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Abstract—
Steerable needles are novel medical devices capable of

following curved paths through tissue, enabling them to avoid
anatomical obstacles and steer to hard-to-reach sites in tissue,
including targets in the lung for lung cancer diagnosis. Steerable
needles are typically deployed into tissue from an insertion
surface, and selecting the insertion site is critical for procedure
success as it determines which paths the needle can take to
its target. Prior motion planners for steerable needles typically
only plan from a specific start pose to the target. We introduce
a new resolution-optimal steerable needle motion planner that
efficiently finds plans from an insertion surface to a target
position, handling additional degrees of freedom at both the
start and the target. Our algorithm systematically builds a
search tree consisting of needle motion primitives backward
from the target towards the insertion surface, which allows
it to provide an optimality guarantee up to the resolution of
the primitives. The algorithm finds higher-quality plans faster
than prior state-of-the-art motion planners, as demonstrated in
anatomical scenario simulations in the lung.

I. INTRODUCTION

Steerable needles are minimally invasive devices whose
ability to curve allows them to avoid anatomical obstacles
and to reach sites in the body not reachable with conven-
tional, straight needles [1]. One application for steerable
needles is biopsies for cancer diagnosis. Lung cancer causes
more deaths in the United States than any other type of
cancer [2]. Early diagnosis requires biopsy and is crucial
for favorable patient outcomes. Steerable needles can reach
peripheral lung nodules in a minimally invasive way, miti-
gating patient risk in biopsy procedures.

Safely navigating a steerable needle to a target requires
not only computing a feasible obstacle-avoiding path to the
target but also determining where the needle should start.
The steerable needle lung robot developed by our group
[3] delivers a steerable needle into the airways via a bron-
choscope. The steerable needle is then inserted through the
airway wall before it steers through lung tissue to a biopsy
location. Selecting this insertion site on the airway wall is
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Fig. 1. (a) Steerable needles (light blue) are deployed from an insertion
surface (tan) and steer through tissue (grey) towards a target position (pink)
while avoiding critical anatomical obstacles. Our new algorithm efficiently
finds motion plans (dark blue), providing resolution optimality guarantees
by building a search tree backward from the target toward the insertion
surface. (b) In a lung biopsy scenario, the steerable needle is deployed
from the airways (tan) into lung tissue (grey) while avoiding blood vessels
(red) and steering toward a lung nodule (pink).

critical for procedure success as it determines which paths
the needle can take to its target. Furthermore, for a biopsy
procedure, only the target nodule’s position is relevant, and
no particular target orientation is required. Hence, in contrast
to the standard paradigm of planning a collision-free motion
from one pose (position and orientation) to another pose, we
must compute a motion from an insertion surface to a target
position.

This work introduces a new motion planner for steerable
needles that plans from an insertion surface to a target
position, as visualized in Fig. 1. For medical applications,
it is crucial to both compute high-quality plans to ensure
low patient risk and to find these plans quickly. Our new
algorithm is both computationally efficient and resolution-
optimal, which means it can find optimal motion plans up to
a clinically relevant resolution.

Our new motion planner inverts the planning process
and plans backward from a target position to an insertion
surface, enabling greater efficiency. In previous work, we
introduced a Rapidly Exploring Random Tree (RRT)–based
motion planner that employed a similar backward planning
strategy [4]. However, RRT-based planners typically do
not provide an optimality guarantee, a crucial property for
motion planners in critical medical applications. A recent
contribution from our group introduced a resolution-optimal
motion planner for steerable-needle applications planning
from a start pose to a target position [5]. We now expand the
resolution-optimal algorithm to compute motion plans from
an insertion surface to a target position by incorporating a
backward planning strategy that can efficiently handle the
additional degrees of freedom.

Our new algorithm systematically builds a search tree
backward from the target toward the insertion surface,



searching for an optimal motion plan. It iteratively expands
the tree by adding and refining motion primitives correspond-
ing to the steerable needle’s hardware constraints. As no
specific orientation for the needle tip at the target is required,
we treat the target orientation as a refinement variable and
create multiple interleaving search trees. Combined with the
backward planning strategy, this allows us to handle the
degrees of freedom in both the insertion surface and the
target position.

We test our new planning approach in a simulated transoral
lung biopsy scenario. Our simulations show that (i) for easy
planning scenarios, our new algorithm terminates within
three minutes with the resolution-optimal motion plan or a
guarantee that no such plan exists, and (ii) for more difficult
scenarios, our new algorithm finds lower-cost plans faster
than prior sampling-based algorithms. This combination of
optimality and efficiency properties is highly beneficial for
time-critical medical applications.

II. RELATED WORK

Many steerable needle designs employ base actuation
consisting of insertion and axial rotation and an asymmetric
(e.g., beveled) needle tip. When such a steerable needle is
inserted into tissue, its asymmetric tip applies a force that
causes the needle to curve in the direction of the bevel [6].
Steerable needle control strategies can achieve complex 3D
trajectories [7], [8], [9]. While this paper is written with
bevel-tip steerable needles in mind, the unifying feature
of motion planning for steerable needles is their curvature
constraint. Thus, our new algorithm could also be adapted
to other types of steerable needles [10], [11], [12], [13].

Multiple motion-planning algorithms for steerable nee-
dles have been proposed. Sampling-based motion planning
algorithms can efficiently find plans in high dimensional
spaces [14], [15], [16], [17]. Another type of steerable nee-
dle motion planner uses optimization-based strategies [18],
[19]. Fractal tree-based approaches systematically search
the needle’s reachable workspace for motion plans [20],
[21]. A deep learning-based strategy employed Generative
Adversarial Imitation Learning [22].

Steerable-needle deployment requires insertion into the
surface of tissue, but few steerable needle motion planners
explicitly take the selection of this start pose into account.
Existing strategies include relying on a physician’s expe-
rience for selecting a start pose [23], exhaustively testing
all possible start poses [21], sampling start poses based
on the reachability of a needle insertion device [24], or
a constrained optimization-based algorithm limited to 2D
planning [19]. Planning strategies computing the best start
pose for conventional, straight medical instrument insertions
exist, but typically rely on geometric computations that are
not easily generalizable to account for the curving abilities
of steerable needles [25], [26], [27]. In our previous work,
we introduced B-RRT, an RRT-based algorithm that plans
backward from a target position to an insertion surface but
does not provide optimality guarantees [4].

None of the previously developed steerable needle motion
planners discussed so far provide completeness or optimal-
ity guarantees [28]. One difficulty in motion planning for
steerable needles lies in their curvature constraints, making
the task of connecting two steerable needle configurations
a difficult two-point boundary value problem. While the
sampling-based Rapidly Exploring Random Tree (RRT) al-
gorithm [29] is probabilistically complete, the NeedleRRT
variant [16] uses modified sampling and node connecting
strategies for practical efficiency. Similarly, while the RRT∗

algorithm is asymptotically optimal, [30], an existing RRT∗

steerable needle variant requires a smoothing step to ensure
compliance with curvature constraints, which changes the
optimal path [31]. Resolution optimal motion planners have
been introduced for car-like robots with non-holonomic cur-
vature constraints [32], [33], [34]. However, these planners
only operate in 2D and the workspaces they cover are
much larger relative to their minimum radius of curvature
in comparison to a typical steerable needle problem. Our
group recently introduced the resolution optimal steerable
needle motion planner RCS∗, which systematically searches
for an optimal plan from a start pose to a target position by
building a search tree consisting of iteratively refined motion
primitives [5]. In this work, we build on this algorithm to
consider an insertion surface while maintaining completeness
and optimality guarantees.

III. PROBLEM DEFINITION

We model the steerable needle’s kinematics using a 3D
unicycle model [6], [35], assuming that the needle fol-
lows a constant-curvature arc when inserted. Its reachable
workspace is limited by its maximum curvature κmax, which
is dependent on the needle design and tissue properties
such as density. Needle deployment is further limited by
its maximum length ℓmax and its axial diameter dneedle
(to avoid close-by obstacles). Its overall curvature cannot
exceed π/2 as this might cause buckling or sheering through
tissue [16]. We denote by gneedle() a function describing
the aforementioned constraints, which are satisfied when
gneedle() ≥ 0.

We assume that the steerable needle follows its tip in a
follow-the-leader manner [36]. Therefore, we can describe
the configuration of the steerable needle by its tip. We
denote a steerable needle tip configuration as x ∈ SE(3) =
R3 × SO(3), expressing its position p(x) ∈ R3 and its
orientation q(x) ∈ SO(3). We refer to the configuration
space of the steerable needle as X ⊆ SE(3). Following
the kinematics model described above, we model a section
of a steerable needle motion plan as a constant-curvature
arc ai = {xi, κi, ℓi, θi}, with curvature κi, length ℓi, and
axial rotation θi, connecting configuration xi to subsequent
configuration xi+1, as visualized in Fig. 2. A steerable needle
motion plan is an ordered list of such constant-curvature
arc plan sections Π = [a1, . . . ,ai, . . .an] of n ∈ N plan
sections. We define Shape(Π, s) : [0, 1]→ R3 as a mapping
of configurations along Π into 3D space.



Fig. 2. The steerable needle (green) is deployed from the insertion surface
Σ (pink) at configuration x1 ∈ Σ and steers towards xtarget. A needle plan
(black) consists of constant curvature arcs characterized by an insertion
length ℓi, a curvature κi, and a rotation angle θi that connect 3D poses xi

and xi+1.

We assume that the needle operates in a 3D workspace
W ⊂ R3 that contains known obstacles O ⊂ W that the
needle has to avoid. A configuration x is said to be collision-
free if its position p(x) /∈ O. Similarly, we say that a plan Π
is valid if all positions along the plan are collision-free, i.e.,
∀s ∈ [0, 1],Shape(Π, s) /∈ O.

We assume that we are given a cost metric c : R3 →
[0,∞) that assigns a cost to each position p(x) along a plan.
Consequently, we define the cost C for a plan Π as

C(Π) =

∫ 1

s=0

c(Shape(Π, s))ds.

Problem 1 [Motion-planning problem] Let W be a
workspace populated with a set of known obstacles O ⊂
W , Σ ⊂ W be an insertion surface, ptarget ∈ W be a
target position, C a cost metric, and gneedle() a function
describing the system’s kinematic constraints. Our problem
calls for finding a motion plan Π∗ expressed as the following
optimization problem:

Π∗ = argmin
Π

C(Π).

Subject to:
∀s ∈ [0, 1],Shape(Π, s) /∈ O,
gneedle(Π) ≥ 0,

p(x1) ∈ Σ,

p(xn) = ptarget.

A unique aspect of our motion-planning problem is the
insertion surface Σ ∈ R3, which corresponds to an insertion
surface from which needle deployment begins. Additionally,
our problem has an extra degree of freedom at ptarget, which
does not have a fixed orientation.

IV. METHODS

This section introduces our new resolution-optimal
motion-planning algorithm, BackwardRCS∗ (B-RCS∗). Our
approach is an extension of the Resolution Complete Search
(RCS∗) algorithm [5] that builds and refines a search tree
consisting of pre-defined motion primitives. We describe the
main features of this algorithm in Sec. IV-A and highlight
the changes made in our new approach in Sec. IV-B. Con-
ceptually, the main difference is that RCS∗ plans from a
fixed needle start configuration to a goal point. In contrast,
our new algorithm considers an insertion surface consisting
of many possible start configurations and determines the
optimal one as part of the planning process. To do so, we

invert the planning process to begin at ptarget and plan towards
the insertion surface, which requires changing the way the
search tree is constructed as well as the target condition.
We describe the RCS∗ algorithm as outlined in Alg. 1.
Changes from the RCS∗ algorithm to the B-RCS∗ algorithm
are highlighted in pink, whereas blue text marks optional
speedup strategies explained in Sec. IV-C.

A. Algorithmic Background—RCS∗

The main idea behind RCS∗ [5] is to systematically search
the configuration space for an optimal plan by building a
search tree consisting of motion primitives that reflect the
system’s physical constraints. By iteratively refining these
motion primitives, an optimality guarantee up to the current
refinement level can be given. The algorithm constructs a
search tree T = (V, E), where each node u ∈ V is associated
with a configuration xu and each edge e = (u, v) ∈ E is
associated with a motion plan section ae connecting configu-
rations xu and xv . The algorithm associates each search node
with a so-called “rank”, which is a value that represents both
the level of refinement of the motion primitive the node was
constructed with and the node’s depth in the search tree. The
algorithm uses the notion of node rank to determine which
nodes to expand next in its search.

The algorithm begins growing the tree from a root node
associated with a given start configuration xstart, which in our
backward planning implementation is a pose at the target. It
maintains a list of nodes called an OPEN list, which contains
nodes that have yet to be validated (i.e., that may be in
collision or not satisfy the system’s constraints). In each
iteration, the algorithm selects a node from the OPEN list,
tests it for validity, and potentially expands it to create new
nodes. This process continues until there are no more nodes
left in the OPEN list (Line 5). RCS∗ selects nodes from the
OPEN list based on two criteria, their rank and a secondary
metric f(·). This metric is defined as f(v) = C(v) + h(v),
where C(v) is the cost associated with the partial plan from
the target to node v and h(v) is a heuristic which in our
setting is an estimated cost from v to the insertion surface
Σ.

The algorithm introduces a lookahead parameter nla ∈ N
and sorts all nodes whose rank is r ≤ ropen + nla by their
secondary metric, where ropen is the lowest rank represented
in the OPEN list. The algorithm selects the node with the
lowest metric value according to these selection criteria
for evaluation. A lower value of nla encourages evaluating
coarser resolution nodes first, which can lead to finding an
initial plan faster. In contrast, a higher value emphasizes
refining the nodes with the lowest metric value.

Additionally, the algorithm employs lazy edge evalua-
tion [37], [38], [39], i.e., it only validates nodes when they
are extracted from the OPEN list (Line 7). Node validation
includes collision detection along the node’s incoming edge.
Furthermore, the algorithm verifies that the length ℓv of the
partial plan from the root to v is shorter than ℓmax and that no
nodes similar in position and orientation have already been
expanded. If a node passes all validity checks, it is next tested



Algorithm 1 BackwardRCS∗

Input: Wobs,Σ, ptarget, τ, κmax, ℓmax, δℓmax, δϕmax

1: Θ← {0, π
2 , π,

3π
2 },K ← {0, κmax}, bestPlan← ∅

2: xtarget ← InitRoot(ptarget)
3: root ← (xtarget, 0) ▷ The root has rank 0
4: OPEN ← {root}, CLOSED ← ∅
5: while not OPEN.empty() do
6: v ← OPEN.extract()
7: if Valid(v,Wobs,Σ, ℓmax) then
8: if not existSimilarConfig(v, CLOSED) then
9: if Reachable(v,Σ, ℓmax, κmax) then

10: if Terminate(v,Σ, τ ) then
11: bestPlan.update(v)
12: if DirectConnect(v,Σ) then
13: bestPlan.update(v)

14: for M∈ Primitives(K, δℓmax,Θ, 0) do
15: OPEN.insert(v ⊕M)
16: CLOSED.insert(v)

17: if v != root then
18: for M∈ RefinedPrimitives(Mv) do
19: OPEN.insert(v.parent⊕M)
20: if v.parent == root then
21: OPEN.insert(v.parent⊕M±ϕ)

22: return bestPlan

for its goal proximity. If the node is closer to ptarget than a
minimum distance τ ∈ R+, the target has been reached, and
a complete plan from the start to the target can be retrieved
by backtracking the tree structure (Lines 10 and 11).

If the current node has been deemed as valid, but not as
reaching the target, the algorithm expands it by the coarsest
motion primitives. In this process, the algorithm creates new
child nodes and adds them to the OPEN list (Line 15).
Additionally, the parent node of the current node v is also
expanded. Here, the motion primitives are based on v’s
current refinement levels. These levels are increased to create
refined motion primitives in both path length and rotation,
which are then used to expand the parent node (Line 19).
This process creates a denser, more refined tree over time.
The algorithm terminates when all nodes have been expanded
at the finest refinement levels δℓmin and δθmin and no more
nodes are in the OPEN list.

B. The BackwardRCS∗ (B-RCS∗) Algorithm

Our planning problem does not explicitly specify the
target orientation, which introduces a new degree of freedom.
We suggest discretizing the set of orientations for which
we can reach the target and using the RCS∗ framework
to systematically explore all possible orientations. To this
end, we introduce a new parameter δϕ, which represents
the change in orientation at the target. Similar to RCS∗,
our new B-RCS∗ planner operates by refining nodes in the
search tree according to their rank (though with a new rank
function). The rest of the section formalizes this idea and
details additional changes required for our setting.

Fig. 3. Motion primitive refinements, lighter colors representing higher-
level refinements: (a) insertion length δℓ, (b) rotation about the insertion
direction δθ, (c) change in orientation at the root δϕ.

1) Initial orientation: We set the initial orientation qtarget
such that its deployment direction is (ptarget − pσ)/||ptarget −
pσ||2, pointing toward the position pσ in the insertion surface
Σ that is closest to ptarget (Line 2). We set the root of
the search tree to be the target configuration xtarget =
(ptarget, qtarget) (Line 3), starting our backward search from
the target and growing the search tree toward Σ.

2) Motion primitives: Recall (Sec. III) that a motion
plan is an ordered list of constant-curvature arcs where an
arc ai = {xi, κi, ℓi, θi} is associated with curvature κi,
length ℓi, and axial rotation θi, connecting configuration xi

to subsequent configuration xi+1. Consequently, we define
motion primitives to be a set of parameters that will define
the exact set of arcs considered from any configuration x it
reaches.

Formally, we define a motion primitive for our system to
be a tuple

M := (κ, δℓ, δθ, δϕ).

Here, κ ∈ [0, κmax] is the corresponding arc’s curvature
(straight or maximum curvature), δℓ is the length of the
corresponding arc, δθ is the axial rotation (about the insertion
direction), and δϕ (a new parameter that we add) is the
change in orientation at the target.

We define δϕmax ≤ π/2 as the largest deviation in
orientation from qtarget and note that δϕ may be non-zero
only at the root vertex. An abrupt change in orientation at any
other vertex along the plan would defy the steerable needle’s
curvature constraints. Now, given a motion primitiveM, we
define lϕ(M), the orientation’s level of refinement to be

lϕ(M) := min{l ∈ Z≥0|MOD(δϕ, 2−l · δϕmax) = 0}. (1)

Here, MOD(·) is the modulo operation.
As in RCS∗ (where the length level lℓ and angle levels lθ

are similarly defined), lϕ(M) is used both in the rank
function used to order vertices in OPEN and when refining
motion primitives to create new vertices. Specifically, given a
search tree vertex v created by applying motion primitiveM
from a parent vertex v.parent, we define v’s rank to be

Rank(v) := Rank(v.parent)+lℓ(Mv)+lθ(Mv)+lϕ(Mv)+1.

To refine a motion primitive M = (κ, δℓ, δθ, δϕ) ac-
cording to the orientation (recall that this is only applied
to the root vertex), we construct the following two motion
primitives:

Mϕ± = (κ, δℓ, δθ, δϕ± 2(lϕ(M)+1)·δϕmax).



Fig. 4. We speed up the planning process by (a) pruning nodes v for which
no part of the insertion surface is within maximum distance ℓneedle (pink)
and within its backward reachable workspace (purple) and (b) attempting
to directly connect each node chosen for expansion to the insertion surface
via a straight connection.

Note that following Eq. 1, both Mϕ+ and Mϕ− have
orientation level equal to lϕ(M) + 1. Finally, in Fig. 3, we
visualize the four motion primitive parameters by showing
multiple refinements for δℓ, δθ, and δϕ (κ is not refined and
all possible values are represented in each subfigure).

3) Cost metric & heuristic: Recall that the cost function
evaluates an existing partial plan and, therefore, does not
have to be changed for planning toward an insertion surface.
The heuristic estimate of a plan’s cost, however, has to be
adapted such that it is a lower bound for any additional
cost that occurs between a given node v and the insertion
surface Σ. For the path length cost metric, we set h(v) to
be the minimum Euclidean distance to any position in the
insertion surface. This is a lower bound of the actual cost
for any partial plan connecting v and the insertion surface.

4) Termination condition: Let v be a valid search node
extracted from OPEN that is not too similar to a previously
selected node (Lines 7 and 8). Let p(xv) be the position
at v and pΣ(xv) be the closest point to p(xv) on Σ. Given
a threshold parameter τ , v is considered to reach Σ if τ ≥
||p(xv) − pΣ(xv)||2. This condition is checked in Line 10.
If it holds, a plan is retrieved (Line 11).

5) Resolution-Optimality Proof Sketch: The original
RCS∗ algorithm is optimal up to the finest resolution of
refined motion primitives expanded [5]. The additional mo-
tion primitive δϕ in our new B-RCS∗ algorithm represents
the orientation at the target. Conceptually, B-RCS∗ creates
multiple interleaving search trees starting from the target
when δϕ is refined. In combination with the other motion
primitives, these refinements result in covering the complete
search space up to the resolution of δϕ. We also adapted cost
heuristic h(v) to estimate a lower bound between node v and
any position on the insertion surface, which is required for
an optimal search.

C. Speedup Strategies

RCS∗ employs several speedup strategies, including
parallelization, node pruning, direct-goal connecting, and
inevitable-collision detecting [5]. We introduce two addi-
tional speedup strategies that are particular to our new B-
RCS∗ algorithm.

1) Start reachability pruning: We can test if it is possible
to reach the insertion surface Σ from a given vertex v based
on the steerable needle’s hardware constraints and prune the
node if this is not the case (Line 9). This corresponds to
testing for distance constraints and curvature constraints.

Fig. 5. In three lung planning scenarios with randomly sampled targets
(pink) and an increasing obstacle density (red) we compare the performance
of B-RCS∗ to B-RRT by measuring the shortest relative path lengths
found for each target. Dots in the lavender-shaded area represent planning
scenarios for which B-RCS∗ found shorter plans than B-RRT. For easier
scenarios, B-RCS∗ terminates with the optimal plan (blue), whereas for
harder scenarios, B-RCS∗ finds plans on average shorter than B-RRT (red).

Specifically, let dmin = minpσ∈Σ ||p(xv) − pσ||2 be the
minimal distance from v to Σ. If dmin + ℓv > ℓmax, then
any path connecting v to Σ will be longer than the steerable
needle’s total length, and v can be pruned.

Similarly, we test if any position on Σ is in the backward
reachable workspace of v. This reachable workspace is lim-
ited by the maximum curvature κmax and the total curvature
limit of π/2 to avoid sheering. These two constraints result in
a trumpet-shaped reachable workspace, as shown in Fig. 4(a).

2) Direct insertion-surface connection: We further speed
up the planning process by attempting to connect the current
node v to Σ with a straight-line connection. This strategy is
based on the observation that when Σ is large, such straight-
line connections often yield feasible plans. This strategy is
motivated by goal biasing in RRTs, which has a similar effect
in motivating tree growth towards the target [40]. We apply
this speedup strategy after having determined that v does not
already reach the insertion surface (Line 12).

We determine the current node’s configuration xv and
extend a new straight plan section in its deployment direction
up to a total plan length of ℓmax while checking for collisions,
as visualized in Fig. 4(b). A new valid motion plan has
been found if the extension reaches the insertion surface Σ.
However, if such a collision-free connection is determined, it
is not necessarily part of the lowest-cost plan. Therefore, we
continue the search by expanding v as previously described
in case it might contribute to a better plan.

V. EVALUATION

We tested our new algorithm in a transoral lung biopsy
planning scenario. We used anatomy representations from an
existing dataset [41], treating anatomical features, including
large blood vessels and the lung boundary, as obstacles and
the airway walls as the insertion surface, as shown in Fig. 5.
Lungs contain a lot of small blood vessels, which are not
always avoidable during procedures. By varying the blood
vessel threshold used in image segmentation [42], we varied
the size of blood vessels considered significant; a higher



Fig. 6. Termination rates of B-RCS∗ across scenarios with a varying density
of blood vessel obstacles. B-RCS∗ terminates with a resolution-optimal plan
(cyan) more frequently in lower-density scenarios or by certifying that no
plan exists (green) more often in higher-density scenarios.

blood vessel obstacle density results in obstacles taking
up a greater percentage of the workspace, resulting in a
more difficult planning problem. We used a nearest neighbor
data structure [43] for voxel-level collision detection and
a C++-based planning library [44] for efficient algorithm
implementation. We ran all simulations on a 2.9GHz 24-
thread Intel Core i9-8950HK CPU with 32GB of RAM.

We compared our new B-RCS∗ planner with a sampling-
based backward needle RRT (B-RRT) planner [4] and an
Asymptotic Optimality RRT [45] adapted to steerable needle
backward planning (B-AORRT). We compared their per-
formance using the shortest path metric on 50 randomly
sampled targets within the free space of the lung, and we ran
each planning simulation for 3 min. We set the minimum res-
olution of B-RCS∗ to δℓmin = 0.125mm, δθmin = 0.157rad,
and δϕmin = 0.157rad. Based on experimental data [46],
we set the steerable needle’s minimum radius of curvature
to rmin = 100mm and the maximum deployment length
to lneedle = 100mm.

In three lung planning scenarios with increasing density of
blood vessel obstacles, we compared the performance of B-
RCS∗ with B-RRT and B-AORRT for each planning target,
as shown in Fig. 5. We determined the relative shortest path
lengths by dividing the lengths of all plans found by the
shortest Euclidean distance between the insertion surface and
the respective target position. This relative path length is a
proxy for planning difficulty, as longer relative plans indicate
more obstacle avoidance necessary in finding a plan. Only
targets for which both algorithms found at least one plan are
shown. The B-RCS∗ algorithm terminated with a guaranteed
resolution-optimal result for targets with shorter relative path
lengths. For targets with longer relative path lengths, while
not terminating, it found shorter plans than the B-RRT. This
trend can be seen across all three scenario difficulty levels.

To further analyze B-RCS∗’s termination behavior, we
tested it in eight lung scenarios with increasing density of
blood vessel obstacles. We recorded for each scenario how
many targets the planner terminated for. Termination can
occur because the resolution-optimal solution was found, and
it is guaranteed that no better plan exists, as analyzed above
in Fig. 5. Further, it can terminate when it asserts that no plan
exists. Fig. 6 shows the distribution of terminated planner
runs. For easier scenarios, the number of terminations with

Fig. 7. Simulation results over time recording the success rate to find at
least one plan per target, the shortest plan found, and the rate of successful
termination with a resolution-optimal plan.

an optimal plan was higher. With an increasing density of
obstacles, the number of runs guaranteeing that no plan
can be found up to the minimum resolution increased.
Termination is a desirable feature for medical procedure
planning as it provides a guarantee that the safest plan for a
procedure has been found or that no safe plan exists.

We also compared B-RCS∗ with B-RRT and B-AORRT as
a function of the running time as shown in Fig. 7. For B-RRT
and B-AORRT, we repeated the planning process 10 times for
each target to account for their random sampling component.
B-RCS∗ found shorter plans faster to more targets than
B-RRT and B-AORRT across all lung scenarios, and the
speedup strategies further increased B-RCS∗’s performance.
B-RCS∗ terminated early for a significant number of targets
after having found the resolution-optimal plan. In contrast,
B-RRT and B-AORRT run in an anytime fashion and do
not terminate. The difference between the algorithms was
more pronounced in the more difficult scenarios with a higher
density of blood vessel obstacles.

VI. CONCLUSION

In this work, we introduced a new motion planner that
creates plans for steerable needles from an insertion surface
to a target position. Its systematic strategy for building a
search tree based on motion primitives ensures resolution
optimality with respect to the cost metric chosen. Our
planning simulations for a lung biopsy task showed that
it is more efficient than other sampling-based approaches
that provide no such guarantees. Ensuring optimality while
creating motion plans in a timely manner is important,
especially when planning during a medical procedure.

We plan to develop a rapid replanning routine that lever-
ages the search tree computed during the initial planning
process to correct for potential uncertainty during steerable
needle deployment. We plan to test this new algorithm in
different anatomical scenarios and — most importantly —
in physical ex vivo and in vivo experiments.
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