
Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning

Jeffrey Ichnowski, Jan F. Prins, and Ron Alterovitz1

Abstract— We present CARRT* (Cache-Aware Rapidly Ex-
ploring Random Tree*), an asymptotically optimal sampling-
based motion planner that significantly reduces motion plan-
ning computation time by effectively utilizing the cache memory
hierarchy of modern central processing units (CPUs). CARRT*
can account for the CPU’s cache size in a manner that keeps its
working dataset in the cache. The motion planner progressively
subdivides the robot’s configuration space into smaller regions
as the number of configuration samples rises. By focusing
configuration exploration in a region for periods of time, nearest
neighbor searching is accelerated since the working dataset
is small enough to fit in the cache. CARRT* also rewires
the motion planning graph in a manner that complements
the cache-aware subdivision strategy to more quickly refine
the motion planning graph toward optimality. We demonstrate
the performance benefit of our cache-aware motion planning
approach for scenarios involving a point robot as well as the
Rethink Robotics Baxter robot.

I. INTRODUCTION

Incremental sampling-based motion planners are a critical
component of many robotic systems that autonomously nav-
igate and/or manipulate objects [1]. The objective of motion
planning is to compute a feasible path from a starting config-
uration to a goal while avoiding obstacles. Asymptotically-
optimal incremental sampling-based motion planners, such as
the Rapidly-exploring Random Tree (Star) (RRT*), converge
towards a plan that minimizes a cost function by incre-
mentally refining the planning graph data structure [2]. In
this paper, we introduce CARRT*, “Cache-Aware Rapidly-
exploring Random Tree (Star)”, an asymptotically-optimal
sampling-based motion planner that significantly reduces
motion planning computation time by effectively utilizing
the cache memory hierarchy of modern central processing
units (CPUs).

Modern CPUs can perform hundreds of computation in-
structions in the time that it takes to access a single value
in memory (RAM) [3]. To reduce this disparity, CPUs have
multiple levels of small and fast cache memories for storing
frequently accessed data and avoiding costly trips to RAM.
Fig. 2 shows a typical modern CPU with 3 levels of cache:
its L1 cache is the smallest and fastest (30–50× faster than
RAM), L2 is bigger and not as fast (12–20× faster than
RAM), and L3 is largest but slow (2–5× faster than RAM).

CARRT* is an asymptotically-optimal sampling-based
motion planner that is cache-aware—it takes into account

1Jeffrey Ichnowski, Jan F. Prins, and Ron Alterovitz are with the
Department of Computer Science, University of North Carolina at Chapel
Hill, USA {jeffi,prins,ron}@cs.unc.edu

This research was supported in part by the National Science Foundation
(NSF) through awards IIS-1117127 and IIS-1149965 and by the National
Institutes of Health (NIH) under award R21EB017952.

 0

 10

 20

 30

 40

 50

 60

103 104 105 106

Ti
m

e
fo

r n
ea

re
st

 n
ei

gh
bo

r
se

ar
ch

 (µ
s)

Number of samples (n) in kd-tree (log scale)

L2 cache
capacity

Observ
ed

L2 trend

cache
misses

Fig. 1. Nearest neighbor searching is a critical component of sampling-
based motion planning. Proper use of the CPU’s cache can lead to signifi-
cantly faster nearest neighbor searches. As the number of configurations in
the space rises, the memory required to store the nearest neighbor search
data structure (e.g., a kd-tree) exceeds the capacity of the CPU’s L2 cache.
This results in L2 cache misses, and the associated latency causes the
observed nearest neighbor search times to diverge from the trend seen
when the data fits in L2 cache. In this paper, we present a motion planner
that is cache-aware—with a simple tunable parameter, it keeps its working
dataset in the CPU cache. This results in computation times closer to the L2
cache trend line (in green) than the observed red line, enabling significant
improvements in motion planning performance.

the size of the cache to organize its computations in a
manner that significantly increases the number of cache
hits. We focus on two portions of the algorithm that have
increasing memory complexity as the algorithm iterates:
nearest neighbor searching and graph rewiring.

Nearest neighbor searching is a critical component of
sampling-based motion planning, and the computational
complexity grows logarithmically with the number of sam-
pled configurations in the motion planning graph. As the
number of sampled configurations rises, the nearest neighbor
search data structure exceeds the capacity of the CPU’s cache
levels. The result is cache misses where the cache does not
contain a requested value. As shown in Fig. 1, the impact
of cache misses is significant; nearest-neighbor search times
diverge from the trend seen when the data structure fits
completely in L2 cache.

Rather than exploring anywhere in configuration space in
every iteration as in RRT*, CARRT* focuses on exploring in
distinct smaller regions of the configuration space for short
periods of time. As CARRT* adds more configurations, it
progressively subdivides regions to keep the working dataset
under a preconfigured limit. By tuning the region size limit
to match the characteristics of the problem and the CPU
cache size, CARRT* works with a dataset that fits in the
cache. Computation times thus become closer to what would

be possible if RAM operated as fast as the cache, enabling
significant improvements in motion planning performance.

RRT* and CARRT* incrementally converge towards op-
timality by rewiring the planning tree around configurations
as they add them. Because CARRT* samples in regions,
it would take longer for rewiring to have a global impact
were it to follow the same rewiring approach of RRT*. We
thus develop a rewiring strategy compatible with cache-aware
region-based sampling and that accelerates computation of
high quality motion plans.

We evaluate CARRT* in scenarios involving a point robot
as well as the Rethink Robotics Baxter robot [4]. Our results
show that the cache-aware approach of CARRT* outperforms
non-cache-aware RRT*.

II. RELATED WORK

CARRT* uses a cache-aware region-based sampling strat-
egy. Non-uniform sampling in a sampling-based planner has
been a subject of considerable research. Hsu et al. provide
an overview of many sampling strategies in their approach
that adaptively chooses among several samplers [5].

Sampling within a bounded region of the configuration
space has been used to varying effects. RESAMPL [6] uses
sampling to classify regions and then refine sampling within
the regions based upon their classification to help solve
difficult planning problems such as narrow passages. PRRT*
[7] uses a simple partitioning scheme to split computation
across multiple cores and achieve superlinear speedup of
RRT*. Jacobs et al. radially partition the space into regions to
construct portions of the planning tree in parallel and increase
the locality of the computation [8]. C-FOREST [9] samples
from a bounded region defined by the length of the best
known path and cost metric for which the triangle inequality
holds. This effective heuristic allows C-FOREST to only
generate samples that have the possibility of improving the
solution. KPIECE [10] prioritizes cells in a discretized grid
for sampling based upon a notion of a cell’s importance
to solving a difficult portion of the planning problem. The
planner of Burns et al. [11] biases samples towards regions
of complexity, as defined by a locally weighted regression
and active learning, to improve its ability to navigate narrow
passages and other complex regions. Akgun et al. [12] use
biased sampling to improve convergence towards optimality.

Varadhan et al. [13] eschew random sampling in favor
of a deterministic recursive subdivision of free space into
star-shaped partitions, which are then used to generate the
roadmap. They use a recursive subdivision of space similar
to that of a kd-tree [14], which is used in our method.

Sampling-based planners search nearest-neighbor data
structures to find connection points for new samples. Cache-
efficient data structures have been an area of active research
for many years. Both [15] and [16] discuss the construction
of a cache-efficient kd-tree for nearest-neighbor searches.
They perform a one-time (i.e., “static”) construction of the
tree using a van Emde Boas layout [17] which preserves
locality in hierarchical traversals (e.g., searches) of the tree.
Our method requires the tree to be constructed and queried

 0

 20

 40

 60

 80

 100

L1 L2 L3 RAM

La
te

nc
y

(n
s)

(a) CPU cache latency

CPU

L1 Cache

L2 Cache

L3 Cache

RAM

Fa
st

er

B
ig

ge
r

32 KiB

256 KiB

12 MiB

(b) CPU cache size

Fig. 2. Example cache hierarchy a typical modern CPU—the same as used
in Section V results. (a) Cache hit latency timings for different levels of the
CPU cache hierarchy. (b) The cache levels are depicted graphically.

on-the-fly (i.e., “dynamic”), and methods like [18] can be
used to convert static trees to dynamic. Yoon et al. [19]
apply cache-efficient construction to bounding volume hi-
erarchies (BVH) and describe how the BVH approach can
be extended to kd-trees. They, too, use static construction of
van Emde Boas layout and exploit access pattern localities
typical of BVH applications (e.g., collision detection and
ray tracing) and achieve from good to exceptional (26%–
2600%) performance boost based upon the cache-efficient
layout. Such methods create cache-efficient layouts for gen-
eralized searches whereas CARRT* gains cache-efficiency
by constraining searches to a region of a kd-tree.

III. PROBLEM FORMULATION

Let C be the bounded d-dimensional configuration space
of a robot, and let Cfree ⊆ C be the subspace of C that is not
in collision with any obstacle in the environment. Let q ∈ C
denote a configuration of the robot. The inputs qinit ∈ Cfree

and Qgoal ⊆ Cfree are the robot’s starting configuration and
set of goal configurations, respectively.

The objective of the motion planner in this paper is
to compute a collision-free path through the configuration
space that reaches the goal region while minimizing a
user-specified cost function. We define the path as Π :
(qinit,q1,q2, . . . ,qend) through Cfree where qend ∈ Qgoal.

The computing platform is a CPU with a cache of limited
size that provides low latency access to recently used values
from RAM. When the CPU finds a value in the cache, it is a
cache hit. Conversely, when the CPU does not find the value
in the cache, it is a cache miss. The difference in latency
between a cache hit and a cache miss is called the cache
miss penalty. A performance objective of the planner is to
minimize cache miss penalties by maintaining a working
dataset that fits in the cache. Fig. 2 shows the sizes and
latencies of the cache levels on a typical modern CPU.

As with other sampling-based motion planners, we require
several functions as an input to define the planning problem.
The function STEER(q1,q2) returns a new configuration
that would be reached when moving from q1 toward q2

up to some specified maximum distance. The function
FEASIBLE(q1,q2) returns false if the local path from q1 to
q2 collides with an obstacle or violates a motion constraint

and true otherwise. The function COST(q1,q2) defines the
cost associated with moving from q1 to q2 and can represent
control effort, Euclidean distance, or any problem-specific
cost function that can be used with RRT* [2].

IV. THE CARRT* ALGORITHM

At a high level, CARRT* is an iterative algorithm that
builds a motion planning tree with a similar strategy to
RRT* [2]. The key difference is that, rather than exploring
anywhere in configuration space in every iteration, CARRT*
focuses on exploring in distinct smaller regions of the
configuration space for short periods of time so as to keep
the working dataset small enough to fit in the CPU caches.
We call the region being sampled the active sampling region.

The planner starts by queuing up a sampling region
equal to the problem’s configuration space bounds. It then
dequeues the active sampling region and samples within
the region. Once the region reaches a threshold number of
configurations, the planner splits the region in half, queues up
the two smaller regions, and repeats the process. The region
threshold is tuned to keep the working dataset for a region
within the CPU’s cache.

CARRT*’s approach to repeatedly splitting configuration
space regions in half to create smaller regions naturally
synergizes with the kd-tree nearest neighbor search data
structure. As such, the planner uses a kd-tree that is explicitly
integrated with the region-based sampling. Each active and
queued sampling region represents the root of a subtree
in the kd-tree—the same subtree that will be explored and
expanded during sampling.

CARRT* builds a motion planning tree G = (V,E) with
a similar strategy to RRT*. The tree is rooted at the robot’s
initial configuration. The set of vertices V corresponds to
feasible configurations. The directed edge list E defines a
tree with the best known feasible paths from the initial
configuration to the configurations in V . Each iteration of
CARRT* randomly samples a configuration from the active
sampling region, and if FEASIBLE, adds the sample to V and
an edge to E. Then, within a radius around the new sample,
the planner rewires edges in E, replacing longer edges with
shorter ones while maintaining the above invariants.

Our planner maintains a second graph G′ = (V,E′) which
shares V from the tree in G and has an undirected edge list
E′ of nearest neighbors of each configuration. This graph is
used in the rewiring step discussed in Section IV-D.

A. Sampling Region Queue
CARRT*’s outer loop is shown in Algorithm 1. It starts by

initializing the data structures and setting the root of the tree
to the robot’s initial configuration qinit (line 1). We initialize
the sampling region queue Q in line 3 to have a single region
with the bounds of the configuration space [Cmin,Cmax].

The priority queue Q ensures even sampling coverage by
defining the highest priority region as the region with the
lowest sample density:

Density(r) =
(samples considered in region r)

(volume of region r)
.

Algorithm 1 CARRT*
1: V ← {qinit}, E ← ∅, E′ ← ∅
2: Q← empty priority queue

/* “Q top” is the region with highest priority in Q */
3: add initial region [Cmin,Cmax] to Q

4: while not done do
5: r← remove Q top
6: PlanRegion(r)
7: if ConfigCount(r) < (region config limit) then
8: add r back to Q

9: else
10: (rleft, rright)← split r region in half along raxis

11: rleft
sample count ← 1

2rsample count

12: rright
sample count ←

1
2rsample count

13: add rleft and rright to Q

In the outer loop, the planner removes the highest priority
region from the queue to make it the active sampling region r
(line 5). Using the function PlanRegion(r) (Sec. IV-C), the
algorithm samples and extends the active sampling region
for a short period of time. CARRT* then determines if r
exceeds the threshold tied to the CPU cache size (line 7). If
PlanRegion(r) terminated before exceeding the threshold,
the planner re-queues the region with its increased sample
count and thus lower priority (line 8). Otherwise, r grew to
exceed the region limit, and the planner splits it along an
axis shared by the kd-tree (Sec. IV-B) and adds each new
region to the queue (lines 10–13). Since CARRT* uniformly
samples within a region, we assign half the sample count in
r to each of the new regions. With half the samples, and half
the volume, the new regions have the same sample density as
r. If, after splitting a region, the resulting child regions still
have the highest priority, the planner immediately dequeues
one of the new regions and avoids the cache miss penalties
that would result from moving to a different region.

Each iteration of the outer loop removes one region from
the queue and adds one or two new regions back. Hence, the
queue will never be empty at the beginning of each iteration.

B. Integrated KD-Tree

For efficient nearest neighbor searches, CARRT* uses a
kd-tree that is integrated with the region-based sampling.
A kd-tree is a hierarchical space-partitioning data structure
in which branch nodes successively subdivide regions of
space by hyperplanes [14], [20]. The subdivisions on the
path from the root to any node in the kd-tree define an
implicit bounding box for a node. In CARRT*, a kd-tree
node’s bounding box also represents a sampling region of
C-space—it may be the active sampling region, a queued
sampling region, a previously split region, or a region that
may be queued in the future.

Algorithm 2 adds a configuration q to the kd-tree. The
kd-tree nearest neighbor search (Nearest(q)) and fixed-
radius nearest neighbor search (Near(q, r)) follow a similar
traversal strategy.

Algorithm 2 KD Insert(q)

1: [cmin, cmax]← [Cmin,Cmax]
2: n← kd root

3: while nconfig is not nil do
4: nsize ← nsize + 1
5: axis← next axis
6: split← 1

2 (cmin[axis] + cmax[axis])
7: if q[axis] < split then
8: if nleft is nil then
9: nleft ← new node with config = nil

10: n← nleft

11: cmax[axis]← split

12: else
13: follow nright similar to nleft above,

updating cmin instead
14: nconfig ← q

The bounds of each node are implicitly defined by the
bounds of C and the node’s position in the tree. Line 1 copies
bounds of C into [cmin, cmax] defining the bounds of the
root node. The loop (line 3) traverses one level deeper in the
kd-tree at every iteration, each time dividing the bounding
box in c in half by a hyperplane defined along an implicit
axis (lines 5, 6). After determining which side of the split
to follow (line 7), the algorithm updates the bounding box
(lines 11, 13) to reflect the split.

The axis and the split point are defined to be consistent
with the splitting done in Algorithm 1. In our approach the
axis is (depth of the node) modulo (dimensions of C-space),
and the split is at the midpoint of the node/region’s bounding
box (line 6).

The traversal loop stops once it has found a node in the
tree without a configuration (line 3). The algorithm then adds
the configuration q to the tree (line 14) before returning. The
terminal node can be generated in one of two places: (1) the
KD Insert algorithm when the left or right child node to
traverse is nil (lines 8, 13), or (2) in Algorithm 1, when a
sampling region is split and a region is empty.

The kd-tree tracks the number of configurations in each
subtree (line 4) as configurations are added to it. Algorithm 1
uses the subtree’s size (and thus the sampling region’s size)
to determine when a sampling region needs to be split.

C. Planning Within a Region

CARRT* samples the active region using the inner loop of
RRT* modified to run in a cache-aware manner, as shown
in Algorithm 3. The notable changes from RRT* are: (1)
it has additional loop termination conditions necessary to
keep the working dataset small enough to fit in the CPU’s
cache (line 1); (2) it generates samples from a region of
the sampling space (line 2); (3) the nearest neighbor ball
radius computation uses a region-based approximation of
the sample count (lines 7–8); (4) it tracks the sample count
(line 3) to compute the sample-density metric used in the
priority queue; and (5) the rewiring strategy accounts for
samples being added in regions.

Algorithm 3 PlanRegion(r)

1: while not done
and ConfigCount(r) < (region config limit)
and not out of time do

2: qrand ← random sample from r
3: rsample count ← rsample count + 1
4: qnearest ← Nearest(qrand)
5: qnew ← STEER(qnearest,qrand)
6: if FEASIBLE(qnearest,qnew) then
7: napprox ← ConfigCount(r)× Volume(root)

Volume(r)

8: N ← Near(qnew,min {γ
(

log napprox
napprox

)1/d

, η})
9: Nfeasible ← {q |q ∈ N ∧ FEASIBLE(q,qnew)}

10: qmin ← argmin
q∈Nfeasible

PathCost(q) + COST(q,qnew)

11: E ← E ∪ (qnew,qmin)
12: for all qnear ∈ Nfeasible \ qmin do
13: c′near ← PathCost(qnew) + COST(qnew,qnear)
14: if c′near < PathCost(qnear) then
15: E ← E \ (qnear, Parent(qnear))
16: E ← E ∪ (qnear,qnew)
17: CARRT∗Update(qnear)
18: E′ ← E′ ∪ {{qnew,qnear} |qnear ∈ Nfeasible}
19: V ← V ∪ qnew

20: KD Insert(qnew)

The stopping conditions are specified in line 1. The
first criterion (“done”) represents typical planning termi-
nation checks, e.g., a computation time limit or desired
plan cost achieved. The second termination criterion of
“ConfigCount(r) < (region config limit)” checks that the
number of configurations in the subgraph contained within
the region is smaller than the cache-based limit. The third
criterion, “not out of time”, sets up a time limit to ensure
that CARRT* does not work indefinitely in obstructed or
disconnected regions as such regions might otherwise never
meet the second stopping condition. In the results section,
“out of time” limits the number of samples considered in a
region to 1024 (8× the region configuration limit), although
other criteria, such as elapsed time, may be used.

In line 2, CARRT* generates a sample in the active
sampling region—localizing the computation to the region.
The planner finds the random sample’s nearest neighbor, and
computes qnew as the result of STEERing towards the random
sample (line 5). If the path between qnew and the nearest
neighbor is feasible, CARRT* searches for samples in a ball-
radius of qnew. The ball-radius from [2] is computed using
the dimensionality of the space d, two tunable parameters
γ and η, and the number of configurations in the motion
planning graph |V |. As CARRT* updates different regions
of the space at different times, |V | may be inconsistent with
the portion of the graph in the active sampling region. In
line 7, the algorithm computes an approximation of |V | in
the current region based upon the full motion graph size
scaled by the volume ratio of the region to the volume of
C. The resulting approximation is fed into the ball radius

Algorithm 4 CARRT∗Update(q)

1: children← queue with q
2: while not children is empty do
3: q← remove first from children

4: for all qnear | {qnear,q} ∈ E′ do
5: c′ ← PathCost(q) + COST(q,qnear)
6: if c′ < PathCost(qnear) then
7: E ← E \ (q, Parent(q))
8: E ← E ∪ (q,qnear)
9: append qnear to children

computation (line 8) in place of the full RRT* graph size.
CARRT*, like RRT*, adds the new configuration to G

by linking it to the configuration in the ball radius that
produces the shortest path (line 10). The planner then rewires
the other configurations in the ball-radius through the new
configuration if the rewired path is shorter and feasible
(lines 11–17).

D. Rewire Update Strategy

Rewiring in RRT* only considers neighboring configu-
rations in the ball-radius of the new sample qnew. When
a neighbor qnear is rewired through qnew, it can create
an opportunity for a neighbor of qnear to be rewired as
well (and of the neighbors’ neighbors and so on). RRT*
will efficiently propagate such a cascade with future random
samples generated from C. If CARRT* followed the same
update strategy, the cascade would only be percolated after
sampling from a sequence of regions, and thus produce a
slower convergence to optimality.

CARRT* takes a different rewiring approach than RRT*
to account for this cascade behavior, shown in Algorithm 4.
This algorithm is invoked from the main sampling loop
of CARRT* (see Algorithm 3) every time it rewires an
existing node in the RRT* tree to a better path. It performs
a breadth-first traversal of the subtree rooted in the rewired
node, rewiring as it goes. The traversal is managed by
a FIFO queue, initialized to contain only the root of the
rewired subtree (line 1). It then repeatedly dequeues the
first node until the queue is empty (line 2, 3). For every
configuration q visited by the traversal, the algorithm visits
all of q’s previously computed nearest neighbors as stored
in E′ (line 4). If the neighboring child’s path through q is
shorter than its existing path (line 5, 6), it is rewired (line 7,
8) and added to the queue (line 9) to continue the process
of percolating the updates through the subtree.

V. RESULTS

We first evaluate the performance impact on nearest neigh-
bor searches using CARRT*’s region-based sampling in an
obstacle-free environment. We then compare CARRT* to
RRT* in scenarios involving a point robot and the Rethink
Robotics Baxter robot performing a task using 7 degrees
of freedom (DOF). Plans are computed on an Intel X5670
2.93 GHz 6-core Westmere processor. Each processing core
has a 32 KiB L1 data cache, 256 KiB private L2 cache, and

12 MiB shared L3 cache. The cache-line size is 64 bytes.
CARRT* is not multi-threaded, and thus only utilizes 1 core
of the processor.

A. KD-Tree Cache Impact

We first evaluate the performance impact of the planner’s
cache-aware sampling strategy on nearest neighbor searches.
We create obstacle-free environments for a point robot in
3, 7, and 14 dimensional space. We compute the average
time for a nearest neighbor search with n = 103 to 106

configurations in the kd-tree and plot the results in Fig. 3.
With a log scale x-axis and the theoretic O(log n) per-

formance of searches, we expect to see a straight-line trend
on the graph. In the three plots we observe the non-cache-
aware approach has an approximately straight-line trend
up to nt=10,000–20,000, and then a steeper straight-line
trend after. In our implementation, the kd-tree node occupies
32 bytes, and with a 256 KiB L2 cache, the cache can
hold 8192 kd-tree nodes. As the height of the tree also
grows logarithmically with n, we expect to see a change in
the performance trend at twice the L2 cache capacity. The
observed nt matches this expectation.

At lower dimensions (Fig. 3 (a)), the cache-aware approach
of CARRT* roughly follows the trend line established before
the capacity of L2 cache is exceeded—a nearly ideal result.
This enables a 3× performance improvement at n = 106.
The cache-aware approach retains an improvement, though
diminishing, for higher dimensions (Fig. 3 (b)-(c)).

B. 7 DOF Ball Obstacle

We consider a scenario in which a point robot must move
from one corner of a 7 dimensional cube to the opposite
corner while avoiding a spherical obstacle placed at the
center of the cube. We run both CARRT* and standard
RRT* for comparison. The spherical obstacle implies that
an optimal plan can only be found in the limit.

In Fig. 4 (a), we show the average time to run a single
nearest neighbor search for a given number of samples in
CARRT*’s roadmap. We observe that at approximately 8,000
samples, the performances of RRT* and CARRT* diverge.
CARRT*’s nearest neighbor search time always remains
below the non-cache-aware RRT* approach.

In Fig. 4 (b), we show the average path cost obtained after
running the algorithm a given amount of wall-clock time.
On average, CARRT* finds a lower cost plan than RRT* at
all times. When viewing Fig. 4 (b) from the perspective of
time to reach the same path cost, CARRT* finds a plan at
2.3 s of comparable cost to the plan RRT* finds at 60 s—
approximately 26 times faster.

C. Baxter Robot 7 DOF Task

We give a Rethink Robotics Baxter robot the task of
moving a book from behind a plant on a shelf to its proper
spot on the shelf above, as shown in Fig. 5. The scenario
requires the Baxter to move its 7 DOF arm through narrow
passages both at the beginning of the task and at the end.

We ran CARRT* and RRT* on the Baxter robot 7 DOF
scenario. Fig. 6(a) plots the average nearest neighbor search

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

103 104 105 106

Se
ar

ch
 T

im
e

(µ
s)

Number of configurations in kd-tree

Standard
Cache-aware

(a) 3 DOF kd-tree

0

10

20

30

40

50

60

103 104 105 106

Se
ar

ch
 T

im
e

(µ
s)

Number of configurations in kd-tree

Standard
Cache-aware

(b) 7 DOF kd-tree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

103 104 105 106

Se
ar

ch
 T

im
e

(m
s)

Number of configurations in kd-tree

Standard
Cache-aware

(c) 14 DOF kd-tree

Fig. 3. Average time for a single nearest neighbor search with increasing kd-tree size (n). We search kd-trees using CARRT*’s cache-aware region-based
sampling and using standard uniform random sampling. The kd-tree is 3, 7, and 14 DOF in (a), (b), and (c) respectively, showing the effect of dimensionality
on performance. The divergence between n = 10, 000 and 20, 000 occurs as the tree exceeds the size of the L2 cache.

0.0

0.1

0.2

0.3

0.4

0.5

103 104 105

N
ea

re
st

 n
ei

gh
bo

r s
ea

rc
h

tim
e

(m
s)

Number of configuration in graph

RRT*
CARRT*

(a) Nearest neighbor search time vs. number of configurations in the kd-tree

2.55

2.60

2.65

2.70

 0 10 20 30 40 50 60

Pl
an

 C
os

t

Time (seconds)

RRT*
CARRT*

(b) Plan cost vs. CARRT* and RRT* run times

Fig. 4. CARRT* and RRT* compute plans for the 7 DOF ball obstacle scenario. The average time to complete a single nearest neighbor search is shown
in (a). The average plan cost computed with a given wall-clock runtime is shown in (b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. The Baxter robot moves a book located behind a plant to its proper place on the shelf above while avoiding obstacles in the cluttered environment.
This is a 1-arm, 7 DOF task with a narrow passage to remove the book from behind the plant and another narrow passage to place the book between two
books on the shelf above.

0.0

0.1

0.2

0.3

103 104 105

N
ea

re
st

 n
ei

gh
bo

r s
ea

rc
h

tim
e

(m
s)

Number of configuration in graph

RRT*
CARRT*

(a) Nearest neighbor search time vs. number of configurations in the kd-tree

7.5

8.0

8.5

9.0

9.5

10.0

 0 30 60 90 120 150 180

Pl
an

 C
os

t

Time (seconds)

RRT*
CARRT*

(b) Plan cost vs CARRT* and RRT* run times

Fig. 6. CARRT* and RRT* compute plans for the Baxter 1-arm 7 DOF scenario. The average time to complete a single nearest neighbor search is shown
in (a). The plan cost after a given wall-clock runtime is shown in (b).

time as a function of number of states in the graph, with
the x-axis on a log scale. Both CARRT* and RRT* initially
start on the same trend line. Between 4,000 and 6,000
samples, RRT* diverges to a slower trend, whereas CARRT*
more closely follows the original trend. Fig. 6(b) shows
that CARRT* produces lower cost plans faster. CARRT*
produces the same plan cost at approximately 90 s as RRT*
produces in 180 s, a 2× improvement.

VI. CONCLUSION

We presented CARRT* (Cache-Aware RRT*), a cache-
aware sampling-based asymptotically-optimal motion plan-
ner. By progressively partitioning the sampled space into
regions that fit into the CPU’s cache, CARRT* is able to
keep its working dataset for nearest neighbor searches in
the CPU cache and avoid delays associated with cache miss
penalties. CARRT* also rewires the motion planning graph
in a manner that complements the cache-aware subdivision
strategy to more quickly refine the motion planning graph
toward optimality. We demonstrated the performance benefit
of our cache-aware motion planning approach for scenarios
with a point robot and the Rethink Robotics Baxter robot.

In future work, we see an opportunity to apply the methods
described herein to enable other sampling-based motion plan-
ners to be cache-aware. We also plan to investigate methods
to auto-tune parameters such as how long a region is ex-
plored before being subdivided or queued. These parameters
should be based on the properties of the running computing
platform. We also plan to address cache-efficiency in other
aspects of motion planning, including collision detection.

REFERENCES

[1] H. Choset, K. M. Lynch, S. A. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, Jun. 2011.

[3] D. Levinthal, “Performance analysis guide for Intel R© CoreTM

i7 processor and Intel R© XeonTM 5500 processors,” Available:
http://software.intel.com/sites/products/collateral/hpc/vtune/
performance analysis guide.pdf, 2009.

[4] Rethink Robotics, “Baxter Research Robot,” http://
www.rethinkrobotics.com/products/baxter-research-robot/, 2013.

[5] D. Hsu, G. Sánchez-Ante, and Z. Sun, “Hybrid PRM sampling with
a cost-sensitive adaptive strategy,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2005, pp. 3874–3880.

[6] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “RESAMPL:
A region-sensitive adaptive motion planner,” in Algorithmic Founda-
tion of Robotics VII. Springer, 2008, pp. 285–300.

[7] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion
planning with superlinear speedup.” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2012, pp. 1206–1212.

[8] S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and
N. M. Amato, “A scalable method for parallelizing sampling-based
motion planning algorithms,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2012, pp. 2529–2536.

[9] M. Otte and N. Correll, “C-FOREST: Parallel shortest path planning
with superlinear speedup,” IEEE Trans. Robotics, vol. 29, no. 3, pp.
798–806, 2013.

[10] I. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. Robotics, vol. 28, no. 1, pp.
116–131, 2012.

[11] B. Burns and O. Brock, “Sampling-based motion planning using
predictive models,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), 2005, pp. 3120–3125.

[12] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion
planning in high dimensions,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), 2011, pp. 2640–2645.

[13] G. Varadhan and D. Manocha, “Star-shaped roadmaps - a deterministic
sampling approach for complete motion planning,” in Proc. Robotics:
Science and Systems, 2005.

[14] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep.
1975.

[15] P. K. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley, “Cache-
oblivious data structures for orthogonal range searching,” in Proc.
Annual Symposium on Computational Geometry, 2003, pp. 237–245.

[16] L. Arge, G. Brodal, and R. Fagerberg, “Cache-oblivious data struc-
tures,” Handbook of Data Structures and Applications, vol. 27, 2005.

[17] P. van Emde Boas, “Preserving order in a forest in less than logarithmic
time and linear space,” Information Processing Letters, vol. 6, no. 3,
pp. 80–82, 1977.

[18] J. L. Bentley and J. B. Saxe, “Decomposable searching problems I.
static-to-dynamic transformation,” J. Algorithms, vol. 1, no. 4, pp.
301–358, 1980.

[19] S.-E. Yoon and D. Manocha, “Cache-efficient layouts of bounding
volume hierarchies,” in Computer Graphics Forum, vol. 25, no. 3.
Wiley Online Library, 2006, pp. 507–516.

[20] S. Maneewongvatana and D. M. Mount, “It’s okay to be skinny, if
your friends are fat,” in Center for Geometric Computing 4th Annual
Workshop on Computational Geometry, 1999.

