
IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1123

Scalable Multicore Motion Planning Using
Lock-Free Concurrency

Jeffrey Ichnowski, Student Member, IEEE, and Ron Alterovitz, Member, IEEE

Abstract—We present PRRT (Parallel RRT) and PRRT* (Par-
allel RRT*), sampling-based methods for feasible and optimal
motion planning designed for modern multicore CPUs. We
parallelize RRT and RRT* such that all threads concurrently
build a single motion planning tree. Parallelization in this manner
requires that data structures, such as the nearest neighbor search
tree and the motion planning tree, are safely shared across multi-
ple threads. Rather than rely on traditional locks which can result
in slowdowns due to lock contention, we introduce algorithms
based on lock-free concurrency using atomic operations. We
further improve scalability by using partition-based sampling
(which shrinks each core’s working data set to improve cache
efficiency) and parallel work-saving (in reducing the number of
rewiring steps performed in PRRT*). Because PRRT and PRRT*
are CPU-based, they can be directly integrated with existing
libraries. We demonstrate that PRRT and PRRT* scale well
as core counts increase, in some cases exhibiting superlinear
speedup, for scenarios such as the Alpha Puzzle and Cubicles
scenarios and the Aldebaran Nao robot performing a 2-handed
task.

Index Terms—motion and path planning, sampling-based
methods, concurrent algorithms

I. INTRODUCTION

INCREMENTAL sampling-based motion planners, such as
the Rapidly-exploring Random Tree (RRT) and RRT*,

are used in a variety of robotics applications including au-
tonomous navigation, manipulation, and computational biol-
ogy [1], [2]. The objective of these planners is to find a feasible
or optimal path through the robot’s free configuration space
from a start configuration to a goal configuration. We introduce
PRRT (Parallel RRT) and PRRT* (Parallel RRT*), parallelized
versions of the single-tree RRT and RRT* motion planners that
are tailored to execute on modern multicore CPUs.

Most modern PCs and mobile devices have between 2 and
32 processing cores with shared memory, and the number of
cores is increasing. PRRT and PRRT* are designed to scale
and efficiently utilize all available cores concurrently, enabling
substantial speedups in motion planning, as shown in Fig. 1.
We have empirically observed that PRRT and PRRT* in some
cases achieve a superlinear speedup: when p processor cores
are used instead of 1 processor core, computation time is sped
up by a factor greater than p.

Our focus is on challenging motion planning scenarios for
which a large number (tens or hundreds of thousands) of
configuration samples is necessary to find a feasible path or
to compute a plan with the desired closeness to optimality. In

J. Ichnowski and R. Alterovitz are with the Department of Com-
puter Science at the University of North Carolina at Chapel Hill, USA
{jeffi,ron}@cs.unc.edu

(a) The scenario (b) 1 core

(c) 4 cores (d) 32 cores

Fig. 1. We ran PRRT* for a 2D holonomic motion planning problem for
a disc-shaped robot for 10 ms on 1, 4, and 32 processor cores. The red line
shows the optimal path found. With the same wall clock time, adding more
processor cores increases the size of the tree, enabling fast computation of
higher quality motion plans on modern multicore computers.

RRT and RRT*, the time spent computing nearest neighbors
grows logarithmically with each iteration as the number of
samples rises, whereas the time spent per iteration on collision
detection decreases as the expected distance between samples
shrinks. Collision detection typically dominates computation
time in the early iterations. But as the number of iterations
rises and the number of samples increases, nearest neighbor
search will dominate the overall computation.

To enable speedup regardless of the computational bottle-
neck (e.g. collision detection or nearest neighbor searching),
we parallelize the outer loop of RRT and RRT*: we create
multiple threads that each generate samples and incrementally
extend the motion planning tree based on those samples. To
parallelize at this level, independently working threads must
share access to a common data nearest neighbor search and
motion planning tree data structure.

Traditionally, shared access might be controlled using locks.
In the lock-based approach, when a thread must access a
shared data structure, it first locks the data structure, then

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1124

accesses it, and finally unlocks it. When another thread at-
tempts to access a locked data structure it waits (i.e. is blocked)
until the data structure is unlocked. If the lock covers a large
data structure, then one thread may unnecessarily block other
threads. If instead many locks are used to cover smaller data
structures, then threads will repeatedly lock data structures
unnecessarily, leading to high overhead. As the number of
processor cores increases and as the number of samples grows
to handle more complex motion planning problems, more
computation time must be spent on nearest neighbor checking
and lock contention rises, causing sublinear speedup.

To reduce causes of sublinear speedup and create opportu-
nities, but not a guarantee, for superlinear speedup, PRRT and
PRRT* introduce three key components relevant to multicore
concurrency. The first is lock-free concurrency using atomic
operations. To eliminate slowdowns caused by lock overhead
and contention, PRRT and PRRT* use lock-free shared data
structures that are updated using an atomic compare-and-
swap (CAS) operation, a universal primitive [3]. A CAS
operation has three arguments: a location in shared memory,
the expected value stored therein, and a new value to replace
the previous. In a single atomic step, CAS loads the value
stored in memory, compares it to the expected value and,
only if they are the same, stores the new value in memory.
Without the atomic guarantee, another concurrent thread would
be able to store a different value between the CAS’s load
and store. The atomic operation removes the need for locks
when updates to shared data structures can be formulated into
a single update. When a comparison fails due to a change
made by another thread, the update is reformulated with the
new information and tried again until it succeeds or is no
longer necessary. In PRRT and PRRT* we observe that as the
number of nodes n in a motion planning tree increases, the
probability that any of the p threads are updating the same part
of the motion planning tree decreases (limn→∞O(p/n) = 0).
As a consequence, CAS operations rarely fail and we avoid
the unnecessary blocking and overhead associated with locks.
Lock-free operations eliminate the need for locks and hence
reduce the overhead that might otherwise be associated with
concurrent access to a shared-memory data structure. Lock-
free operations by themselves at best enable linear speedup,
but can be used in conjunction with other components to create
opportunities for superlinear speedup.

The second component introduced in PRRT and PRRT* that
sets up conditions in which superlinear speedup might occur is
cache-friendly partition-based sampling. To reduce the size of
each thread’s working data set, we partition the configuration
space into non-overlapping regions and assign a partition to
each thread. Partitioning has two benefits. First, it reduces
the likelihood that two threads will simultaneously attempt to
modify the same part of the shared data structures, reducing
CAS failures. Second, as each processor core is expected to
work in a smaller subset of the nearest neighbor data structure,
more of the relevant structure can reside in each core’s cache,
thus creating an opportunity for superlinear speedup. Cache-
efficiency, while not affecting the algorithmic complexity, can
lead to significant real-world performance gains on modern
CPU architectures.

The third component introduced to create opportunities
for superlinear speedup in PRRT* is parallel work-saving.
During the rewiring phase of RRT*, the algorithm evaluates
the costs of paths to nearby nodes, rewires them through
the new node if such routing would produce a shorter path,
and percolates updates up the tree. To reduce the number of
rewiring operations in RRT*, we ensure that when multiple
threads attempt to rewire the same portion of the tree, only
the one with the better update continues. This frees the
other threads to continue expanding the RRT*, effectively
reducing computation effort relative to single-threaded RRT*
for percolating rewiring up the tree. Parallel work-saving can
enhance an algorithm’s performance and can in some cases
enable superlinear speedup.

PRRT and PRRT* are designed to run on standard shared-
memory, multicore, CPU-based computing platforms (rather
than, for example, a cluster or a GPU). This facilitates easy
direct integration with existing libraries for collision detection,
robot kinematics, and physics-based simulation [4], [5]. In this
paper we provide a refined, archival version of our methods
originally introduced in a conference paper [6] and generalize
the lock-free kd-tree data structure to support configuration
spaces such as SE(3) and include new evaluations. We also
provide pseudocode sufficiently detailed to show where CAS
operations are used, how they impact the surrounding instruc-
tions, and how we ensure correctness under concurrency. We
demonstrate the fast performance and scalability of PRRT
for feasible motion planning using the Alpha Puzzle scenario
and a random spheres scenario, and we demonstrate PRRT*
for optimal motion planning using the Cubicles scenario, a
holonomic disc-shaped robot, and an Aldebaran Nao small
humanoid robot performing a 2-handed task.

II. RELATED WORK

Sampling-based motion planners include several compo-
nents that can naturally be parallelized, and prior work has
taken multiple avenues to exploit this parallelism using mul-
ticore and multiprocessor CPUs, clusters, and GPUs. Early
work by Amato et al. [7] showed that sampling-based proba-
bilistic roadmaps (PRMs) can be parallelized. Our focus is on
parallelizing RRT and RRT*.

Parallelizing RRT introduces new challenges since the va-
lidity of the tree must be maintained as it is updated by
multiple processes. A direct approach on a shared-memory
system is to use locks on shared data structures, which is
one of the methods proposed by Carpin et al. [8] and im-
plemented as pRRT in OMPL [5]. Parallelizing RRT has also
been investigated for distributed-memory systems common in
clusters. Devaurs et al. propose collaborative building of an
RRT across multiple processes using message passing [9].
This approach achieves a sublinear speedup as the number
of available processors increases. Jacobs et al. [10] recently
introduced speedups by adjusting the amount of local compu-
tation before making an update to global data structures and
by radially subdividing the configuration space into regions.
Approaches targeting distributed-memory systems (e.g., [9],
[10]) can also be run on shared-memory systems, but they do

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1125

not take advantage of shared-memory primitives that can offer
additional opportunities for speedup. KPIECE [11] prioritizes
cells in a discretized grid for sampling based upon a notion
of each cell’s importance to solving a difficult portion of
the motion plan and has been demonstrated to parallelize on
shared-memory systems using locking primitives. Our focus
is on shared-memory systems (common in PC’s and mobile
devices), which enables us to utilize atomic CPU operations
and cache-friendly algorithms to set up conditions under which
superlinear speedup might occur for a single RRT.

Several approaches to parallelizing motion planning across
multiple cores/processors have utilized multiple tree-based
data structures. Carpin et al. [8] propose an OR parallel
algorithm in which several RRT processes run in parallel
and the algorithm stops when the first RRT process finds
a solution. Plaku et al. [12] introduced the Sampling-based
Roadmap of Trees (SRT) algorithm, which subdivides the
motion planning problem into subproblems that are distributed,
solved by another planner, e.g. RRT, and connected together.
SRT achieves near-linear speedup that slightly tapers at higher
processor counts. Otte et al. [13] also distribute the generation
of independent path planning trees among several processes
and achieve significant speedups by sharing information be-
tween processes about the best known path. Unlike the above
methods that rely on multiple trees, we focus on building a
single motion planning tree as in RRT and RRT*. Hence, our
approach is complementary to the above multi-tree methods,
which utilize multiple single-tree data structures. Our lock-free
methods for shared-memory, multicore concurrency resulted
in an empirically observed superlinear speedup for some
scenarios for both feasible and optimal single-tree motion
planning.

Bialkowski et al. [14] parallelize RRT* and related methods
by improving the rate of collision detection. This approach re-
sults in substantial speedups for environments where collision
detection dominates processing time. But due to Amdahl’s law
[15], parallel performance will taper as the number of samples
increases and nearest neighbor checks begin to dominate as
discussed in Sec. I.

Partitioning of configuration space has been used to various
effect in motion planning. For example, Rosell et al. [16]
hierarchically decomposes C-space to perform a deterministic
sampling sequence that allows uniform and incremental explo-
ration. Morales et al. [17] automatically decompose a motion
planning problem into (possibly overlapping) partitions well-
suited for one of many (sampling-based) planners in a planning
library. Yoon et al. [18] show how cache-efficient layouts of
bounding volume hierarchies provide performance benefits in
the context of collision detection.

GPU-based parallel computation has also been used to
accelerate motion planning, including GPU-based methods
for the PRM [19], rasterization-based planning [20], Voronoi
diagram-based sampling [21], [22], and R* [23]. Implementing
GPU-based algorithms is challenging in part because the
single-instruction-multiple-data (SIMD) execution model of
GPU’s constrains algorithm design. When each thread needs
to do something different (inherently divergent), such as
traversing a space partitioning tree, the SIMD model loses

nearly all ability to parallelize [24]. Another challenge with
GPU approaches is that, while they can gain the benefit
of the high computational throughput associated with GPUs,
they sacrifice some interoperability with standard systems and
libraries based upon CPUs.

III. PROBLEM FORMULATION

A. Parallel Computing Environment

Our target computing environment is the one available in
almost every modern computer: a multicore/multiprocessor
concurrent-read-exclusive-write (CREW) shared-memory sys-
tem with atomic operations that synchronize views of memory
between threads running on different cores. This is the model
in the current generation of x86-64 and ARM multicore
processors as well as many other CPU architectures.

In this environment, a computer contains one or more
processors. Each processor may contain one or more cores.
Each core acts as an independent CPU capable of having a
single thread running simultaneous to the threads running on
the other cores. The total number of cores in the system is:

p = (# of cores per processor)× (# of processors)

For example, a system with 4 processors, where each
processor has 8 cores, has p = 32.

Speedup refers to how much a parallel algorithm is faster
than a corresponding sequential algorithm. Let Tp be the
execution time of a program that is executed using p cores.
Formally, speedup Sp is the ratio of the sequential (single-
threaded) execution time T1 to parallel execution time Tp with
p cores:

Sp =
T1
Tp
.

Linear speedup means Sp = p, and superlinear speedup means
Sp > p.

To achieve large speedups, we will utilize several features
that are common on modern multicore processors. First,
we will use the atomic compare-and-swap (CAS) operation.
Second, modern processors typically have a cache hierarchy
between the core and RAM that includes one or more small
but fast caches local to each core (L1 and L2) and a larger and
slower cache shared among cores (L3). When the data set in
use by a core is smaller, the core uses the faster local caches
more often and gains a proportional speed benefit. CPU caches
can be leveraged to gain superlinear speedups by distributing
the working dataset into smaller chunks across multiple cores.

B. Problem Definition

Let C be the d-dimensional configuration space of the robot
and Cfree ⊆ C denote the subspace of the configuration space
for which the robot is not in collision with an obstacle. Let
q ∈ C denote a configuration of the robot. PRRT and PRRT*
each require as input the start configuration qinit of the robot
and a set of goal configurations Qgoal ⊆ Cfree.

The objective of PRRT (feasible motion planning) is to
find a path in the robot’s configuration space that is fea-
sible (e.g., avoids obstacles) and reaches the goal region.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1126

Formally, the objective of PRRT is to compute a path Π :
(q0,q1,q2, . . . ,qend) such that q0 = qinit, qend ∈ Qgoal,
and Π lies in Cfree. The objective of PRRT* (optimal motion
planning) is to compute a feasible path that reaches the goal
region and minimizes a user-defined cost function. An example
cost function is the minimum total Euclidean length of the
segments in the planned path.

C. Problem-specific Functions

Similar to their sequential motion planning counterparts
RRT and RRT*, PRRT and PRRT* require as input the
definition of problem-specific functions. For two configura-
tions q1,q2 ∈ C, the function STEER(q1,q2) returns a new
configuration that would be reached if taking a trajectory from
q1 heading toward q2 up to some maximum user-specified
distance. The function FEASIBLE(q1,q2) returns false if
the local path from q1 to q2 collides with an obstacle or
violates some motion constraint, and true otherwise. For
PRRT*, the function COST(q1,q2) specifies the cost associated
with moving between two configurations q1 and q2, which
can equal control effort, Euclidean distance, or any problem-
specific user-specified metric that can be used with RRT*
[2]. We also require a function GOAL(q) that returns true

if q ∈ Qgoal and false otherwise.
The above problem-specific functions are standard in RRT

and RRT*, which enables current implementations of these
problem-specific functions to be used in PRRT and PRRT*
largely unchanged. For the algorithm we present here, the only
additional requirement we add is that the implementation of
the problem-specific functions must be either (1) thread-safe
and non-blocking or (2) capable of having multiple non-shared
instances in the same program.

IV. PRRT
We present Parallel RRT (PRRT), a lock-free parallel ex-

tension of the RRT algorithm. We describe the algorithm in
sufficient detail to show where atomic operations are used,
how they impact the algorithm design, and how we ensure
correctness under concurrency.

The PRRT algorithm maintains data structures that are
shared across all threads, including the data structure for
nearest neighbor searching, the RRT tree τ , the approximate
iteration number, and whether or not a path to the goal
has been found. As shown in Algorithm 1, PRRT begins
by partitioning the configuration space into non-overlapping
regions and launching an independent thread for each partition.
For peak performance, each thread runs on a dedicated core.
The impact of partitioning is that it localizes each thread’s
operations (e.g. random sampling and nearest neighbor search-
ing) to a smaller portion of the configuration space. This allows
for more effective use of each core’s caches and contributes in
some cases to our method’s empirically observed superlinear
performance.

A. PRRT Threads

The algorithm for each thread of PRRT is shown in Al-
gorithm 2. PRRT is nearly identical to the standard RRT

Algorithm 1 PRRT

1: initialize τ
2: for i = 1 . . . thread count do
3: s← partition(i, thread count)
4: wi ← start new thread PRRT Thread(τ, s)
5: end for

Algorithm 2 PRRT Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: qnear ← Nearest(τ,qrand)
4: qnew ← STEER(qnear,qrand)
5: if FEASIBLE(qnear,qnew) then
6: τ ← τ ∪ edge(qnear,qnew)
7: LockFreeKDInsert(qnew)
8: if GOAL(qnew) then
9: done ← true

10: end if
11: end if
12: end while

algorithm except that (1) each thread only samples in its
partition and (2) PRRT uses a lock-free nearest-neighbor data
structure (introduced in Sec. IV-B). We note that although
sampling is local to a partition, the nearest-neighbor data
structure spans the entire configuration space and is shared
by all threads.

As in the standard RRT algorithm, the function PRRT
creates a new node for qnew and sets its parent pointer to the
node of qnear (line 6) and then inserts the node into the lock-
free kd-tree (line 7). The ordering is important since PRRT
must ensure that other threads only see fully initialized nodes,
and the new node will become visible as soon as it is inserted
into the kd-tree.

Complicating matters, modern CPUs and compilers may
speculatively execute memory reads and writes out-of-order
as a performance optimization. These optimizations are done
in a manner that guarantees correctness from the view of
a single thread, but out-of-order writes may cause a thread
executing concurrently on another core to see uninitialized or
partially initialized values, resulting in an incorrect operation.
The solution to this problem is to issue a memory barrier
(also known as a memory fence) [25]. A memory barrier tells
the compiler and CPU that all preceding memory operations
must complete before the barrier, and similarly no memory
operations may speculate ahead of the barrier until after the
barrier completes. For PRRT Thread to operate correctly, it
must ensure that a memory barrier is issued before a new
node becomes visible to another thread, which is done in the
lock-free kd-tree insertion algorithm described next.

B. Building a Lock-Free kd-Tree

The RRT algorithm requires an algorithm Nearest(τ,q)
for computing the nearest neighbor in τ to a configuration q
in configuration space. Using a logarithmic nearest neighbor
search rather than a brute-force linear algorithm often results

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1127

Algorithm 3 LockFreeKDInsert(qnew)
1: nnew ← {value:qnew, split:∅, a:∅,b:∅}
2: qmin ← minimum bounds of sample space
3: qmax ← maximum bounds of sample space
4: nptr ← pointer to kd root
5: for d = 0→∞ do
6: a← d mod κ
7: if node in nptr is null then
8: nnew.split← Split(qmin,qmax,qnew, a)
9: — memory barrier —

10: if CAS(nptr, null, nnew) then
11: return
12: end if
13: end if
14: if q[a] < nptr.split then
15: qmax[a]← nptr.split
16: nptr ← pointer to nptr.a
17: else
18: qmin[a]← nptr.split
19: nptr ← pointer to nptr.b
20: end if
21: end for

in a substantial performance gain [26]. In PRRT, for nearest
neighbor searches we use a variant of a kd-tree data structure
[27] that we adapt to allow for concurrent lock-free inserts
using CAS.

Each node of the kd-tree is a k-dimensional point (i.e.,
a configuration in PRRT), where k = d is the dimension
of the configuration space. The kd-tree is a binary tree in
which each non-leaf node represents an axis-aligned splitting
hyperplane that divides the space in two; points on one side
of this hyperplane are in the left subtree of that node and
the other points are in the right subtree. The axis associated
with a node is based on its depth (i.e., level) in the tree. For
example, in 3D Euclidean space the hyperplane for a node
in the first level of the kd-tree is perpendicular to the x-axis
based on that node’s x dimension value. For successive layers,
the splitting is perpendicular to the y-axis, then the z-axis, and
then repeating x, y, z, x, y, z, . . . down the tree.

To insert a node in the kd-tree for fast nearest neighbor
searching, PRRT Thread calls the lock-free kd-tree insert
function LockFreeKDInsert shown in Algorithm 3. It starts
with a pointer to the root (line 4), then traverses down the
kd-tree by different dimensions (lines 5, 6) until it finds an
empty branch (line 7). Once found, it generates and records
the split (line 8), performs a memory barrier, and then a CAS
(lines 9, 10) to change the pointer from null to the new
node that was allocated and initialized in line 1. If the CAS
succeeds, the node is inserted and the algorithm returns. If
another thread already updated the pointer, the CAS will fail,
and the algorithm will continue to walk down the tree until
it can attempt another insert. The memory barrier before the
CAS ensures that the node is fully initialized before it is visible
to other threads when the CAS succeeds.

In line 8, Split denotes a function that generates the
hyperplane. The split is generated based upon the bounds of

the region of the node’s parent. The bounds are initialized in
lines 2 and 3 and updated in lines 15 and 18. If the bounds
are known and finite, Split forces a mid-point split [28] by
returning (qmin + qmax)/2. If the bounds are not known, as
might happen with the initial values at the root of the tree,
Split returns qnew[a], causing the inserted value to define
the split.

The kd-tree handles most spaces relevant to motion planning
in configuration spaces, including Rn, T n, and combinations
thereof with an appropriate distance metric [26]. For Rn
spaces, we consider Euclidean distance metrics. For T n spaces
(with unbounded revolute joints where θ = θ + 2nπ for any
integer n) we consider distance metrics based on a circular
distance in the form distS1(θ1, θ2) = min(|θ1 − θ2|, 2π −
|θ1− θ2|). For a combination of these spaces, we consider the
root sum of squares.

We augment the lock-free kd-tree to support SE(3) and
SO(3) by defining splits based on the approach of vantage-
point trees (vp-trees) [29]. The kd-tree defines a split on an
SO(3) component using an orientation asplit in space and
a pre-defined distance φ from the orientation. The distance
function is the shortest arc-length between two orientations
and thus ranges from 0 to π. Representing orientations using
quaternions [30], distSO3(a1,a2) = arccos |a1 · a2|. Orienta-
tions that are less than φ away from asplit are on one side
of the split, and orientations greater than φ away are on the
other side. We preselect φ as sec 30◦, as that produces an even
split on the orientations in SO(3). The Split function on the
SO(3) component generates a split orientation by rotating the
orientation component anew of the inserted point by φ about
an arbitrary axis. This causes anew to lie exactly on the split.
This vp-tree-based approach enables the lock-free kd-tree to
efficiently support the SE(3) and SO(3) configuration spaces.

PRRT and PRRT* builds up the lock-free kd-tree on the fly
by inserting randomly generated configuration samples. The
resulting tree remains relatively balanced. It can be shown
that the expected number of comparisons required to insert
a random sample into a binary tree generated with uniform
random insertions is about 2 lnn [31, p. 430–431].

The kd-tree can be used for any number of dimensions,
but may become inefficient in very high dimensional spaces
[26]. Even in such cases, kd-trees distribute random updates
throughout the tree, leading to low contention over insertion
points. In brute-force approaches based upon arrays or lists,
inserts at a single insertion point (e.g. the tail of the list/array)
may result in contention.

C. Querying a Lock-Free kd-Tree
For a given query sample, Nearest and Near search the

lock-free kd-tree for the sample closest to it, or all samples
within a radius of it, respectively. They successively com-
pare the query to each traversed node’s splitting hyperplane,
and recurse down the side on which the query sample lies
(the “near” side). Recursion ends when encountering empty
branches. Upon return from the near side, the methods traverse
the “far” side of the hyperplane only if it is possible that points
in that part of the tree would be closer than the closest found
so far (Nearest) or within the search radius (Near).

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1128

Algorithm 4 PRRT∗

1: initialize τ
2: for i = 1 . . . thread count do
3: s← partition(i, thread count)
4: wi ← start new thread PRRT∗ Thread(τ, s)
5: end for

In practice PRRT can be used with other nearest-neighbor
search approaches that allow for non-blocking searches and
low-contention updates, and provide partitioned locality prop-
erties. The alternative of using a nearest-neighbor data struc-
ture with locks is also possible, but as shown in the results
in Sec. VI, unlike the lock-free kd-tree, a lock-based kd-tree
will result in sublinear speedup as different threads contend
for access to the structure.

In our implementation, we consider two schemes for config-
uration space partitioning that naturally align with the nearest
neighbor search kd-tree: (1) an even subdivision created by
“slicing” along the first dimension of configuration space, and
(2) a multi-dimensional grid created by recursively partitioning
along successive axes. While more sophisticated partitioning
approaches (e.g. [11], [16], [17]) might look for ways to focus
sampling on regions of difficulty (such as regions containing
narrow passages), our motivation in partitioning is to create
locality with sampling and nearest neighbor searches, and thus
improve CPU cache utilization. As seen in the results, the
choice of partitioning scheme has an impact on the overall
performance of the motion planner depending on the scenario.

V. PRRT*

We present Parallel RRT* (PRRT*), a lock-free parallel
extension of the RRT* algorithm. The PRRT* algorithm shares
across all threads the data structure for nearest neighbor
searching, the RRT* tree τ , the approximate iteration number,
and the best path to the goal found by any of the threads.
PRRT*, shown in Algorithm 4, begins just like PRRT except
it launches threads of PRRT∗ Thread(τ, s).

A. PRRT* Threads

PRRT* expands the motion planning tree much like PRRT
except that it includes the additional step of “rewiring” a
small neighborhood of the tree to enable finding optimal paths.
PRRT∗ Thread, shown in Algorithm 5, is the main loop of a
thread of PRRT*.

At a high level, PRRT* works much like standard RRT*. In
the outer loop, it randomly samples a configuration, finds the
sample’s nearest neighbor in the motion planning tree, and
computes a new configuration by steering from the nearest
neighbor toward the sampled configuration (lines 2–5). PRRT*
then searches for all the configurations in a ball around
the new configuration (line 6) using the ball radius defined
in [2]. PRRT* then connects the new configuration to the
configuration in the ball that produces the shortest path (lines
8–17), and then inserts the newly connected configuration into
the nearest neighbor structure (line 21). Finally, it rewires any

Algorithm 5 PRRT∗ Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: nnearest ← Nearest(τ,qrand)
4: qnew ← STEER(nnearest.config,qrand)
5: if FEASIBLE(nnearest.config,qnew) then

6: Nnear ← Near(τ,qnew,min {γ
(

log |τ |
|τ |

)1/d

, η})
7: cmin ←∞
8: for all nnear ∈ Nnear do
9: if FEASIBLE(nnear.config,qnew) then

10: clink ← COST(nnear.config, qnew)
11: cpath ← nnear.edge.cost +clink
12: if cpath < cmin then
13: nmin ← nnear
14: cmin ← cpath
15: end if
16: end if
17: end for
18: nnew.config ← qnew

19: enew ← (nnew, cmin, nmin)
20: nnew.edge ← enew
21: LockFreeKDInsert(nnew)
22: if enew is expired then
23: PRRT∗ Update(nnew.edge, enew)
24: end if
25: if GOAL(enew) then
26: record goal
27: end if
28: for all nnear ∈ Nnear \ {nmin} do
29: PRRT∗ Rewire(τ, nnear, nnew)
30: end for
31: end if
32: end while

configuration in the ball radius that produces a shorter path to
goal through the newly added configuration.

The notable differences from standard RRT* are: (1) each
thread samples within a partition of the configuration space
(line 2), (2) nearest neighbors are found using a lock-free kd-
tree (lines 3 and 6), (3) new configurations are added to the
RRT* tree in a manner that accounts for parallelism by fully
initializing them before adding them to the nearest-neighbor
structure (lines 18–20), and (4) rewiring is accomplished
entirely via lock-free operations.

B. PRRT* Rewiring

During the rewiring phase of RRT*, the algorithm considers
paths to configurations nearby the newly added configuration,
and it rewires the RRT* tree if re-routing those paths through
the newly added configuration is both FEASIBLE and results
in a shorter path. Following the approach of prior implemen-
tations of RRT* [2], [5], we cache with each RRT* node the
the path cost to that node’s configuration and push updates
down the tree when a node is rewired.

PRRT* formulates rewiring (Algorithm 6) into a CAS
operation that guarantees rewiring is completed correctly, even

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1129

Algorithm 6 PRRT∗ Rewire(τ, nnear, nnew): conditionally
rewires a near node through a newly created node, if doing so
creates a short path

1: enew ← nnew.edge
2: enear ← nnear.edge
3: clink ← COST(nnew.config, nnear.config)
4: c′near ← enew.cost +clink
5: if c′near ≥ enear.cost or

not FEASIBLE(nnew.config, nnear.config) then
6: return
7: end if
8: repeat
9: e′near ← (nnear, c

′
near, nnew)

10: — memory barrier —
11: if CAS(nnear.edge, enear, e′near) then
12: add e′near to enew.children
13: PRRT∗ Update(e′near, enear)
14: if enew is expired then
15: PRRT∗ Update(nnew.edge, enew)
16: end if
17: remove enear from enear.parent.children
18: return
19: end if
20: enear ← nnear.edge
21: until c′near ≥ enear.cost

if another thread is concurrently accessing or rewiring the
same node. If the CAS update fails, the assertion about the
new trajectory being shorter may now be incorrect. In that
case, the update is re-evaluated and tried again if the rewiring
would still result in a shorter path.

CAS operations only work on single memory operands.
The rewiring assertion however is made about two pieces of
information: the trajectory and the cost of that trajectory. We
thus modify the data structures to encapsulate both trajectory
and cost into a single unit making it suitable for a CAS. The
data structures we define are nodes, representing reachable
valid configurations, and edges, representing trajectories from
one node to another. The edges form a linked tree structure
that represents known trajectories to any nodes. To get from
the initial configuration to any node’s configuration, the edge
structure is followed (in reverse) from the node back to the
root of the tree where the initial configuration is stored. An
edge’s path to root never changes, and thus its computed
trajectory cost never changes. When PRRT* finds a shorter
path to a node, the node’s edge is CAS with the better edge.
Here again, we issue a memory barrier and ensure that the
new edge is fully initialized before the CAS. The old edge
will still essentially be present in the edge tree, but is no
longer referenced from the node. We call an edge in this
state “expired”, and detect it when edge.node.edge 6= edge.
Expired edges can be garbage collected and their associated
memory reused, but care must be taken to avoid the “ABA”
problem [3]. (The ABA problem occurs when a thread reads
‘A’ from a shared memory location and, before it performs the
CAS, another thread modifies the shared location to ‘B’ and

Algorithm 7 PRRT∗ Update(enew, eold): Moves all the active
children from a now expired parent edge to the new parent
edge.

1: nparent ← enew.parent
2: done ← false
3: repeat
4: echild ← remove first eold.children
5: if echild = ∅ then
6: if enew is expired then
7: PRRT∗ Update(enew.node.edge, enew)
8: end if
9: done ← true

10: else if echild is not expired then
11: nchild ← echild.node
12: c′child ← enew.cost +COST(nchild, nparent)
13: if c′child < echild.cost then
14: e′child ← (nchild, c

′
child, enew)

15: — memory barrier —
16: if CAS(nchild.link, echild, e′child) then
17: add e′child to enew.children
18: PRRT∗ Update(e′child, echild)
19: end if
20: end if
21: end if
22: until done

back to ‘A’, which causes the first thread to treat the shared
memory location as unmodified.)

By computing CAS operations around an edge, PRRT*
guarantees that any update it makes results in an equal or
better path, a requirement for the solution to converge towards
optimality. After rewiring a node through a better path, the
new shorter path is recursively percolated to the nodes that
link in to the rewired node. This update process (Algorithm 7)
atomically replaces edges to the expired parent with shorter
ones. It repeatedly removes the old children one at a time
(line 4) from a lock-free list structure (e.g. [32], [3]) until no
more children remain (line 5). It then creates the new child
edge with the updated cost, and CAS it into place (line 15).
A memory barrier before the CAS ensures that the edge is
fully initialized before another thread can access it. Note that
by using the lock-free list removal, the algorithm ensures that
only one thread is updating a particular child at any time. In the
case in which two threads are competing to update the same
portion of the tree, the thread(s) producing the longer update
terminate early (lines 10, 13), and only the thread producing
the shorter update proceeds, thus providing work savings and
improving speedup.

C. Asymptotic Optimality of PRRT*

In the case of single-threaded execution, PRRT* runs
exactly like sequential RRT* and hence is asymptotically
optimal.

Next, let us consider PRRT* running with multiple threads
and without partitioning. Each of the p threads is operating
independently on a shared RRT* graph. Each thread begins
its computation by observing the size nt of the current graph

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1130

and ends an iteration adding a configuration to the graph that
is of size n′t. When a single thread is running, n′t = nt.
When multiple threads are running concurrently, n′t ≥ nt due
to updates from other threads. Since the ball radius used in
iteration t is based on nt, as t increases and the ball radius
shrinks, each thread is operating with a ball radius greater
than or equal to what is necessary for asymptotic optimality
according to the proofs from RRT* [2]. Thus it follows from
the proof of asymptotic optimality of RRT* [2] that PRRT*
when running without partitioning is asymptotically optimal.

Finally, let us consider PRRT* running with multiple threads
and with partitioning. The impact of partitioning on the
sampling distribution is that (1) PRRT* samples uniformly
in independent static partitions rather than globally, and (2)
each partition (due to the nature of the underlying planning
problem) may sample at a different rate. If all threads sample
their partition at the same rate, the sampling distribution of the
entire space, in the limit, is uniform. We will denote this RRT*
graph resulting from these samples at iteration t as Gt. If the
sampling rate differs between threads, then we can consider
Gt as the graph that results from running all the threads at
the sampling rate of the slowest thread. Samples added by the
threads with a faster sampling rate result in a graph G′t that
is a superset of Gt. The rewiring step of PRRT* guarantees
that the quality of plans found on G′t are at least as good
as the plans found on Gt. If the ball radius of PRRT* is
thus defined to guarantee asymptotic optimality of the slowest
thread’s partition, we guarantee asymptotic optimality of Gt as
t increases. The graph G′t, as a superset, is thus also guaranteed
to be asymptotically optimal as t increases. Hence, PRRT*
carries the same asymptotic optimality guarantee as RRT*.

VI. RESULTS

We evaluate our method with five scenarios: (1) PRRT on
the Alpha Puzzle scenario, (2) PRRT on a 10,000 random
spheres scenario, (3) PRRT* on the Cubicles scenario, (4)
PRRT* on a holonomic disc-shaped robot moving in a planar
environment, and (5) PRRT* on an Aldebaran Nao small
humanoid robot performing a 2-handed task using 10 DOF.
Results are computed on a system with four Intel x7550
2.0GHz 8-core Nehalem-EX processors for a total of 32 cores.
Each processor has an 18MB shared L3 cache and each core
has a private 256KB L2 cache as well as 32KB L1 data and
instruction caches.

A. PRRT on the Alpha Puzzle Scenario

The Alpha Puzzle scenario [33] is a motion planning prob-
lem containing a narrow passage in the configuration space.
The puzzle consists of two tubes, each twisted into an alpha
shape. The objective is to separate the intertwined tubes, where
one tube is considered a stationary obstacle and the other
tube is the moving object (robot), as shown in Fig. 2. We
specifically use the Alpha 1.2 variant included in OMPL [5],
where different variants scale the size of the narrow passage
(with smaller numbers being more difficult to solve).

Using the Alpha 1.2 scenario, we evaluate PRRT’s ability
to speed up computation as the number of available CPU

(a) (b)

Fig. 2. The Alpha 1.2 scenario. The yellow alpha is the obstacle, and the red
alpha is the robot in SE(3). The robot must move from inside the obstacle
(a) to outside the obstacle (b) by sliding through the narrow passage at an
appropriate orientation.

cores rises. We note that there has been much work on
developing sampling strategies that improve RRT’s ability to
solve the Alpha Puzzle scenario quickly—we however used
the standard uniform sampling (with and without partitioning)
to demonstrate the multicore performance of PRRT. As with
other RRT variants, customized sampling strategies could be
used with PRRT (with and without partitioning) to obtain
results even more quickly. We evaluated PRRT (for both slice
and grid-based partitioning) on different numbers of processor
cores up to 32. For each core count, we ran 500 trials. We
also consider PRRT with lock-free data structures but without
partition-based sampling. We plot the median computation
times and speedups in Fig. 3(a) and (b), respectively. For
comparison, we include results from multi-threaded locked
variants of RRT in which each thread independently samples
and computes feasibility, but the shared kd-tree is locked either
at the tree level (“coarse-grain locking”) or at the node level
(“fine-grain locking”). We also compare to the multi-tree OR
parallel RRT in which each thread creates its own tree and all
threads stop as soon any find a solution [8].

As shown in Fig. 3, PRRT achieves a superlinear speedup
for the Alpha 1.2 scenario for all processor counts. PRRT’s
speedup for 32 cores was 39.4x. PRRT without partitioning
achieves sublinear speedup, but due to the lock-free data
structures still scales well as the number of cores rises. In
contrast, RRT with a locked nearest neighbor data structure
scales poorly; lock contention is very high due to the large
number of configuration samples necessary to solve this mo-
tion planning problem. PRRT’s use of lock-free data structures
and partitioning enable a superlinear speedup for the Alpha 1.2
scenario on the multicore computer. OR parallel RRT performs
best on this scenario, which requires creating samples inside a
short, narrow passage. We hypothesize that the independence
of the RRT’s in OR parallel RRT facilitates landing the critical
samples inside the short, narrow passage, and hence is better
for this scenario than an approach that accelerates construction
of a single RRT.

B. PRRT on 6-DOF, 10,000 Random Spheres

We apply PRRT and related methods to a random spheres
scenario in which a holonomic spherical robot must navigate

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1131

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 4 6 8 12 16 24 32

Ti
m

e
(s

ec
on

ds
)

Core Count

(a)

 1

 8

 16

 24

 32

 40

 1 4 8 12 16 24 32

Sp
ee

du
p

Core Count

PRRT w/slice partitioning
PRRT w/grid partitioning

PRRT w/o partitioning
RRT w/fine-grain locking

RRT w/coarse-grain locking
OR parallel RRT

linear speedup

(b)

Fig. 3. Performance of PRRT and related methods run on the Alpha Puzzle scenario. PRRT finds a solution with superlinear speedup with respect to the
number of processor cores. PRRT without partition-based sampling finds solutions with a slightly sublinear speedup but good scalability. In contrast, RRT
using a locked kd-tree does not scale as well. Coarse-grain locking causes too much lock-contention, and fine-grain avoids some lock-contention but adds the
overhead of repeated locking. For this scenario, the multi-tree OR parallel RRT acheives greater speedups than accelerating the construction of a single tree.

 0

 10

 20

 30

 40

 50

 60

 70

 1 4 6 8 12 16 24 32

Ti
m

e
(s

ec
on

ds
)

Core Count

(a)

 1

 8

 16

 24

 32

 40

 1 4 8 16 32

Sp
ee

du
p

Core Count

PRRT w/slice partitioning
PRRT w/grid partitioning

PRRT w/o partitioning
RRT w/fine-grain locking

RRT w/coarse-grain locking
OR parallel RRT

linear speedup

(b)

Fig. 4. PRRT and related methods run on the 6-DOF random spheres scenario. PRRT scales well with additional cores, which allow it to rapidly generate
configuration samples and make progress towards the goal.

through an obstacle course of 10,000 randomly placed spheres
in 6-dimensional C-space. The objective for the robot is to
navigate from the center of the C-space to a corner while
avoiding collision with the obstacles. The problem does not
have a single difficult narrow passage like the Alpha problem,
but the problem is still difficult because solutions necessarily
have many segments.

In the random spheres scenario, OR parallel RRT does not
perform as well as in the Alpha Puzzle scenario, likely because
this scenario does not include a short, narrow passage requiring
a “lucky” few samples to solve. In contrast, PRRT scales
well with additional cores, which allow it to rapidly generate
configuration samples and make progress towards the goal.
The results are plotted in Fig. 4.

C. PRRT* on the Cubicles Scenario

The Cubicles scenario, included in OMPL [5], is a motion
planning problem in which an “L”-shaped robot must move
in SE(3) through a 2-story office-like environment. As shown
in Fig. 5, to move from the start pose to the goal pose, the
robot must find a path through SE(3) that includes traveling

through a different floor. For computing path cost, we use
OMPL’s configuration space distance metric that sums the
weighted spatial and orientation components. The objective
is to compute a feasible path from the start pose to the goal
pose that minimizes path cost.

Using the Cubicles scenario, we evaluate PRRT*’s ability
to speed up computation as the number of available CPU
cores rises. We evaluated PRRT* with and without partition-
based sampling on different numbers of processor cores up to
32. For each core count, we ran 100 trials of each method,
generating trees with 50,000 configurations in each trial. We
plot the median computation times and speedups in Fig.
6(a) and (b), respectively. For comparison, as with RRT, we
compare against multi-threaded locked variants of RRT*. In
the locked-RRT* fine-grain variant, access to the kd-tree and
the rewiring updates of the tree are locked at the node (i.e.
configuration) level—at most times multiple locks must be
acquired to guarantee only one thread is updating a portion of
the graph at any given moment, and locks are always acquired
in the same order to avoid deadlock. We also compare against
a multi-threaded “OR” parallel RRT*, in which each thread

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1132

(a) (b) (c)

Fig. 5. We evaluate PRRT* on the Cubicles scenario. The “L”-shaped robot must move from its start pose on one side of a wall to the goal pose on the
other side of the wall by moving through a lower floor (a). We illustrate an example path produced with 50,000 configurations (b, c).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 6 8 12 16 24 32

Ti
m

e
(s

ec
on

ds
)

Core Count

(a)

 1

 8

 16

 24

 32

 40

 1 4 8 12 16 24 32

Sp
ee

du
p

Core Count

PRRT* w/slice partitioning
PRRT* w/grid partitioning

PRRT* w/o partitioning
RRT* w/fine-grain locking

RRT* w/coarse-grain locking
linear speedup

(b)

Fig. 6. Performance of PRRT* and related methods run to 50,000 configurations on the Cubicles scenario. PRRT* without partitioning and with slice
partitioning both achieve superlinear speedups with respect to the number of processor cores. PRRT* with grid partitioning suffers in performance as some
cores are confined to sampling inside partitions that are disconnected by obstacles from the start and goal. RRT* with a locked kd-tree nearest neighbor data
structure scales poorly due to lock contention.

computes an independent RRT* graph, and the final computed
path is the one with the minimum cost selected from all graphs.

PRRT* with slice partitioning and PRRT* without partition-
ing achieve superlinear speedup on the Cubicles scenario. On
32 cores, PRRT* with slice partitioning achieves a speedup of
36.6x and PRRT* without partitioning achieves a speedup of
38.9x. All methods achieved median solution path costs that
are within 1% of one another, indicating that parallelization
and partitioning do not significantly affect path quality when
the size of the tree (50,000 configurations in this case) is
held constant. In this scenario, PRRT* with grid partitioning
does not perform as well as other PRRT* variants because
some of the threads sample in partitions that are unreachable
(i.e., the space on the left of Fig. 5(c)) from the start and
goal configurations. At 32 cores, grid partitioning allocates 8
cores to partitions entirely in the unreachable space. PRRT*
performs substantially better than RRT* with a locked kd-
tree for nearest neighbor searching, which achieved sublinear
speedup for both fine and coarse grain locking due to lock
overhead and contention.

D. PRRT* for a 2D Holonomic Disc-shaped Robot

We executed PRRT* for a 2D holonomic disc-shaped robot
that must move to the goal in the environment shown in

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 1 4 6 8 12 16 20 24 32
 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

A
vg

. B
es

t-P
at

h
C

os
t t

o
G

oa
l

C
on

fig
ur

at
io

ns
 in

 P
R

R
T*

 T
re

e

Core Count

Path cost to goal
Samples generated

Fig. 7. PRRT* run for 10 ms on the 2D holonomic disc-shape robot scenario.
PRRT* generates more samples, and produces a better quality solution with
more cores, even in this short time interval.

Fig. 1(a). We executed RRT* on 1 core and PRRT* on 4
and 32 cores for 10 ms of wall clock time. The quality of
paths is shown visually in Fig. 1 and quantitatively in Fig.
7. With more cores, the size of the constructed tree in the
10 ms increases substantially, visibly improving the quality of
the computed motion plan. More space is explored and more
narrow passages are discovered.

As stated in section I, the focus of PRRT and PRRT* is on

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1133

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. An example PRRT* motion plan created for the Aldebaran Nao robot. The robot carries an effervescent antacid in one hand and places it over a glass
of water held in the other hand, all while avoiding the bottles on the table and not spilling the water (i.e. FEASIBLE is constrained to keep the glass mostly
level). In the last frame, after the robot reaches the goal configuration, it drops the antacid into the water.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 4 6 8 12 16 24 32

Ti
m

e
(s

ec
on

ds
)

Core Count

(a)

 1

 8

 16

 24

 32

 40

 1 4 8 12 16 24 32

Sp
ee

du
p

Core Count

PRRT* w/slice partitioning
PRRT* w/o partitioning

RRT* w/ coarse-grain locking
linear speedup

(b)

Fig. 9. Performance of PRRT* and related methods run on the Nao 10 DOF task for 100,000 configurations. PRRT* achieves superlinear speedups with
respect to the number of processor cores. In contrast, RRT* with a course-grain locked kd-tree nearest neighbor data structure cannot exceed 4x speedup due
to lock contention.

challenging scenarios requiring tens or hundreds of thousands
of samples, and this 10 ms scenario does not fall into that
category. In Fig. 7, we see that as we add more cores above
12, PRRT* begins to show a diminishing return on samples
generated and quality of solution due to several factors: (1)
the PRRT* tree grows faster thus causing the per-query time
for nearest neighbor to also increase, (2) PRRT* is rapidly
converging towards the optimal solution, and (3) 10 ms is a
short enough interval that we observe the overhead of startup.
In the early growth of the roadmap, where the number of
samples n is small, as we add more cores p, the expected
contention rises (limp→∞O(p/n) = ∞). As we show in
Sec. VI-E, the PRRT* startup overhead quickly disappears
with additional computation time. We also note that this 10 ms
scenario performs well for current readily available multicore
systems (typically in the range of 2–12 cores), producing the

significant and visible improvements shown in Fig. 1.

E. PRRT* for a 2-handed Aldebaran Nao 10 DOF Task

We evaluated PRRT* on an Aldebaran Nao small humanoid
robot [34] with the task of dropping an object held in one hand
into a cup held in the other hand while avoiding obstacles.
Each arm of the Nao robot has 5 degrees of freedom (shoulder
pitch/roll, elbow yaw/roll and wrist yaw), resulting in a 10
dimensional configuration space for this problem. All joints
are bounded revolute joints, and we define COST as a Euclidean
distance in configuration space. The robot must avoid obstacles
on the table in front of it while keeping the cup upright
throughout its motion—i.e. the function FEASIBLE tests if the
robot will collide with objects in the environment and also
tests if the robot’s joint angles will result in the cup being
upright subject to a tolerance. We define GOAL to return true

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1134

for configurations that satisfy the following constraints within
a tolerance: (1) the (x, y) coordinates for the left hand and
the right hand are the same, (2) the left hand’s z coordinate
is higher than the right hand, (3) the object in the left hand
is pointing down, and (4) the cup in the right hand is held
upright. We show the Nao robot using PRRT* successfully
performing the task in Fig. 8.

To demonstrate PRRT*’s ability to compute high quality
solutions faster on multiple cores, we executed the Nao 10
DOF task for n = 100, 000 configurations with varying core
counts and averaging over 10 runs. As shown in Fig. 9, we
observe superlinear speedup with PRRT*. Executing PRRT*
on 1 core (thus making it equivalent to standard RRT*)
requires 420 seconds. On 32 cores, PRRT* required only
11.6 seconds for the same number of samples. PRRT* was
36x faster with no significant difference in the quality of the
computed paths.

The use of lock-free data structures and partitioning in
PRRT* both have an impact on performance. PRRT* with-
out partition-based sampling performed slightly worse than
PRRT*, achieving approximately a linear speedup as shown
in Fig. 9. We also executed RRT* parallelized by locking the
kd-tree. At 100,000 configurations, nearest neighbor searches
dominate the computation time, so threads spend most of
their time waiting for access to the kd-tree when using
locks. Consequently, the lock-based approach cannot exceed
4x speedup.

We note that the relative performance of motion planning
using lock-free and lock-based nearest neighbor searching
varies with the size of the motion planning tree τ . When the
size of the tree τ is smaller, collision-detection dominates
computation time and the lock-based approach achieves a
more reasonable speedup. At 2,000 samples on 32 cores,
we observe a 16.4x speedup with locked kd-trees, although
PRRT* still outperforms with a 28.9x speedup. The locked
version’s speedup diminishes as more samples are added, as
shown in Fig. 11. In contrast, the lock-free PRRT* overcomes
thread startup overhead and reaches 32x speedup by the
20,000th configuration before increasing to 36x speedup by
100,000 configurations.

To demonstrate how PRRT* can be used to produce better
results per unit time, we also ran the Nao 10 DOF task 50 times
for 3 seconds at various processor core counts. As shown in
Fig. 12, increasing the number of processor cores enables us
to build trees with more samples per second and find better
solutions. The path cost from the initial configuration to the
goal shows convergence to an optimal solution as the number
of samples increases, as expected with RRT*. In contrast
to the 10 ms runs for the holonomic disc-shaped robot, in
these 3-second runs for the Nao robot the impact of startup
overhead is no longer significant and we see the number of
samples generated scale well with the number of cores. We
also observed that RRT* would find paths to the goal in only
80% of the 3-second runs on 1 core. With 2 cores, PRRT*
found solutions in 98% of the runs. At higher core counts,
PRRT* found solutions in all runs.

 0

 20

 40

 60

 80

 100

7.6 7.2 6.8

Ti
m

e

Time to Target Path Cost (32 cores)

PRRT* w/slice
PRRT* w/grid

PRRT* w/o partitioning
RRT* w/fine-grain locks

OR parallel RRT*

Fig. 10. We give PRRT* and RRT* variants a specified target path cost and
show the time it takes to reach the target in the Nao scenario. In this graph we
also include OR parallel RRT*, a multi-tree RRT* in which 32 RRT* trees
are built in parallel and the best result is chosen from among them. For target
path cost 6.8, OR parallel RRT* exceeded the allotted time and is plotted
only to 100 seconds. We do not include the coarse-grained locking in this
graph—in all cases it exceeded the allotted time.

 1

 8

 16

 24

 32

 0 5000 10000 15000 20000 25000

Sp
ee

du
p

Configurations in PRRT* Tree

PRRT* w/slice partitioning
PRRT* w/o partitioning

RRT* w/ coarse-grain locking
linear speedup

Fig. 11. PRRT* running on 32 cores overcomes startup overhead and speedup
increases as the number of configurations increases. In contrast, using a locked
nearest neighbor structure shows good speedup initially, but as the number
of configurations increases, contention over locked data structures slows the
algorithm down.

VII. CONCLUSION

We presented PRRT (Parallel RRT) and PRRT* (Parallel
RRT*), single-tree sampling-based methods for feasible and
optimal motion planning that are tailored to execute on modern
multicore CPUs. Using atomic updates and lock-free data
structures, PRRT and PRRT* remove barriers to scaling to
higher processor core counts. We further observe that using
a non-overlapping partition-based sampling strategy increases
cache efficiency by localizing each thread’s computation to
a region of memory. While not guaranteed, we empirically
observed that these contributions enable PRRT and PRRT* in
some scenarios to achieve superlinear speedup.

Our method is best suited for challenging motion planning
problems in which a large number of samples is required to
find a feasible or near optimal solution. As the number of
samples increases, computation time gradually changes from
being dominated by collision detection to being dominated
by nearest neighbor search. PRRT and PRRT* parallelize
the entire computation of the motion planning tree and thus

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1135

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 1 4 6 8 12 16 20 24 32
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000
A

vg
. B

es
t-P

at
h

C
os

t t
o

G
oa

l

C
on

fig
ur

at
io

ns
 in

 P
R

R
T*

 T
re

e

Core Count

Path cost to goal
Samples generated

Fig. 12. PRRT* run for 3 seconds on the Nao 10 DOF task. Increasing the
number of processor cores results in samples being generated at a higher rate
and better quality solutions.

maintain speedup ratios regardless of which portion of the
computation is dominating. We demonstrated fast performance
and significant speedups in 5 scenarios including the Alpha
Puzzle and Cubicles scenarios and an Aldebaran Nao small
humanoid robot performing a 2-handed, 10 DOF task.

In ongoing and future work we would like to adapt PRRT
and PRRT* to other commonly-available hardware architec-
tures and new applications. Some computing architectures
provide hardware support for simultaneous multithreading
(SMT)—running two or more threads simultaneously within
each core by sharing cache and execution units within the
core. Additional speedups may be achievable by scheduling
such threads in a manner that coordinates with the partitioning
scheme. The static partitioning in our implementation, while
having an impact on many real-world level problems, does not
produces a sustainable cache-locality in the limit. Eventually,
the cache-benefit of the static partitioned locality will run
out. Other work in the field of cache-aware and cache-
oblivious algorithms (e.g. [35], [36]) has shown how to create
a sustained cache-based performance improvement, regardless
of problem size. More sophisticated partitioning approaches,
such as approaches that focus sampling on regions of difficulty,
could potentially by used with PRRT and PRRT* to provide
both the benefits of improved partitioned sampling and of
localizing computations to better fit in a core’s cache. We
also plan to investigate adapting the algorithmic approaches
of PRRT and PRRT* to applications in dynamic environments
and other challenging scenarios. Included in this investigation
will be reducing the overhead associated with startup to allow
PRRT and PRRT* to make more effective use of additional
cores in shorter time periods. The speedups gained through
utilizing existing and readily available multicore concurrency
in conjunction with lock-free data structures could enable new
robotic applications in scenarios that are currently considered
too computationally expensive when run in a single thread or
using lock-based data structures.

ACKNOWLEDGMENT

The authors thank Allan Porterfield at the North Carolina
Renaissance Computing Institute (RENCI) for providing ac-
cess to computation hardware, Jan Prins and Stephen Olivier

for their input on parallel algorithms and platforms, and
Diptorup Deb for help in running experiments. This research
was supported in part by the National Science Foundation
(NSF) through awards IIS-0905344, IIS-1117127, and IIS-
1149965 and by the National Institutes of Health (NIH) under
awards R21EB011628, R01EB017467, and R21EB017952.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robotics Research, vol. 30, no. 7, pp. 846–
894, Jun. 2011.

[3] J. D. Valois, “Lock-free linked lists using compare-and-swap,” in Proc.
ACM Symp. Principles of Distributed Computing, 1995, pp. 214–222.

[4] ROS.org, “Robot Operating System (ROS),” http://ros.org, 2012.
[5] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics and Automation Magazine, vol. 19, no. 4, pp.
72–82, Dec. 2012. [Online]. Available: http://ompl.kavrakilab.org

[6] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion plan-
ning with superlinear speedup,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Oct. 2012, pp. 1206–1212.

[7] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are em-
barrassingly parallel,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), May 1999, pp. 688–694.

[8] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proc. 8th Conf. Italian Association for Artificial Intelligence, 2002,
pp. 834–841.

[9] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on large-scale
distributed-memory architectures,” IEEE Trans. Robotics, vol. 29, no. 2,
pp. 767–770, Apr. 2013.

[10] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato,
“A scalable distributed RRT for motion planning,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), May 2013, pp. 5073–5080.

[11] I. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. Robotics, vol. 28, no. 1, pp. 116–
131, 2012.

[12] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap of
trees for large-scale motion planning,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), April 2005, pp. 3879–3884.

[13] M. Otte and N. Correll, “Path planning with forests of random trees:
Parallelization with super linear speedup,” Department of Computer
Science University of Colorado at Boulder, Tech. Rep. CU-CS 1079-
11, Apr. 2011.

[14] J. J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT*,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), San Francisco, CA, Sep. 2011, pp. 3513–3518.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 3rd ed. Morgan Kaufmann, 2003.

[16] J. Rosell, C. Vázquez, and A. Pérez, “C-space decomposition using
deterministic sampling and distance,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS). IEEE, 2007, pp. 15–20.

[17] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato, “A
machine learning approach for feature-sensitive motion planning,” in
Algorithmic Foundations of Robotics VI, 2005, pp. 361–376.

[18] S.-E. Yoon and D. Manocha, “Cache-efficient layouts of bounding
volume hierarchies,” in Computer Graphics Forum, vol. 25, no. 3, 2006,
pp. 507–516.

[19] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time motion
planning and global navigation using GPUs,” in AAAI Conference on
Artificial Intelligence (AAAI-10), Jul. 2010, pp. 1245–1251.

[20] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time
robot motion planning using rasterizing computer graphics hardware,”
in Proc. ACM SIGGRAPH, 1990, pp. 327–335.

[21] C. P. Kenneth, K. Hoff III, M. C. Lin, and D. Manocha, “Random-
ized path planning for a rigid body based on hardware accelerated
Voronoi sampling,” in Proc. Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2000.

[22] M. Foskey, M. Garber, M. C. Lin, and D. Manocha, “A Voronoi-based
hybrid motion planner,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), Oct. 2001, pp. 55–60.

[23] J. T. Kider Jr., M. Henderson, M. Likhachev, and A. Safonova, “High-
dimensional planning on the GPU,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2010, pp. 2515–2522.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014 1136

[24] W. Hwu, GPU Computing Gems Jade Edition, ser. Applications of GPU
Computing Series. Elsevier Science & Technology, 2011.

[25] P. E. McKenney, “Memory barriers: a hardware view for software
hackers,” Linux Technology Center, IBM Beaverton, 2010.

[26] A. Yershova and S. M. LaValle, “Improving motion planning algorithms
by efficient nearest-neighbor searching,” IEEE Trans. Robotics, vol. 23,
no. 1, pp. 151–157, Feb. 2007.

[27] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[28] S. Maneewongvatana and D. M. Mount, “It’s okay to be skinny, if
your friends are fat,” in Center for Geometric Computing 4th Annual
Workshop on Computational Geometry, 1999.

[29] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 1993, pp. 311–321.

[30] W. R. Hamilton, “On quaternions; or on a new system of imaginaries in
algebra,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 1844–1850.

[31] D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

[32] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proceedings
of the fifteenth annual ACM symposium on Principles of distributed
computing. ACM, 1996, pp. 267–275.

[33] B. Yamrom, “Alpha puzzle,” https://parasol.tamu.edu/dsmft/benchmarks/mp/,
GE Corporate Research & Development Center.

[34] Aldebaran Robotics, “Aldebaran Robotics NAO for education,”
http://www.aldebaran-robotics.com/en/naoeducation, 2010.

[35] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in Foundations of Computer Science, 1999. 40th
Annual Symposium on. IEEE, 1999, pp. 285–297.

[36] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström, “Recursive
blocked algorithms and hybrid data structures for dense matrix library
software,” SIAM review, vol. 46, no. 1, pp. 3–45, 2004.

Jeffrey Ichnowski received his B.A. degrees in
Computer Science and Asian Studies with honors
from the University of California, Berkeley, CA in
1998. He since has had a successful career as a
founder, engineer, architect, and technical advisor
in software-as-a-service (SaaS) startups and enter-
prises. He has received several patents related to
SaaS architecture, and is an active contributor to
open-source projects. In 2010, he joined the De-
partment of Computer Science at the University of
North Carolina at Chapel Hill, NC, where, as a Ph.D.

candidate, his research focus is on high-performance computing in robot
motion planning algorithms.

Ron Alterovitz received his B.S. degree with Hon-
ors from Caltech, Pasadena, CA in 2001 and the
Ph.D. degree in Industrial Engineering and Op-
erations Research at the University of California,
Berkeley, CA in 2006.

In 2009, he joined the faculty of the Department
of Computer Science at the University of North
Carolina at Chapel Hill, NC, where he leads the
Computational Robotics Research Group. His re-
search focuses on motion planning for medical and
assistive robots. Prof. Alterovitz has co-authored a

book on Motion Planning in Medicine, was awarded a patent for a medical
device, has received multiple best paper finalist awards at IEEE robotics
conferences, and is the recipient of the NIH Ruth L. Kirschstein National
Research Service Award and the NSF CAREER Award.

