface of
the cavity as obstacles, and prohibit the robot from colliding
with the pleural surface, lung, and chest wall (except at tube
entry points). Pleural effusion volumes can be geometrically
complex, as the way in which the lung separates from the chest
wall can be inconsistent. This results in unseparated regions
of the lung’s surface that can inhibit movement and occlude
the sensor from visualizing areas further in the volume.

Here we consider a CRISP robot with two tubes, where
a snare tube is grasping a camera tube in order to create a
parallel structure made of thin, flexible tubes. Each tube can
be independently rotated in three dimensions about its entry
point into the body, and independently translated into and out
of the cavity. The system has 8 degrees of freedom with a
configuration space of SO(3)2×R2, which enables the parallel
structure to move in a manner that enables obstacle avoidance
as well as precise control of the camera’s pose.

We ran IRIS and RRTOT for this scenario ten different
times for 10,000 seconds (Fig. 9). Similar to the planar
manipulator scenario, IRIS allows to produce higher-quality
paths than RRTOT. For example, IRIS obtains more than a
25× speedup when compared to RRTOT when producing the
same quality of inspection planning for the case of roughly
32% coverage and path length of 1.2 units.

Fig. 9: Comparing quality of inspection paths computed for the
pleural effusion scenario. IRIS was run with p0 = 0.8, ε0 = 10,
and f = 0.01.

VIII. CONCLUSION AND FUTURE WORK

In this work we presented IRIS, an algorithmic frame-
work for computing asymptotically-optimal inspection plans.
Our key contribution is an algorithm to efficiently compute
near-optimal inspection plans on graphs. We showed IRIS
outperforms the prior state-of-the-art, including in a medical
application in which a surgical robot inspects a tissue surface
inside the body as part of a diagnostic procedure.

We now highlight several avenues for further improving
the IRIS framework. The first is accounting for dynamic
updates in graph inspection planning. In future versions we
would like to reuse information from previous search episodes.
We suggest to adapt relevant methods from the graph-search
literature (e.g., [18, 44, 30]). The second avenue is to efficiently
sample configurations in RRT construction. Currently, in our
RRT constructions we sample configurations uniformly at
random from X . Similar to goal bias commonly implemented
in RRT, we suggest to bias sampling towards configurations
that increase coverage. The third avenue is to explore the
influence of hyper-parameters p and ε and optimize them. The
fourth avenue is to parallelize graph building (including edge
validation) and graph searching.

ACKNOWLEDGMENT

This research was supported in part by the National Insti-
tutes of Health under award R01EB024864 and the National
Science Foundation under award IIS-1149965.

REFERENCES

[1] Randa Almadhoun, Tarek Taha, Lakmal Seneviratne,
Jorge Dias, and Guowei Cai. A survey on inspect-
ing structures using robotic systems. Int. J. Advanced
Robotic Systems, 13(6), 2016.

[2] Patrick L. Anderson, Arthur W. Mahoney, and Robert J.
Webster III. Continuum Reconfigurable Parallel Robots
for Surgery: Shape Sensing and State Estimation With
Uncertainty. IEEE Robotics and Automation Letters, 2
(3):1617–1624, 2017.

[3] Brian Bingham, Brendan Foley, Hanumant Singh,
Richard Camilli, Katerina Delaporta, Ryan Eustice, An-
gelos Mallios, David Mindell, Christopher Roman, and
Dimitris Sakellariou. Robotic Tools for Deep Water
Archaeology: Surveying an Ancient Shipwreck with an
Autonomous Underwater Vehicle. J. of Field Robotics,
27(6):702–717, 2010.

[4] Andreas Bircher, Kostas Alexis, Michael Burri, Philipp
Oettershagen, Sammy Omari, Thomas Mantel, and
Roland Siegwart. Structural Inspection Path Planning
via Iterative Viewpoint Resampling with Application
to Aerial Robotics. In IEEE Int. Conf. Robotics and
Automation (ICRA), pages 6423–6430. IEEE, 2015.

[5] Andreas Bircher, Mina Kamel, Kostas Alexis, Michael
Burri, Philipp Oettershagen, Sammy Omari, Thomas
Mantel, and Roland Siegwart. Three-dimensional cov-
erage path planning via viewpoint resampling and tour
optimization for aerial robots. Autonomous Robots, 40
(6):1059–1078, 2016.

[6] Andreas Bircher, Kostas Alexis, Ulrich Schwesinger,
Sammy Omari, Michael Burri, and Roland Siegwart.
An Incremental Samplingbased Approach to Inspection
Planning: The Rapidlyexploring Random Tree Of Trees.
Robotica, 35(6):1327–1340, 2017.

[7] Boris Bogaerts, Seppe Sels, Steve Vanlanduit, and Rudi
Penne. A Gradient-Based Inspection Path Optimization
Approach. IEEE Robotics and Automation Letters, 3(3):
2646–2653, 2018.

[8] Robert Bohlin and Lydia E. Kavraki. Path Planning
Using Lazy PRM. In IEEE Int. Conf. Robotics and
Automation (ICRA), pages 521–528, 2000.

[9] Peng Chen and Yu Nie. Bicriterion shortest path problem
with a general nonadditive cost. Transportation Research
Part B: Methodological, 57:419–435, 2013.

[10] Howie M. Choset, Seth Hutchinson, Kevin M. Lynch,
George Kantor, Wolfram Burgard, Lydia E. Kavraki, and
Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementation. MIT press, 2005.

[11] Tim Danner and Lydia E. Kavraki. Randomized Planning
for Short Inspection Paths. In IEEE Int. Conf. Robotics
and Automation (ICRA), pages 971–976, 2000.

[12] Christopher M. Dellin and Siddhartha S. Srinivasa. A
Unifying Formalism for Shortest Path Problems with
Expensive Edge Evaluations via Lazy Best-First Search
over Paths with Edge Selectors. In Int. Conf. Automated

Planning and Scheduling (ICAPS), pages 459–467, 2016.
[13] Edsger W. Dijkstra. A Note on Two Problems in

Connexion with Graphs. Numerische Mathematik, 1(1):
269–271, 1959.

[14] Stefan Edelkamp, Mihai Pomarlan, and Erion Plaku.
Multiregion Inspection by Combining Clustered Travel-
ing Salesman Tours With Sampling-Based Motion Plan-
ning. IEEE Robotics and Automation Letters, 2(2):428–
435, 2017.

[15] Matthias Ehrgott and Xavier Gandibleux. A survey and
annotated bibliography of multiobjective combinatorial
optimization. OR-Spektrum, 22(4):425–460, 2000.

[16] Brendan Englot and Franz S. Hover. Sampling-Based
Coverage Path Planning for Inspection of Complex Struc-
tures. In Int. Conf. Automated Planning and Scheduling
(ICAPS), pages 29–37, 2012.

[17] Brendan J. Englot and Franz S. Hover. Planning Complex
Inspection Tasks Using Redundant Roadmaps. In Int.
Symp. Robotics Research (ISRR), pages 327–343, 2011.

[18] Daniele Frigioni, Alberto Marchetti-Spaccamela, and
Umberto Nanni. Fully Dynamic Algorithms for Main-
taining Shortest Paths Trees. J. Algorithms, 34(2):251–
281, 2000.

[19] Enric Galceran and Marc Carreras. A survey on coverage
path planning for robotics. Robotics and Autonomous
Systems, 61(12):1258–1276, 2013.

[20] Nuno Gracias, Pere Ridao, Rafael Garcia, Javier Escartı́n,
Michel L’Hour, Franca Cibecchini, Ricard Campos, Marc
Carreras, David Ribas, Narcı́s Palomeras, et al. Mapping
the Moon: Using a lightweight AUV to survey the site
of the 17th Century ship La Lune. In OCEANS-Bergen,
2013 MTS/IEEE, pages 1–8. IEEE, 2013.

[21] Nika Haghtalab, Simon Mackenzie, Ariel D. Procaccia,
Oren Salzman, and Siddhartha S. Srinivasa. The Provable
Virtue of Laziness in Motion Planning. In Int. Conf.
Automated Planning and Scheduling (ICAPS), pages
106–113, 2018.

[22] Dan Halperin, Oren Salzman, and Micha Sharir. Algo-
rithmic motion planning. In Handbook of Discrete and
Computational Geometry, Third Edition., pages 1311–
1342. CRC Press LLC, 2018.

[23] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A
Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths. IEEE Transactions on Systems, Science,
and Cybernetics, 4(2):100–107, 1968.

[24] Kris Hauser. Lazy collision checking in asymptotically-
optimal motion planning. In IEEE Int. Conf. Robotics
and Automation (ICRA), pages 2951–2957, 2015.

[25] Brian Ichter, Edward Schmerling, and Marco Pavone.
Group Marching Tree: Sampling-Based Approximately
Optimal Motion Planning on GPUs. In IEEE Int. Conf.
Robotic Computing (IRC), pages 219–226, 2017.

[26] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B.
Williams, and Ian Mahon. Generation and Visualization
of Large-Scale Three-Dimensional Reconstructions from
Underwater Robotic Surveys. J. of Field Robotics, 27(1):

21–51, 2010.
[27] Přemysl Kafka, Jan Faigl, and Petr Váňa. Random

Inspection Tree Algorithm in Visual Inspection with a
Realistic Sensing Model and Differential Constraints. In
IEEE Int. Conf. Robotics and Automation (ICRA), pages
2782–2787, 2016.

[28] Sertac Karaman and Emilio Frazzoli. Sampling-Based
Algorithms for Optimal Motion Planning. Int. J. Robotics
Research (IJRR), 30(7):846–894, 2011.

[29] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark H. Overmars. Probabilistic roadmaps for path
planning in high dimensional configuration spaces. IEEE
Trans. Robotics and Automation, 12(4):566–580, August
1996.

[30] Sven Koenig, Maxim Likhachev, and David Furcy. Life-
long Planning A*. Artificial Intelligence, 155(1-2):93–
146, 2004.

[31] James J. Kuffner and Steven M. LaValle. RRT-Connect:
An Efficient Approach to Single-Query Path Planning.
In IEEE Int. Conf. Robotics and Automation (ICRA),
volume 2, pages 995–1001, 2000.

[32] Alan Kuntz, Chris Bowen, Cenk Baykal, Arthur W. Ma-
honey, Patrick L. Anderson, Fabien Maldonado, Robert J.
Webster III, and Ron Alterovitz. Kinematic Design
Optimization of a Parallel Surgical Robot to Maximize
Anatomical Visibility via Motion Planning. In IEEE Int.
Conf. Robotics and Automation (ICRA), pages 926–933,
2018.

[33] Jean-Claude Latombe. Robot Motion Planning. Kluwer,
Boston, MA, 1991.

[34] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006.

[35] Steven M. LaValle and James J. Kuffner. Randomized
Kinodynamic Planning. Int. J. Robotics Research (IJRR),
20(5):378–400, May 2001.

[36] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris.
Asymptotically optimal sampling-based kinodynamic
planning. Int. J. Robotics Research (IJRR), 35(5):528–
564, 2016.

[37] Kevin M. Lynch and Frank C. Park. Modern Robotics:
Mechanics, Planning, and Control. Cambridge Univer-
sity Press, 2017.

[38] Arthur W. Mahoney, Patrick L. Anderson, Philip J.
Swaney, Fabien Maldonado, and Robert J. Webster III.
Reconfigurable Parallel Continuum Robots for Incision-
less Surgery. In IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), pages 4330–4336, 2016.

[39] James D. Marble and Kostas E. Bekris. Asymptotically
near-optimal is good enough for motion planning. In Int.
Symp. Robotics Research (ISRR), pages 419–436, 2011.

[40] Sherdil Niyaz, Alan Kuntz, Oren Salzman, Ron Al-
terovitz, and Siddhartha Srinivasa. Following Surgical
Trajectories with Concentric Tube Robots via Nearest-
Neighbor Graphs. In Int. Symp. Experimental Robotics
(ISER), 2018.

[41] Georgios Papadopoulos, Hanna Kurniawati, and

Nicholas M Patrikalakis. Asymptotically Optimal
Inspection Planning using Systems with Differential
Constraints. In IEEE Int. Conf. Robotics and Automation
(ICRA), pages 4126–4133. IEEE, 2013.

[42] Panos M. Pardalos, Athanasios Migdalas, and Leonidas
Pitsoulis. Pareto optimality, game theory and equilibria,
volume 17. Springer Science & Business Media, 2008.

[43] Roberto Raffaeli, Maura Mengoni, Michele Germani,
and Ferruccio Mandorli. Off-line view planning for the
inspection of mechanical parts. International Journal on
Interactive Design and Manufacturing (IJIDeM), 7(1):
1–12, 2013.

[44] Ganesan Ramalingam and Thomas Reps. On the Compu-
tational Complexity of Dynamic Graph Problems. Theor.
Comput. Sci., 158(1&2):233–277, 1996.

[45] Line Blander Reinhardt and David Pisinger. Multi-
objective and multi-constrained non-additive shortest
path problems. Computers & OR, 38(3):605–616, 2011.

[46] Oren Salzman and Dan Halperin. Asymptotically-
optimal Motion Planning using lower bounds on cost. In
IEEE Int. Conf. Robotics and Automation (ICRA), pages
4167–4172, 2015.

[47] Oren Salzman and Dan Halperin. Asymptotically Near-
Optimal RRT for Fast, High-Quality Motion Planning.
IEEE Trans. Robotics, 32(3):473–483, 2016.

[48] Oren Salzman, Brian Hou, and Siddhartha Srinivasa.
Efficient Motion Planning for Problems Lacking Optimal
Substructure. In Int. Conf. Automated Planning and
Scheduling (ICAPS), pages 531–539, 2017.

[49] Edward Schmerling, Lucas Janson, and Marco Pavone.
Optimal sampling-based motion planning under differ-
ential constraints: The driftless case. In IEEE Int.
Conf. Robotics and Automation (ICRA), pages 2368–
2375, 2015.

[50] Kiril Solovey, Oren Salzman, and Dan Halperin. New
perspective on sampling-based motion planning via ran-
dom geometric graphs. Int. J. Robotics Research (IJRR),
37(10):1117 – 1133, 2018.

[51] Joseph A. Starek, Javier V. Gómez, Edward Schmerling,
Lucas Janson, Luis Moreno, and Marco Pavone. An
asymptotically-optimal sampling-based algorithm for Bi-
directional motion planning. In IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), pages 2072–2078,
2015.

[52] Maurice A. Tivey, Albert Bradley, Dana Yoerger, Rodney
Catanach, Alan Duester, Steve Liberatore, and Hanu
Singh. Autonomous Underwater Vehicle Maps Seafloor.
Eos, Transactions American Geophysical Union, 78(22):
229–230, 1997.

[53] George Tsaggouris and Christos D. Zaroliagis. Non-
additive Shortest Paths. In European Symposium on
Algorithms (ESA), pages 822–834, 2004.

[54] George Tsaggouris and Christos D. Zaroliagis. Multiob-
jective Optimization: Improved FPTAS for Shortest Paths
and Non-linear Objectives with Applications. Theory of
Computing Systems, 45(1):162–186, 2009.

