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Abstract
Navigation and motion control of a robot to a destination are tasks that have historically been performed with the
assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots, where obstacle
collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and
compliant, obstacle contact is inherently safe. As a result, constraining paths of the robot to not interact with the
environment is not necessary and may be limiting. In this paper, we mathematically formalize interactions of a soft
growing robot with a planar environment in an empirical kinematic model. Using this interaction model, we develop a
method to plan paths for the robot to a destination. Rather than avoiding contact with the environment, the planner
exploits obstacle contact when beneficial for navigation. We find that a planner that takes into account and capitalizes
on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle
contact.
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Introduction

Soft robot bodies are made of materials that absorb and
dissipate the energy of collisions, making environmental
contact safe for many soft robots (Rus and Tolley 2015). In
addition, the deformability of a soft robot’s body causes it to
naturally conform to the shape of an object it is in contact
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Figure 1. We present a heuristic model that enables planning
of planar paths for a soft growing robot that exploit
robot-obstacle interactions. Obstacles can be beneficial for
navigation because they passively guide the robot and reduce
uncertainty in its motion. Left: Simulated deployments of two
robots with manufacturing uncertainty. One design (blue) is
optimized to exploit obstacle contact to reach its goal location
and the other design (red) is not. We illustrate 100 deployments
of each design, showing that exploiting obstacle contact
reduces uncertainty in the robot’s path. Right: Physical
deployment of the contact-exploiting design.

with. While these two properties have been demonstrated
to benefit tasks that require object manipulation or gripping
(Neppalli et al. 2007; Deimel and Brock 2016; Suzumori
et al. 1992; Katzschmann et al. 2015), their benefits have not
been explored for motion control and navigation of robots.
Instead, these tasks have historically been performed with the
assumption that contact with the environment is harmful. For
applications such as search-and-rescue and inspection, which
involve navigation of cluttered or constrained environments,
environmental interaction may be unavoidable and even
advantageous. In these scenarios, a system that allows for
and exploits robot-obstacle interaction is desirable.

A large body of research addresses modeling contact of
a rigid body robot with the environment for the purposes
of manipulation (Zheng and Hemami 1985; Vukobratović
and Potkonjak 1999; Killpack et al. 2016). For soft robotics,
Coevoet et al. (Coevoet et al. 2017) predict deformations
of soft robots caused by environmental contact using
numerical innovations to the finite element method that
enable its use within a real-time control loop. In addition, Yip
and Camarillo developed a model-less control strategy for
tendon-based manipulators (Yip and Camarillo 2014), which
performs estimation of a tip Jacobian in an online fashion.
Because the method does has not rely on an a priori model
for the robot or environment, it can adapt to environmental
contact.
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Other research examines using obstacles to the benefit of
the robot. For example, hyper-redundant snake robots could
actively use obstacles in their environment to propel the
snake robot forward and thereby aid locomotion (Transeth
et al. 2008; Liljeback et al. 2009, 2012). The authors
developed both dynamic models for the interaction with
obstacles and complementary control laws to utilize them in
these papers. Another class of robot that uses environmental
constraints to benefit mobility is pipe robots. It is only at pipe
junctions that the robots have to make navigation decisions,
otherwise they are directed along a path set by the shape of
their environment (Roh and Choi 2005).

We consider interactions of a soft growing robot with
obstacles, focusing in this paper on a soft robot that extends
from its tip using pneumatically driven eversion (Hawkes
et al. 2017). In particular, we mathematically formalize
obstacle interactions with the soft growing robot and use
this formalization to plan paths for the robot to navigate
to a destination. Similar to the recent works of Páll et al.
(2018) and Sieverling et al. (2017) that explicitly consider the
advantages of obstacle contact for motion planning, namely
that it reduces uncertainty in the robot’s motion, our planner
generates paths that tolerate and even leverage obstacle
collisions when helpful for navigating the soft growing robot
to its destination.

As in Hawkes et al. (2017), the robot considered turns via
discrete pinches of its flexible plastic body along its length
(Fig. 2). Because the soft growing robot’s body does not slide
with respect to its environment as it extends, the position
of the turn does not move during the growth process once
it has been everted. This paper extends Greer et al. (2018),
which developed a model that predicted the motion of a
soft growing robot moving through and interacting with a
cluttered environment, by: (1) extending the model to handle
designed turns in the robot’s body, (2) developing a planner
that exploits obstacle interactions, and (3) demonstrating the
planner’s performance in simulation and in experiments.

The remainder of this paper is divided into five sections.
First, we develop a differential kinematic interaction model
that describes infinitesimal motions of the robot when in
contact with an obstacle. Second, we describe a method to
plan paths to navigate to a destination using the obstacle
interaction model developed in the previous two sections.
Note that by planning a path, we mean determining the
locations of pinch points along the robot’s body. When the
robot is deployed, it is without feedback control. In this
sense, the planning problem may be thought of as automated
design. Third, we present both simulation and physical
experiments that validate the interaction model and planning
method. The experiments demonstrate that the methods in
this paper can be used to predict and plan trajectories of the
soft growing robot through a planar environment with clutter.
In the final section, we discuss implications and limitations
of the methods and results presented in this paper.

Planar Kinematic Model
In this section, we develop a simple heuristic model that
describes the differential kinematics of a soft growing
robot that is moving through and potentially interacting
with its environment. A soft growing robot consists of
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Figure 2. Overview of the soft growing robot used in this work.
(a) The robot extends from the tip using pneumatically driven
tip-eversion (Hawkes et al. 2017). (b) Turns are manufactured at
discrete increments along the robot’s body using tape to
shorten one side of the robot relative to the other. (c) Sequence
of four pictures shows the robot growing through a
manufactured turn, which is marked in red. Due to the nature of
tip extension, the turn’s location does not move during growth.

a pneumatic backbone that can extend in length as well
as a turning mechanism that allows the soft growing
robot to be steered from a straight-line trajectory to a
destination. Several mechanisms have been proposed to
steer a soft growing robot, including constant curvature
bending of a robot’s backbone caused by pneumatic artificial
muscles that are attached along the pneumatic backbone’s
length (Greer et al. 2017) and asymmetric shortening of
the robot’s backbone at discrete intervals along its
length (Hawkes et al. 2017). In this paper, we consider the
latter turning mechanism (Fig. 2), though the same ideas
could be applied to other turning mechanisms and associated
kinematic models that describe their motion in free space.

The soft growing robot in this paper belongs to
the class of snake-like robots with flexible bodies
known as continuum robots. Precise models of the
kinematics and dynamics of continuum robots have been
developed using continuum mechanics theory such as
Cosserat rod theory (Rucker and Webster 2014) and the
finite-element method (Coevoet et al. 2017). These methods
are computationally expensive and rely on material
parameters that may be difficult to estimate and change with
time. A less exact, but simpler approximate modeling method
that has been successfully used for certain continuum robots
are lumped parameter models. These models characterize
a continuum robot by specially chosen points along the
robot’s backbone. Examples of lumped parameter models of
continuum robots include the unicycle model developed by
Park et al. (2005) and bicycle model developed by Webster
and Jones (2010), both for steerable needles, as well as
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Figure 3. Model states of the lumped parameter model consist
of pivot points ~c1, . . . ,~cn (Model States section). Obstacles in
this figure are labeled O1 and O2. Pictures show the robot at
four progressive time steps. From (a) to (b), a new pivot point is
added as the robot turns at ~c2. Note that the position of the pivot
does not change in subsequent time-steps because the body is
extending, not translating (colored bands don’t move). From (b)
to (c) the robot’s tip comes into contact with an obstacle. A new
pivot point is not yet added. From (c) to (d) the robot’s tip moves
past the obstacle and a new pivot point is added.

a recent model developed by Del Dottore et al. (2019)
describing the motion of a growing robot in free space. We
also use a lumped parameter kinematic model in this paper.

Model States
Our lumped parameter model of the soft growing robot
characterizes its state by specifically chosen points along
the robot’s backbone labeled ~c1, . . . , ~cn (Fig. 3). Point ~cn,
called the tip point, is defined as the position of the robot’s
tip. Points ~c1, . . . ,~cn−1, called pivot points, are defined as
the positions of the robot’s backbone distinct from ~cn that
are either in contact with obstacles or positions where turns
occur. If there is more than one contact point per obstacle,
for example if a portion of the robot is flush with an obstacle
resulting in infinitely many contact points, the most distal
point of contact is used (i.e. the point closest to ~ci+1). Note
that the number of pivot points, n, varies as turns develop and
the robot makes and breaks contact with its environment. In
addition, a point of contact at a given obstacle is not added to
the robot’s state while the tip of the robot is in contact with
the obstacle. The pivot points are ordered most proximal (~c1)
to most distal (~cn), and the line segment from ~cn−1 to ~cn
represents the most distal segment of the soft growing robot.

Joint Space Representation
We elected to use a Cartesian space representation for the
obstacle interaction model described in the Model States
section, although in some cases it will be convenient to use a
joint space representation instead. Therefore, we will briefly
describe the joint space representation and how to convert
to the joint space representation from the Cartesian space
representation and vice versa.

The joint space representation of the robot consists of joint
angles and corresponding segment lengths. Assume there is
a robot with Cartesian space representation

(~c1, . . . ,~cn) (1)

a)

b)

Figure 4. Robot design diagram. (a) A robot grown in the
presence of no obstacles will end with a joint space state equal
to its design parameters (li = li and θi = θi). (b) However,
when the robot interacts with obstacles as it grows, the robot
will end with a state that does not agree with its design
parameters. In this case the robot has an extra pivot point and a
larger deflection at joint 2 due to its interaction with the
rectangular obstacle as it grows.

and that, without loss of generality, ~c1 is coincident with
the origin. The corresponding joint space representation will
consist of n− 1 segment lengths and n− 1 joint angles:

(θ1, l1, . . . , θn−1, ln−1). (2)

The joint space representation can be computed from the
Cartesian space representation as follows:

~δi = ~ci+1 − ~ci for i = 1, . . . , n− 1
θi = atan2(δiy, δix) for i = 1, . . . , n− 1

li = ||~δi|| for i = 1, . . . , n− 1

(3)

Similarly, the Cartesian space representation can be
computed recursively from the joint space representation as

~ci+1 = liêi+1 + ~ci for i = 1, . . . , n− 1
êi+1 = Rz(θi)êi for i = 1, . . . , n− 1
~c1 = [0, 0, 0]>

~e1 = [1, 0, 0]>

(4)

whereRz(θ) represents a z-axis rotation of θ radians. For the
remainder of the paper, we will implicitly switch between
representations when mathematically convenient, with the
knowledge that they are different representations of the
same information. When helpful, we will be explicit about
transforming between representations using the following
notation:

(~c1, . . . ,~cn) = CartesianSpace(l1, θ1, . . . , ln−1, θn−1) (5)
(l1, θ1, . . . , ln−1, θn−1) = JointSpace(~c1, . . . ,~cn) (6)

Robot Design
By placing turn points at selected locations along the robot’s
backbone at the time of manufacture, the robot can be
designed to grow to destinations not reachable by a straight-
line path. Concretely, a robot design consists of a sequence
of angular deflections, θ1, . . . , θm, and lengths between the
turn points, l1, . . . , lm (Fig. 4(a)), where θ ∈ [−θM , θM ]
represents the range of angular deflections that can be
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(a) (b)

Figure 5. Errors in manufacturing and modeling lead to
uncertainty in robot path. Representative regions of pivot point
locations are depicted in light red and blue. In free space (a),
the uncertainty compounds as expected, but in (b), the robot’s
path is bifurcated by the presence of an obstacle leading to two
disjoint red regions of smaller area than in (a). Our planner
exploits this reduction in area to increase the robustness of
navigation.

manufactured. For the remainder of the section, we will
assume the robot is manufactured exactly as specified and
manufacturing uncertainty will be considered in the next
section.

The set of robot design parameters directly corresponds to
a joint space state representation (Joint Space Representation
section). Indeed, if the robot is deployed in the presence of
no obstacles (and there are no errors in manufacturing), it
will end with a state that has a joint space representation
that matches the robot design parameters. Note that when the
robot is deployed in free space, the position of a turn is fixed
and independent of the length of the robot (i.e. the turn does
not travel as the robot’s length increases). When the robot is
deployed in the presence of obstacles, it will interact with the
environment, which will perturb the robot’s state from its free
space joint representation (Fig. 4(b)). The rest of this section
is devoted to determining what this state will be, given a map
that contains the locations of obstacles.

Manufacturing Uncertainty
In practice, manufacturing a robot with nominal design
(l1, θ1, . . . , lm, θm) will not yield a robot with the exact
desired design parameters. Imprecision and errors in
manufacturing will result in a robot with realized parameters
(l˜1, θ˜1, . . . , l˜m, θ˜m) where l˜i, θ˜i are random variables
distributed about the robot design parameters (Fig. 5)

l˜i ∼ U(li − σL, li + σL) for i = 1, . . . ,m

θ˜i ∼ U(θi − σθ, θi + σθ) for i = 1, . . . ,m
(7)

and σL, σθ capture the tolerances of the manufacturing
process. These parameters may be empirically estimated by
measuring manufacturing errors for a population of robots.
Alternatively, σL, σθ may be estimated by measuring the
deviation between the deployed path and predicted path for
a sample population of robots. This would provide a more
holistic accounting of uncertainty, because it captures both
manufacturing error and other sources of uncertainty, such
as modeling error.

Pivot Point Handedness
As explained in the Model States section, pivot points,
~ci, correspond to obstacle contacts and manufactured turn
points. Each pivot point also has a handedness associated

(a)

t1

t2

t3

(b)

t1

t2

Figure 6. Interaction of robot with an obstacle. (a) Robot
shown interacting with a wall at three successive time-steps
t1, t2, t3. The robot comes into contact with the obstacle, after
which the robot tip starts moving along direction t̂, parallel to the
obstacle surface, pivoting about point ~c1. After moving past the
obstacle, the robot resumes free-growth kinematics with an
updated pivot point, ~c2. The obstacle will exert a reaction force,
~Fr, that has a transverse component. This will cause buckling
about the pivot point, ~cp, at the red highlighted surface. In (b),
an analagous sequence of interactions occur with a round
obstacle.

with it. A pivot point associated with an obstacle contact is
called a right (left) pivot point if rotating the robot to the right
(left) about the pivot point moves the robot into the obstacle
(using the right-hand rule). A pivot point associated with a
manufactured turn is a right (left) pivot point if the angular
deflection associated with the turn is negative (positive),
θ < 0 (θ > 0). For example, in Fig. 4(b), ~c3 and ~c4 are left-
handed pivot points, and ~c2 is a right-handed pivot point. ~c1
corresponds to the robot’s base, and therefore is both a right
and left pivot point.

Differential Kinematics of the Model
Free Growth In this section, we assume a known robot
design (l1, θ1, . . . , lm, θm). Given a robot with state
(~c1, . . . ,~cn), its length, which we denote len(~c1, . . . ,~cn), is
the sum of the segment lengths len(~c1, . . . ,~cn) =

∑n−1
i=1 li,

where li are the segment lengths of the joint space
representation. We also let the Li =

∑i
j=1 lj be the total

backbone length at which designed turn iwill take effect (i.e.
be everted by the robot).

Free growth occurs when the tip of the soft growing robot
is not in contact with an obstacle. The tip of the robot
will extend in the direction of the most distal segment of
the backbone, ên−1, which is parallel to ~cn − ~cn−1. When
len(~c1, . . . ,~cn) 6= Li for any i, we write the free growth
differential kinematics simply as

~̇cn = uên−1 (8)

where u is the growth speed (rate of change of robot length),
which we assume is controlled. Free growth is depicted at
times t1, t2, and t4 of Fig. 3. When len(~c1, . . . ,~cn) = Li
for any i, designed turn i will be everted by the robot.
This has the effect of instantaneously rotating the robot’s tip
heading by θi (θi is signed and the right-hand rule is used to
determine direction of deviation). A new pivot point is added
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to the robot’s state at the location the turn was everted

n = n+ 1 (9)
~cn = ~cn−1 (10)
ên−1 = Rz(θi)ên−2 (11)

~̇cn = uên−1 (12)

where u and êi have the same definitions as above. A
designed turn is everted between time t1 and t2 in Fig. 3.

Obstacle Contact In this section, we describe a model for
movement of the soft growing robot when its tip is in contact
with an obstacle. We assume that the robot will approach
the obstacle in free growth as depicted in Fig. 6(a). When it
comes into contact with the obstacle, the soft growing robot
will switch from free growing kinematics to obstacle contact
kinematics.

We treat the soft growing robot as an inflatable beam
constrained at a previous pivot point, ~cp for some p. How to
determine pwill be explained below. The inflatable beam has
a reaction force, ~Fr, applied by the obstacle to the robot’s tip.
~Fr acts normal to the obstacle surface, which is parallel to t̂
and is shown in Fig. 6(a). The reaction force has components
that are both transverse and axial with respect to the robot’s
backbone (~Ft and ~Fa, respectively), both of which could
cause the inflated beam to buckle. ~Ft will cause a transverse
beam buckling at the base (Masser et al. 1963), while ~Fa will
cause an axial buckling near the center (Fichter 1966). The
magnitude of the critical buckling force for each of these two
modes depends on many parameters, such as the pressure in
the inflatable beam, wall thickness of the robot’s skin, length,
and diameter. For pressures less than 15 kPa, wall material
of low density polyethylene with thickness on the order of
0.05 mm, free length less than a meter, and diameter on the
order of 20 mm, transverse buckling at the base will occur in
any case when the angle between the obstacle and the robot
is greater than several degrees (Hammond et al. 2017).

Once a bending moment that is larger than the tensioned
wall and compressed air in the tube can resist is applied,
the robot’s backbone will buckle at pivot point ~cp. The net
effect is that the tip of the robot will move tangentially to the
obstacle’s surface (parallel to t̂), pivoting about point ~cp. The
restoring moment at the point of buckling in the robot will
ensure that its tip will remain in contact with the obstacle
until it grows past the obstacle’s edge. When this happens,
the robot will switch back to free growth kinematics and a
new contact point will be added to reflect the new point of
contact between the robot and the obstacle it grew along. The
kinematics described here do not take into account the sliding
friction between the robot and the environment, because the
normal forces involved are relatively small. Fig. 6 shows the
robot tip interacting with a wall and cylinder, respectively.
The robot’s tip flows around the obstacles, and once past, a
new pivot point is added to reflect the new contact with the
environment.

Obstacle pivot point ~cp: As explained above, when the
robot’s tip is in contact with an obstacle, it will slide along the
obstacle, pivoting about a previous pivot point in the robot’s
state (~cp for some p). The point about which it will pivot
is the most proximal unsupported pivot point that has the
same handedness as the direction the robot will be turned

(a)

(b)

Figure 7. Soft Growing robot obstacle interaction kinematics.
(a) Robot will pivot about most proximal unsupported pivot point
that has the same handedness as the turn direction. In this
case, the robot is being turned left by the obstacle and hence it
will pivot about ~cn−3, the most proximal unsupported left pivot
point. (b) Labels of relevant variables. ên−1 × t̂ > 0 so the robot
is being turned left by the obstacle.

by interacting with the obstacle (Fig. 7(a)). This behavior
results because previous pivot points have lower stiffness
than unbuckled regions of the body, and the most proximal
unsupported pivot point will have the highest moment of the
pivot points. We define the direction the robot is turned by an
obstacle as follows: As in Eq. 3, define êi to be the unit vector
that is parallel to segment i (Fig. 7(b)). Assume ên−1 · t̂ > 0.
If not, negate t̂. The robot will be pivoted to the left (right) if
the z-component of ên−1 × t̂ is positive (negative).

Obstacle Interaction Assumptions To derive the obstacle
interaction differential kinematics, we make the following
assumptions:

1. The robot’s tip will follow the obstacle’s tangent while
the robot is in contact with the obstacle, i.e. ~̇cn is
parallel to t̂.

2. Robot lengthening rate is a control input, i.e.
d

dt

∑
li = u.

3. New length is added to the last segment only, i.e.
l̇n−1 = u and l̇i = 0 when i 6= n− 1.

4. All joint angles except for the pivot point’s joint angle
remain constant, i.e. θ̇i = 0 when i 6= p.

With these assumptions in place, we can write down the
obstacle interaction differential kinematics in the joint-space
representation in the general case:

θ̇i = 0, i 6= p

θ̇p = θ̇

l̇i = 0, i 6= n− 1

l̇n−1 = u

(13)

where ~cp is the obstacle pivot point and θ̇ is the unknown
rotational velocity of the pivot point. When a designed turn is
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Figure 8. Illustration of the motion of the robot when a
designed turn emerges while its tip is in contact with an
obstacle. This is described mathematically by Eq. 14.

emerging, i.e. len(~c1, . . . ,~cn) = Lj for some j, the obstacle
interaction kinematics are as follows:

n = n+ 1

θ̇n = δθj

θ̇i = 0, i 6= p, i 6= n

θ̇p = θ̇

l̇i = 0, i 6= n− 1

l̇n−1 = u

(14)

which adds the designed discrete turn of θj radians to the
robot’s state. As before, ~cp is the obstacle pivot point (which
may be changed as a result of the new designed turn) and
θ̇ is the unknown rotational velocity of the pivot point. The
motion described in this equation is depicted in Fig. 8. The
remainder of this section is devoted to determining θ̇.

To solve for θ̇, we first write ~̇cn in terms of θ̇ and use the
first assumption, which says that the robot’s tip velocity is
parallel to the wall. We write the velocity of the robot’s tip as
follows

d~cn
dt

=
ên−1d~cn

dt
+ ~ω × ~r ~cn/~cn−1 +

d~cn−1
dt

(15)

where the first term is the robot’s tip velocity expressed in
the frame that is attached to point ~cn−1 and the second and
third terms account for the linear and rotational velocity of
the reference frame attached to ~cn−1. Using the assumption
that all length is added to the last segment and all angular
velocity is due to rotation about ~cp, we rewrite Eq. 15 as

~̇cn = uên−1 + θ̇ẑ × ln−1ên−1 + θ̇ẑ × ~r ~cn−1/~cp (16)

= uên−1 + θ̇ẑ ×
(
ln−1ên−1 + ~r ~cn−1/~cp

)
(17)

Finally, we enforce that the robot’s tip velocity is parallel to
the wall tangent

uên−1 + θ̇ẑ × (ln−1ên−1 + ~r ~cn−1/~cp) = vt̂ (18)

where v is the unknown magnitude of the tip velocity. Since
ên−1 and ~r ~cn−1/~cp have no ẑ component, this equation
reduces to two scalar equations that allow us to solve for the
two unknowns, θ̇ and v.

Planning Paths that Exploit Obstacles
The Planar Kinematic Model section established a model
that predicts the motion of the soft growing robot moving
through and interacting with an environment. This section

builds on this model to plan paths for the soft growing
robot through an environment with obstacles. For robots
moving through cluttered environments, it is inevitable that
the robot will interact with obstacles. Rather than strictly
avoiding environmental contact as is a standard paradigm for
traditional path planning (LaValle 2006; Choset et al. 2005),
the planner may decide to allow obstacle contact if it helps
the soft growing robot reach its destination. For example,
interactions with obstacles can consolidate many possible
paths down to a single path, thereby reducing uncertainty
(Páll et al. 2018; Sieverling et al. 2017). These interactions
can direct the robot to locations not on a straight line path
from its starting point, also reducing the need for designed
turns that increase robot complexity.

The planner can be logically divided into two parts. First,
it determines a sequence of waypoints (defined in the Map
Waypoints section) through which the soft growing robot
will pass. Second, the planner generates a robot design that
realizes the waypoint sequence with maximum expectation
given the uncertainties described in Eq. 7.

Problem Definition
We assume the following information is provided:

1. A discretization of R2, Z.
2. A planar map, M ⊂ Z that contains the locations of

all obstacles in the map. ~p ∈M if and only if ~p is part
of an obstacle.

3. An obstacle boundary vertex set, which consists of
vertices of the obstacles in the map (Fig. 10).

4. Starting point of the robot: ~xs ∈ Z
5. Goal point to navigate the tip of the robot to,
~xd ∈ Z, and radius, d, such that the task is considered
successful if the robot’s tip is within a distance d of the
goal point.

The objective of this section is to produce a nominal
robot design that causes the robot’s tip to reach the des-
tination with maximum expectation given the sources of
uncertainty described in the Manufacturing Uncertainty sec-
tion. Concretely, our objective is to find a nominal robot
design, (l1, θ1 . . . , ln−1, θn−1), such that a robot manufac-
tured according to that design, (l˜1, θ˜1, . . . , l˜n−1, θ˜n−1) has a
high expectation of reaching the destination:

E
(
||~xd − ~cn˜ || < d

)
(19)

where (~c1˜ , . . . ,~cn˜ ) is the deployed robot state computed
using the obstacle interaction model.

Map Waypoints
As depicted in Fig. 6, the obstacle interaction model predicts
a simple behavior from the robot when it comes into contact
with a polygonal obstacle: the tip will slide along the
obstacle’s contour until reaching a corner of the obstacle.
This means that all incoming paths to an obstacle will
be passively guided through one of the obstacle’s vertices
(Fig. 9). Therefore, obstacle vertices are natural decision
points for the planner because they are easy locations to
reach. (Using the terminology of Lozano-Perez et al. (1984),
obstacle vertices have large pre-image areas.) Note that this

Prepared using sagej.cls



7

t2

t1

Figure 9. Condensation point illustration. Due to the nature of
obstacle interaction, obstacles condense many incoming robot
paths through one of its vertices. In this example, all robots that
approach the obstacle with a tangent that lay within the gray
angle range are directed by the obstacle to its bottom vertex.

Figure 10. Map with waypoint sequence illustration. A
waypoint set consists of positions marked with solid teal circles.
The waypoint sequence is shown by the maroon line, which
connects the minimum turn waypoint sequence from ~xs to ~xd in
series. This line does not show the optimal robot design, which
is calculated in the Robot Design Generation section.

behavior closely links the path of the soft growing robot
in the map with the map’s visibility graph (Lozano-Pérez
and Wesley 1979). In particular, when there are no designed
turns, the body of a deployed robot will have the same shape
as a path in the map’s visibility graph.

We take advantage of this feature of the obstacle
interaction model by using an approach inspired by a
sampling-based roadmap (Kavraki et al. 1996) in which our
planner will generate robot designs that turn at only a subset
of x-y locations, which we call the waypoint set and denote
by W ⊂ Z. Given a map, M , W consists of the vertices of
the obstacles inM and is augmented with selected or random
interior points, as well as the start and destination points
(Fig. 10).

Waypoint Sequence Generation
The first part of the planner generates a sequence of points
(~x1, . . . , ~xN ) ∈WN through which the tip of the robot will
pass in between the start and destination points (Fig. 10).
Because uncertainty is added with the addition of each
designed turn, the objective of the planner is to choose a
sequence of waypoints that allows the robot to reach its
destination with the fewest number of designed turn points,

Figure 11. Structure of graph for waypoint sequence
generation problem. Nodes of the graph represent departing
from a waypoint, ~x ∈W with a tip angle θ ∈ [0, 2π). Edges
between two nodes exist if: (1) The two nodes correspond to the
same waypoint and have tip angles that are within θM radians
of one another. These edges represent adding a turn to the
design (shown as purple lines). (2) A robot that departs from ~x1
with tip angle θ1 arrives at ~x2 with tip angle θ2 (shown as a
maroon line).

relying as much as possible on passive redirection by the
environment.

We define a directed graph whose structure is depicted
in Fig. 11. Nodes of the graph consist of landmark points
and tip angles, (~x, θ) ∈W × T , where T is a discretization
of [0, 2π). Consider a node (~x1, θ1) ∈W × T . If a path
calculated using the obstacle interaction model with initial
tip position ~x1 and tip angle θ1 with no designed turns goes
through ~x2 with tip angle θ2, then an edge of weight 0 is
added from (~x1, θ1) to (~x2, θ2). In addition, bidirectional
edges of weight 1 that represent designed turns are added
between all graph nodes (~x0, θ1) and (~x0, θ2) that represent
the same landmark and satisfy the property that θ1 and θ2
are within θM radians of one another. (Recall that θM is
the maximum angular deflection manufacturable.) Finally, a
special start node, s, and end node, e, are added to the graph.
Zero-weight edges are added from s to (~xs, θ) for all θ ∈ T
as well as zero-weight edges (~xd, θ) to e for all θ ∈ T .

The problem of finding a path with minimum number of
designed turns is solved by finding a shortest path from the
start node, s, to the end node, e. In our implementation,
we used Dijkstra’s algorithm to solve for the shortest
path. Let (s, (~xs, θ0), (~x1, θ1), . . . , (~xN , θN ), (~xd, θN+1), e)
be the shortest path from node s to node e. Note that such
a path in the graph exists if and only if the end point
is reachable from the start point by the robot through the
map waypoints. Because the only edges that have non-zero
weight represent turns, the minimum weight path from s
to e represents a sequence of waypoints through which the
robot will pass with the fewest number of designed turns.
The waypoint sequence is given by ignoring the angles of
the nodes in the shortest path: (~xs, ~x1, . . . , ~xN , ~xd).

Robot Design Generation
The second part of the planner generates a nominal robot
design, (l1, θ1, . . . , lm, θm), that results in a robot that
reaches the destination with maximum expectation through
the sequence of waypoints, (~xs, ~x1, . . . , ~xN , ~xd), generated
in the first part of the planner. For the sake of computational
efficiency, we use a greedy approach to generate the robot
design, in which we incrementally generate a design that
maximizes the expectation of reaching the ith waypoint,
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Algorithm 1 Optimal Robot Design
Input Incremental Robot Design to (i− 1)th waypoint,

ith waypoint, Map
Output Incremental Robot Design to ith waypoint

1: procedure
OPTIMALDESIGN([l1, θ1, . . . , lj , θj ], ~xi,M )

2: optimalSuccess← 0, θj+1 ← 0, lj+1 ← 0
3: for all θ ∈ T do
4: Generate samples of (l˜1, . . . , θ˜j)5: Throw out samples that don’t result in path that

ends near ~xi−1
6: if |θ| > 0 then
7: Generate samples of θ˜8: end if
9: ESuccess← # samples that end near ~xi/# of

samples
10: if ESuccess > optimalSuccess then
11: optimalSuccess← ESuccess, θj+1 ← θ
12: lj+1 ← sample average of

len(~c˜1, . . . ,~c˜k)−∑j
α=1 lα

13: end if
14: end for
15: end procedure

given the tip of the robot is at the (i− 1)th waypoint with
robot design (l1, θ1, . . . , lj , θj) for some j <= i− 1. (j =
i− 1 when the optimal design has the robot turn at every
waypoint). We do this by choosing lj+1, θj+1 as follows

lj+1, θj+1 =

argmax
l,θ

E
(
||~xi − ~c˜i|| < d

∣∣∣ ||~xi−1 − ~c˜i−1|| < d
)

(20)

where ~c˜i−1 and ~c˜i are realized pivot point random variables
derived from the nominal design (l1, θ1, . . . , lj+1, θj+1).
The decision not to turn at ~xi is represented by the solution
θj+1 = 0 in Eq. 20.

Alg. 1 describes our method for generating the optimal
design through waypoints ~x1, . . . , ~xi. We use a collection of
particles to represent probability distributions in this work,
where each particle is a sample from the random variable
being represented (Thrun 2000; Melchior and Simmons
2007). This allows us to approximate the probabilistic
quantities in Eq. 20 using sample-based approximations. Let
(l1, θ1, . . . , lj , θj) be the nominal design corresponding to
waypoint i− 1. We generate particles by sampling l˜k, θ˜k,
for k = 1, . . . , j < i, according to the distributions given in
Eq. 7. Then the obstacle interaction model is used on each
sampled robot design to compute the corresponding samples
from the distribution of pivot point states, (~c˜1, . . . ,~c˜K),
where K is the number of pivot points of the deployed robot.
Since we are interested in the conditional expectation of
states that reach the (i− 1)th waypoint in Eq. 20, samples
that are not within d units of ~xi−1 are thrown out (shown on
line 5 of Alg. 1). d is a pre-defined distance threshold that is
used to demarcate successfully reaching a location.

To find the optimal next segment length, lj+1, and turn
angle, θj+1, to reach ~xi, we evaluate the expectation in
Eq. 20 for every θ ∈ T , where T is a discretization of
[−πM , πM ]. In particular, for each θ 6= 0, we sample θ˜ ∼U(θ − σθ, θ + σθ) and use the obstacle interaction model to

determine if the resulting path goes near the ith waypoint.
This allows us to evaluate a sample-based approximation of
the expectation in Eq. 20 and therefore the optimal θj+1.
lj+1 is computed as the sample average of the difference
between the robot length at waypoint ~xi and the length of the
robot at waypoint ~xi−1 for the optimal turn amount, θj+1.
This is shown on line 12 of Alg. 1. When θ = 0, we do not
sample θ˜ since additional uncertainty is added only when
new turns are made. This has the effect of favoring designs
with fewer turns.

Experimental Results
In this section, we describe experiments that were performed
to test the obstacle interaction model and path planning
algorithm presented in the previous section. We start with
experiments that test obstacle interactions with basic shapes
such as walls and circles. Next, we present tests of the
obstacle interaction model in a more complex scenario that
chains multiple obstacle interactions together. These results
review and extend the work presented in (Greer et al. 2018).
We then present both numerical and physical experiments
that test the planning method presented in this work.

Growth Along a Wall
As explained in the Map Waypoints section, the obstacle
interaction model predicts that when the tip of the robot
is in contact with an obstacle, it will slide along the
object’s contour in the direction most tangent to its distal
segment while rotating about the obstacle pivot point.
We performed two experiments to test this model. In the
first experiment, we repeatedly grew the robot toward a
wall from different approach angles. An overhead camera
was used to capture the trials. Using color-based image
segmentation, we extracted the position of the robot’s
tip over the course of each trial growth, forming a tip
trajectory. Fig. 12(a) illustrates two example starting angles,
with the paths the obstacle interaction model predicted
and their corresponding tip trajectories in colored lines.
Fig. 12(b) shows the results of the experiment, with 20 trial
growths. Trajectories were colored by approach angle (0◦

corresponding to perpendicular to the wall). As predicted,
the robot tip slid along the wall in the direction most tangent
to its approach angle.

In the second experiment, a designed turn to the right
causes a robot to grow into a wall. Due to the wall’s angle
relative to the most distal segment of the robot, the wall
causes the robot to pivot to the left (Fig. 13(a)). Because
the most distal pivot point not in contact with the obstacle
is right handed (~cn−1) the obstacle pivot point is shifted
one proximal to ~cn−2. As a result, both ~cn−1 and ~cn rotate
about ~cn−2 as the robot’s tip slides along the wall. To
test this second scenario, an overhead camera was used to
track the three most distal pivot points ~cn,~cn−1 and ~cn−2.
Experimentally measured trajectories are compared against
those predicted by the obstacle interaction model and shown
in Fig. 13(b).

Growth Through a Hole in a Wall
To understand how a planner can exploit environmental
contact for navigation, we considered the task of navigating
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Figure 12. Experimental trajectories of robot tip position when
the robot comes into contact with a wall. (a) Schematic showing
two example trajectories and relevant parameters. (b)
Experimental trajectories from 20 trials of the robot. As
predicted by the model, the tip follows the wall trajectory, to the
right if θ is positive, to the left if negative. Adapted from (Greer
et al. 2018) c© IEEE 2018

Figure 13. Growth into a wall, pivoting about ~cn−2. Schematic
of the interaction is shown in (a) and experimental data is
compared to model prediction in (b). As expected, rather than
pivoting about the most distal pivot point not in contact with the
wall, ~cn−1, it pivots about ~cn−2 since ~cn−1 is a right-handed
pivot point and the obstacle is pivoting the robot to the left.

the robot through a small hole in a wall. This scenario
is relevant in search and rescue, mining, and surgical
applications. We studied this scenario by performing an
experiment in which we repeatedly grew the robot through
a hole in the wall, with a width of 6.5 cm (Fig. 14(a)). From
the Growth Along a Wall section, we know that if the robot
is angled left of vertical, its tip will move along the wall
to the left. Furthermore, the model predicts that if the ray
extending from ~cn in the direction of ~cn − ~cn−1 extends into

Horizontal 
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Figure 14. Experiment of growth through a hole-in-the-wall. (a)
Several predicted trajectories of the tip of the soft growing robot
for different approach angles are shown at a fixed distance from
the hole. When the approach angle is within the light blue region
with solid angle, θ, the robot will grow through the hole. (b)
Acceptable solid angle of initial orientations vs horizontal
distance from hole. (c) Probability of successfully growing
through a hole when there is uniform angular uncertainty (∆θ)
versus horizontal point the robot is nominally aimed at (x), from
a fixed location x0. This plot indicates that with any uncertainty,
it is better to aim to the side of the hole than at it. Adapted from
(Greer et al. 2018) c© IEEE 2018

the hole, it will grow through it. In this way, the obstacle
serves to passively guide the robot’s tip through the hole.
Three predicted tip trajectories are shown in Fig. 14(a).

For a fixed horizontal position, the model predicts that the
robot will successfully grow through a hole if its starting
orientation is within the shaded region in Fig. 14(a). This
region has starting orientations that range from just left of
perpendicular to tan−1(x/d) (aiming at the hole), where x
is the horizontal distance from the hole and d is the vertical
distance from the wall. Fig. 14(b) shows the range of starting
orientations that will result in successfully growing through
the wall-hole versus normalized horizontal distance from the
wall for both the model and experimental trials. Fig. 14(c)
suggests that in the case that there is uncertainty in the angle
of approach, it is better to aim the robot at the wall closer
to starting position than the location of the hole, rather than
aiming directly at the hole.

Growth Through a Cluttered Environment
To demonstrate the obstacle interaction model, we created a
planar environment with obstacles to grow the robot through
and compared the observed robot trajectory with the result
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1 4

2 3

Start

Figure 15. Obstacle course with tip trajectories computed using
the obstacle interaction model. Four exit positions are labeled
as 1, 2, 3, and 4 and correspond to colors yellow, blue, cyan,
and pink, respectively. Depending on the starting orientation,
the robot will end at one of the four locations. Varying over the
possible starting orientations, there are seven transitions
between ending points. Representative trajectories from each
orientation regime is shown, colored to correspond to its ending
location. Adapted from (Greer et al. 2018) c© IEEE 2018

predicted by the path computation algorithm. The robot was
made out of 2.54 cm wide and 51 µm thick thin-walled
polyethylene tubing and driven using compressed air that
ranged in pressure from 7 and 21 kPa. Fig. 15 shows the
obstacle course that was used, which was 122 cm wide by
92 cm high. It has four possible exits that are labeled 1, 2, 3,
and 4.

By starting at the same position, but varying the
orientation of the soft growing robot, its path is changed.
Sweeping the starting orientation over the range of possible
angles, the ending location changes six times. For example,
moving the starting orientation from vertical to just right
of vertical changes the ending location from the lower-
left corner (1) to the lower-right corner (4). Representative
tip trajectories predicted by the obstacle interaction model
are overlaid in Fig. 15. The path computation algorithm
correctly predicted the exit location of seven out of seven
trials.

Optimal Robot Design
To evaluate the performance of the path planning method,
we adapted a map from the grid-based pathfinding dataset
(Sturtevant 2012) for use with our path planner. The
adapted map is shown in Fig. 16(a) and (b). The starting and
destination locations for the robot are in the upper left and
lower right corners of the map, respectively and indicated by
teal (starting location) and red (destination location) circles.

First, numerical experiments were performed to test the
efficacy of the proposed planning method. Fig. 16(a) shows
the nominal robot design that was output by the method
in both a free space (light blue) and deployed (dark blue)
configuration. As can be seen, the free space configuration
differs from the deployed configuration because obstacles
are used to redirect the robot to its destination. The
generated robot design was contrasted with a robot design
that avoids obstacles (Fig. 16(b)). This design was chosen to
approximately maintain as far a distance from the obstacles
as possible while reaching the destination. Because the

nominal design does not interact with the environment, the
free space and deployed robot configuration for this design
are identical.

Fig. 16(c) compares the robustness of the two designs
to uncertainty in their physical realizations. The data was
generated by running 10000 Monte Carlo simulations for
varying amounts of uncertainty in the robot design. A
simulation was counted as a success if the robot tip ended
within 5 cm of the destination and a failure otherwise. The
numerical simulations indicate that the proposed planning
method is significantly more reliable for all amounts of
uncertainty. Fig. 16(d) compares the effect map uncertainty
has on the two designs. A separate set of 10000 Monte Carlo
simulations were run on maps that were perturbed from the
nominal map by adding normally distributed random noise
with varying standard deviation (x-axis) to each node of the
nominal map. A fixed amount of design uncertainty was used
for all trials (σθ = 2◦ and σl =1.1cm). Unsurprisingly, the
nominal design was less affected by map uncertainty than the
optimal design since the nominal design was made to avoid
its environment, where as the optimal design was made to
use its environment.

In addition to numerical tests, we performed physical
experiments in two types of environments: a maze-
like environment and a forest-like environment. The first
environment is a physical realization of the map in Fig. 16
and is shown in Fig. 17 along with an implementation of the
design output by the planning algorithm in Fig. 16(a). Turns
were made by taping a pinch into the side of the body of the
robot as shown in Fig. 2.

Fig. 18 shows deployments of the robot to different
goal points within the two environments. In particular,
the second row contains stills taken from a successful
deployment of the robot shown in Figs. 16 and 17. The robot
makes contact with a wall, which was not predicted in
the simulation of the nominal design (Fig. 16(a)). This was
due to mismatch between the physical and virtual maps.
Despite both the robot manufacturing error and mismatch
between the physical and virtual maps, the robot successfully
reached the destination. The bottom three rows of Fig. 18
show deployments of the robot in the second, forest-like,
environment. It contains irregularly shaped obstacles and
tests the model and planning method’s applicability to
natural environments with more complicated robot-obstacle
interactions. As shown in Fig. 1, similar benefits are found
by exploiting obstacle contact, namely passive turning by
the environment and reduction in uncertainty of the robot’s
motion.

Conclusion

For a robot moving through a cluttered environment, it is
inevitable that the robot will interact with obstacles. Rather
than seeing these obstacle interactions as inherently negative,
we show that they can be advantageous for navigating the
soft growing robot to a particular destination. This is because
interactions with obstacles can consolidate many possible
paths down to a single desired path, and these interactions
can direct the robot to locations not on a straight line path
from its starting point. This work describes both a model and
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(d)(c)

Shape of Optimal Robot Design Deployed in Map

Shape of Optimal Robot Design Deployed in Free Space

Shape of Nominal Robot Design Deployed in Map

Figure 16. Path planning results. (a) Optimal design for navigating the tip of the soft growing robot from start location (top left) to
destination location (bottom right). Free space deployment of the robot is shown in light blue and deployment of the robot in the
map (calculated using the obstacle interaction model) is shown in dark blue. (b) Nominal design for the same task. This design
maximizes distance from the robot’s body to obstacles. (c) Probability of reaching the destination versus angular uncertainty for
both the optimal design and nominal design. Utilizing obstacle interactions increases robustness of the robot design. (d) Probability
of reaching destination with varying map uncertainty. Nominal design is less affected by imperfect map knowledge since design is
chosen to maximize distance from its environment.

112 cm

84 cm

Figure 17. Free space deployment of optimal robot design
shown in Fig. 16(a). Robot is above the plane of the map in this
image. The design consists of one 18◦ left turn at a length of
18.8 cm; the designed turn marked with a blue circle. The
physical implementation of the turn was more shallow than the
design prescribed. Nonetheless, the deployed robot reached
the desired destination as shown in the second row of Fig. 18.

a planning method to exploit robot-obstacle interactions for
navigation of a soft growing robot.

Our obstacle interaction model and planning method
have several limitations. An assumption of head-on contact
(Planar Kinematic Model section) is that the robot’s
backbone will pivot about a pivot point as its tip slides along
an obstacle contour. This is only true when the robot (i)
buckles and (ii) the cause of buckling is a transverse rather
than axial load. These assumptions are satisfied when the
membrane material is sufficiently thin, air pressure in the
backbone is low, the free length is short, and the angle of
contact is above a few degrees. If these are not true, the robot
will either bend, or buckle at a point other than the predicted
pivot point. Though it will not affect the accuracy of the
predicted tip location for a single obstacle, it could affect the
tip predictions for multiple, chained obstacle interactions.

The kinematic model also does not explicitly account for
friction between the robot and obstacles. While the robot
interacted with a range of surface types and this did not result
in any substantial effects from friction in the demonstrations
presented in this paper, high friction surfaces could affect
the ability of the robot tip to slide relative to the surface,
effectively locking the robot in place. This effect would
be largest at low contact angles, the same situation that
leads to axial buckling. At higher contact angles, the normal
force between the robot and obstacle remains small and
friction will have little effect. Friction can also be considered
between the robot and the floor, but the normal forces are

Prepared using sagej.cls



12 Journal Title XX(X)

0 20 40 60 80 100
x (cm)

0

20

60

40

80

y 
(c

m
)

Figure 18. Physical implementation of optimal robot designs. Each row corresponds to a different destination and for each
destination, an optimal design was produced by the planning method presented in this paper. The left column contains the path
predicted by the obstacle interaction model and the columns to the right show four snapshots during growth to the destination. The
second row is an implementation of the optimal robot design shown in Fig. 16(a).

low, so this has little effect on pivot point selection and
movement of the tip.

Lastly, the model is limited to 2D maps with polygonal
obstacles. Recent work on soft growing robot designs has
explored applications in medical robotics (Slade et al.
2017) and archaeological exploration (Coad et al. 2019)
which involve environments with 3D geometry and smooth
obstacles not well approximated by polygons. To extend
this model to these more general 3D environments, sliding
contact kinematics would have to be reformulated. This is
accomplished by modeling sliding contact as a constraint on
tip motion that projects tip velocity to the surface tangent
vector whose inner product with tip velocity is maximized.

In addition to the obstacle interaction model, the planning
method has several simplifications built into it that prevent

the method from producing globally optimal robot designs
and narrow its applicability to 2D maps. In the first step
of the planning method (Waypoint Sequence Generation),
it narrows the search space of robot designs to a robot
that will reach the destination with minimum number of
designed turns. It is not necessarily true that the optimal
robot design will have the fewest number of designed turns.
In future work, we plan to investigate tree-based methods
that consider uncertainty, e.g., Particle Rapidly Exploring
Random Tree (Melchior and Simmons 2007) and Contact
Exploiting Rapidly Exploring Random Tree (Sieverling et al.
2017). A key challenge with applying these existing methods
is that the dimension of the soft growing robots state space
grows unbounded as the length of the robot increases. If
properly applied to the soft growing robot, a tree-based
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method has the potential to more quickly find feasible plans.
We will also investigate iterative algorithms that have the
potential to asymptotically converge to an optimal design.
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P (2008) Snake robot obstacle-aided locomotion: Modeling,
simulations, and experiments. IEEE Transactions on Robotics
24(1): 88–104.

Prepared using sagej.cls



14 Journal Title XX(X)
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