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Abstract. Nearest neighbor searching is a fundamental building block
of most sampling-based motion planners. We present a novel method
for fast exact nearest neighbor searching in SE(3)—the 6 dimensional
space that represents rotations and translations in 3 dimensions. SE(3)
is commonly used when planning the motions of rigid body robots. Our
approach starts by projecting a 4-dimensional cube onto the 3-sphere
that is created by the unit quaternion representation of rotations in the
rotational group SO(3). We then use 4 kd-trees to efficiently partition
the projected faces (and their negatives). We propose efficient methods to
handle the recursion pruning checks that arise with this kd-tree splitting
approach, discuss splitting strategies that support dynamic data sets,
and extend this approach to SE(3) by incorporating translations. We
integrate our approach into RRT and RRT* and demonstrate the fast
performance and efficient scaling of our nearest neighbor search as the
tree size increases.

1 Introduction

Nearest neighbor searching is a critical component of commonly used mo-
tion planners. Sampling-based methods, such as probabilistic roadmaps (PRM),
rapidly exploring random trees (RRT), and RRT* [1, 2], create a motion plan by
building a graph in which vertices represent collision-free robot configurations
and edges represent motions between configurations. To build the graph, these
motion planners repeatedly sample robot configurations and search for nearest
neighbor configurations already in the graph to identify promising collision-free
motions.

Because nearest neighbor search is a fundamental building block of most
sampling-based motion planners, speeding up nearest neighbor searching will
accelerate many commonly used planners. This is especially true for asymptoti-
cally optimal motion planners, which typically require a large number of samples
to compute high-quality plans. As the number of samples in the motion plan-
ning graph rises, nearest neighbor search time grows logarithmically (or at worst
linearly). As the samples fill the space, the expected distance between samples
shrinks, and correspondingly reduces the time required for collision detection.
Collision detection typically dominates computation time in early iterations, but



as the number of iterations rises, nearest neighbor search will dominate the over-
all computation—increasing the importance of fast nearest neighbor searches.

We introduce a fast, scalable exact nearest neighbor search method for robots
modeled as rigid bodies. Many motion planning problems involve rigid bodies,
from the classic piano mover problem to planning for aerial vehicles. A planner
can represent the configuration of a rigid body in 3D by its 6 degrees of freedom:
three translational (e.g., x, y, z) and three rotational (e.g., yaw, pitch, roll).
The group of all rotations in 3D Euclidean space is the special orthogonal group
SO(3). The combination of SO(3) with Euclidean translation in space is the
special Euclidean group SE(3).

Our approach uses a set of kd-trees specialized for nearest neighbor searches
in SO(3) and SE(3) for dynamic data sets. A kd-tree is a binary space parti-
tioning tree data structure that successively splits space by axis-aligned planes.
It is particularly well suited for nearest neighbor searches in Minkowski distance
(e.g., Euclidean) real-vector spaces. However, standard axis-aligned partitioning
approaches that apply to real-vector spaces do not directly apply to rotational
spaces due to their curved and wrap-around nature.

In this paper, we describe a novel way of partitioning SO(3) space to create a
kd-tree search structure for SO(3) and by extension SE(3). Our approach can be
viewed as projecting the surface of a 4-dimensional cube onto a 3-sphere (the sur-
face of a 4-dimensional sphere), and subsequently partitioning the projected faces
of the cube. The 3-sphere arises from representing rotations as 4-dimensional vec-
tors of unit quaternions. The projection and partitioning we describe has two
important benefits: (1) the dimensionality of the rotation space is reduced from
its 4-dimensional quaternion representation to 3 (its actual degrees of freedom),
and (2) the splitting hyperplanes efficiently partition space allowing the kd-tree
search to check fewer kd-tree nodes. We propose efficient methods to handle
the recursion pruning checks that arise with this kd-tree splitting approach, and
also discuss splitting strategies that support dynamic data sets. Our approach
for creating rotational splits enables our kd-tree implementation to achieve fast
nearest neighbor search times for dynamic data sets.

We demonstrate the speed of our nearest neighbor search approach on sce-
narios in OMPL [3] and demonstrate a significant speedup compared to state-
of-the-art nearest neighbor search methods for SO(3) and SE(3).

2 Related Work

Nearest neighbor searching is a critical component in sampling-based motion
planners [1]. These planners use nearest neighbor search data structures to find
and connect configurations in order to compute a motion plan.

Spatial partitioning trees such as the kd-tree [4–6], quadtrees and higher
dimensional variants [7], and vp-trees [8] can efficiently handle exact nearest
neighbor searching in lower dimensions. These structures generally perform well
on data in a Euclidean metric space, but because of their partitioning mecha-
nism (e.g., axis-aligned splits), they do not readily adapt to the rotational group



SO(3). Kd-trees have a static construction that can guarantee a perfectly bal-
anced tree for a fixed (non-dynamic) data set. Bentley showed how to do a static-
to-dynamic conversion [9] that maintains the benefits of the balanced structure
produced by static construction, while adding the ability to dynamically update
the structure without significant loss of asymptotic performance.

Yershova and LaValle [10] showed how to extend kd-trees to handle R1, S1,
SO(3), and the Cartesian product of any number of these spaces. Similar to kd-
trees built for Rm, they split SO(3) using rectilinear axis-aligned planes created
by a quaternion representation of the rotations [11]. Although performing well
in many cases, rectilinear splits produce inefficient partitions of SO(3) near the
corners of the partitions. Our method eschews rectilinear splits in favor of splits
along rotational axes, resulting in splits that more uniformly partition SO(3).

Non-Euclidean spaces, including SO(3), can be searched by general metric
space nearest neighbor search data structures such as GNAT [12], cover-trees
[13], and M-trees [14]. These data structures generally perform better than linear
searching. However, except for rare pathological cases, these methods are usually
outperformed by kd-trees in practice [10].

Nearest neighbor searching is often a performance bottleneck of sampling-
based motion planning, particularly when the dimensionality of the space in-
creases [15, 16]. It is sometimes desirable in such cases to sacrifice accuracy for
speed by using approximate methods [15–19]. These methods can dramatically
reduce computation time for nearest neighbor searches, but it is unclear if the
proofs of optimality for asymptotically optimal motion planners hold when us-
ing approximate searches. Our focus is on exact searches, though we believe that
some approximate kd-tree speedups can be applied to our method.

3 Problem Definition

Let C be the configuration space of the robot. For a rigid-body robot, the config-
uration space is C = Rm if the robot can translate in m dimensions, C = SO(3)
= P 3 if the robot can freely rotate in 3 dimensions, and C = SE(3) = R3P 3 if
the robot can freely translate and rotate in 3 dimensions. Let q ∈ C denote a
configuration of the robot. When C = Rm, q is an m-dimensional real vector.
When C = P 3, we define q as a 4-dimensional real vector in the form (a, b, c, d)
representing the components of a unit quaternion q = a+ bi+ cj + dk. We use
the notation q[x] to represent the x component of a configuration q.

Computation of nearest neighbors depends on the chosen distance metric.
Let DIST (q1,q2) be the distance between two configurations. For brevity, we
will focus on a few commonly used distance functions, which are included in
OMPL [3]. We only consider exact functions, and approximate versions are left
to future work. In Rm we use the Euclidean (L2) distance:

DISTRm(q1,q2) =

( m∑
i=1

(q1[i]− q2[i])2
)1/2

In P 3 we use a distance of the shorter of the two angles subtended along the
great arc between the rotations [11, 3, 10]. This metric is akin to a straight-line



distance in Euclidean space mapped on a 3-sphere:

DISTP 3(q1,q2) = cos−1 |q1 · q2| = cos−1
∣∣∣∣ ∑
i∈{a,b,c,d}

q1[i]q2[i]

∣∣∣∣.
In R3P 3, we use the weighted sum of the R3 and P 3 distances [3]:

DISTRmP 3(q1,q2) = α DISTRm(q1,q2) + DISTP 3(q1,q2).

where α > 0 is a user-specified weighting factor. We assume the distance function
is symmetric, i.e., DIST (q1,q2) = DIST (q2,q1), and define DIST (q,∅) =∞.

We apply our approach to solve three variants of the nearest neighbor
search problem commonly used in sampling-based motion planning. Let Q de-
note a set of n configurations {q1 . . .qn} ⊂ C. Given a configuration qsearch,
the nearest neighbor search problem is to find the qi ∈ Q with the minimum
DIST (qsearch,qi). In the k-nearest neighbors variant, where k is a positive inte-
ger, the objective is to find a set of k configurations in Q nearest to qsearch. In
the nearest neighbors in radius r search, where r is a positive real number, the
objective is to find all configurations in Q with DIST (qsearch,qi) ≤ r.

Sampling-based motion planners make many calls to the above functions
when computing a motion plan. Depending on the planner, the set of nodes Q
is either a static data set that is constant for each query or Q is a dynamic
data set that changes between queries. Our objective is to achieve efficiency and
scalability for all the above variants of the nearest neighbor search problem for
static and dynamic data sets in SO(3) and SE(3).

4 Method

A kd-tree is a binary tree in which each branch node splits space by an axis-
aligned hyperplane, and each child’s subtree contains only configurations from
one side of the hyperplane. In a real vector metric space, such as Euclidean
space, it is common for each split to be defined by an axis-aligned hyperplane,
though other formulations are possible [6]. For performance reasons it is often
desirable for the splits to evenly partition the space, making median or mean
splits good choices [20]. We will describe these methods and how to apply our
SO(3) partition scheme to them.

In our method, we eschew rectilinear axis-aligned splits in favor of partitions
that curve with the manifold of SO(3) space. The set of all unit quaternion rep-
resentations of rotations in SO(3) forms the surface of a 4-dimensional sphere (a
3-sphere). We partition this space by projecting the surface of a 4-dimensional
cube onto the surface of the 3-sphere. Because of the double-coverage property in
which a quaternion and its negative represent the same rotation [11], half of the
projected surface volumes are redundant, and we build kd-trees by subdividing
4 of the projected surface volumes. Similar projections are used in [21] to gener-
ate deterministic samples in SO(3), and in [22] to create a minimum spanning
tree on a recursive octree subdivision of SO(3). When subdividing the surface



Fig. 1. A kd-tree projected onto the surface of a 2-sphere. An axis-orthogonal cube
is projected into a sphere. Each face of the cube is a separately computed kd-tree;
however, for illustrative purposes, we show the kd-tree of only one of the faces. In our
method we extend the analogy to 4-dimensional space for use with quaternions.

volumes into kd-trees, we apply a novel approach in which the partitioning hy-
perplanes pass through the center of the 3-sphere, and thus radially divide space.
These partitions are curved, and thus standard kd-tree approaches that apply
to real-vector spaces must be adapted to maintain consistency with the great
arc distance metric we use for SO(3). In Fig. 1, we depict a lower dimensional
analog consisting of a 3-dimensional cube projected onto a 2-sphere, with only
one of the projected cube surfaces subdivided into a kd-tree.

4.1 Projected Volume Partitioning of SO(3)

In the projection of the surface of a 4D cube onto the surface of a 3-sphere we
label each of the projected 3D surface volumes by the axis on which they are
aligned, thus a, b, c, and d. Any configuration whose quaternion is in a negative
volume (e.g., −a, −b, −c, or −d) is inverted.

The advantage of using this projection is two-fold: (1) we reduce the dimen-
sionality of the rotation representation from a 4-dimensional quaternion to a 3-
dimensional position on the projected volume, and (2) it allows radially aligned
splitting hyperplanes that more uniformly divide the curved manifold. There
is, however, a small cost for these benefits. The projection leads to building 4
kd-trees, although asymptotically the cost is at worst a constant factor.

To determine in which projected volume a quaternion q lies, we find its
component of greatest magnitude. Thus:

proj volume (q) = argmax
i∈a,b,c,d

|q[i]|

If θ is the angle between the unit quaternions q and n, then q ·n = cos θ. We use
this property and represent bounding and splitting hyperplanes by their normals



n. Determining on which side a quaternion q lies is a matter of evaluating the
sign of the dot product—positive values are on one side, negative values are on
the other, and a dot product of 0 lies on the hyperplane.

We will focus our discussion on the projected a-volume, with the other vol-
umes (b, c, and d) being permutations on it. The normals bounding the 6 sides
of the projected a-volume are the unit quaternions normalized from:

(1, 1, 0, 0) (−1, 1, 0, 0) b-axis bounds
(1, 0, 1, 0) (−1, 0, 1, 0) c-axis bounds
(1, 0, 0, 1) (−1, 0, 0, 1) d-axis bounds

We observe that within the projected a-volume, the a component of the hy-
perplane normals varies between

√
0.5 and −

√
0.5 (after normalizing), the axis

component varies between
√

0.5 at the boundaries to 1 at a = 0, and the other
components are always zero. The bounds for the b, c, and d projected volumes
follow similarly.

Solving for n in q · n = 0, we can determine the normal of the axis-aligned
hyperplane that passes through the quaternion q. We define axisnormvol,axis(q)
as the axis-aligned normal within a projected volume for quaternion q. The
a-volume definitions are:

axisnorma-vol,b-axis(q) = normalize(−q[b],q[a], 0, 0)

axisnorma-vol,c-axis(q) = normalize(−q[c], 0,q[a], 0)

axisnorma-vol,d-axis(q) = normalize(−q[d], 0, 0,q[a]),

where normalize(q) normalizes its input vector to a unit quaternion. From the
axisnorm we define an angle of rotation about the axis. The angle is computed
as the arctangent of the normal’s volume component over the normal’s axis
component, thus for example, q’s angle about the b-axis in the a-volume is
tan−1(−q[a]/q[b]). This angle forms the basis for a relative ordering around
an axis, and can be shortcut by comparing the volume component alone, as
q1[a] < q2[a] ⇐⇒ tan−1(−q1[a]/q1[b]) > tan−1(−q2[a]/q2[b]).

4.2 Static KD-Tree

In a static nearest neighbor problem, in which Q does not change, we can use an
efficient one-time kd-tree construction that allows for well balanced trees. Alg. 1
outlines a static construction method for kd-trees on real-vector spaces.

The algorithm works as follows. First it checks if there is only one configu-
ration, and if so it returns a leaf node with the single configuration (lines 1–2).
Otherwise the set of configurations is partitioned into two subsets to create a
branch. CHOOSE PARTITION AXIS (Q) in line 4 choses the axis of the partition. A
number of policies for choosing the axis are possible, e.g., splitting along the axis
of greatest extent. Then, PARTITION (Q, axis) (line 5) splits Q along the axis

into the partially ordered set Q′ such that ∀qi ∈ Q′1..m−1 : qi[axis] ≤ split and
∀qj ∈ Q′m..n : qj[axis] ≥ split. Thus a median split chooses m = n/2.



Algorithm 1 BuildKDTree (Q)

Require: Q is a set of configurations of size n > 0
1: if Q has 1 configuration then
2: return leaf node with Q1

3: else
4: axis← CHOOSE PARTITION AXIS (Q)
5: (Q′, split, m)← PARTITION (Q, axis)
6: left← BuildKDTree

(
Q′1..m−1

)
7: right← BuildKDTree (Q′m..n)
8: return branch node with split on (axis, split) and children (left, right)

The PARTITION function is implemented efficiently either by using a partial-
sort algorithm, or sorting along each axis before building the tree. Assuming
median splits, BuildKDTree builds a kd-tree in O(n log n) time using a partial-
sort algorithm.

In our SO(3) projection, we define an axis comparison that allows us to
find the minimum and maximum along each projected axis, and to perform the
partial sort required for a median partition. The axis comparison is the relative
ordering of each quaternion’s axisnorm angle for that volume and projection.

The minimum and maximum extent along each axis is the quaternion for
which all others are not-less-than or not-greater-than, respectively, any other
quaternion in the set. The angle of the arc subtending the minimum and max-
imum axisnorm values is the axis’s extent. Thus, if we define N as the set
of all axisnorm values for Q in the a-volume and along the b-axis therein:
Na,b = {axisnorma-vol,b-axis(q) : q ∈ Q} , then the minimum and maximum
axisnorm along the b-axis is:

nmin = argmin
ni∈Na,b

ni[a] nmax = argmax
nj∈Na,b

nj[a]

and the angle of extent is cos−1 |nmin · nmax|. After computing the angle of extent
for all axes in the volume, we select the greatest of them and that becomes our
axis of greatest extent.

4.3 Dynamic KD-Tree

Sampling-based motion planners, such as RRT and RRT*, generate and poten-
tially add a random configuration to the dataset at every iteration. For these
algorithms, the nearest neighbor searching structure must be dynamic—that is,
it must support fast insertions and removals interleaved with searches. In [9],
Bentley and Saxe show that one approach is to perform a “static-to-dynamic
conversion”. Their method builds multiple static kd-trees of varying sizes in a
manner in which the amortized insertion time is O(log2 n) and the expected
query time is O(log2 n). In the text that follows, we describe our implemen-
tation for modifying the kd-tree to a dynamic structure, and we compare the
approaches in Sec. 5.



Algorithm 2 DynamicKDInsert (q)

1: n← &kdroot

2: (Cmin,Cmax)← volume bounds
3: for depth = 0→∞ do
4: (axis, split)← KD SPLIT (Cmin,Cmax, depth)
5: if n = ∅ then
6: ∗n← new node with (axis, split,q)
7: return
8: if q[axis] < split then
9: n← & (∗nleft)

10: Cmax[axis]← split

11: else
12: n← & (∗nright)
13: Cmin[axis]← split

The kd-tree may also be easily modified into a dynamic structure by allowing
children to be added to the leaves of the structure, and embedding a configu-
ration in each tree node. When building such a dynamic kd-tree, the algorithm
does not have the complete dataset, and thus cannot perform a balanced con-
struction like the median partitioning in Sec. 4.2. Instead, it chooses splits based
upon an estimate of what is likely to be the nature of the dataset. When values
are inserted in random order into a binary tree, Knuth [23, p. 430–431] shows
that well-balanced trees are common, with insertions requiring about 2 lnn com-
parisons, and the worst-case O(n) is rare. In our experiments, we observe results
suggesting that the generated trees are indeed well-balanced across a variety of
scenarios. In the results section, we split at the midpoint of the bounding box.
A few possible choices that empirically work well with sampling-based motion
planners are: (1) split at the midpoint of the bounding box implied by the con-
figuration space and the prior splits, (2) split at the hyperplane defined by the
point being added, or (3) an interpolated combination of the two.

DynamicKDInsert (Alg. 2) adds a configuration into a dynamic kd-tree. In
this formulation, each node in the kd-tree contains a configuration, an axis and
split value, and two (possibly empty) child nodes. Given the bounding box of
the volume and a depth in the tree, the KD SPLIT function (line 4) generates a
splitting axis and value. In Euclidean space, KD SPLIT can generate a midpoint
split along the axis of greatest extent by choosing the axis that maximizes
Cmax[axis]−Cmin[axis], and the split value of (Cmin[axis] + Cmax[axis])/2.

In our SO(3) projection, the axis of greatest extent is computed from the
angle between cmin and cmax, where cmin and cmax are an axis’s bounding hy-
perplane normals from Cmin and Cmax. An interpolated split is computed using
a spherical linear interpolation [11] between the bounds:

csplit = cmin
sin tθ

sin θ
+ cmax

sin(1− t)θ
sin θ

where θ = cos−1 |cmin · cmax|

A split at the midpoint (t = 0.5) simplifies to cmid = (cmin + cmax)/(2 cos θ2 ).



Algorithm 3 DynamicKDSearch (q, n, depth,Cmin,Cmax,qnearest, s,a)

1: if n = ∅ then
2: return qnearest

3: if DIST (q,qn) < DIST (q,qnearest) then
4: qnearest ← qn // qn is the configuration associated with n

5: (axis, split)← KD SPLIT (Cmin,Cmax, depth)
6: (C′min,C

′
max)← (Cmin,Cmax)

7: C′min[axis]← C′max[axis]← split

8: if q[axis] < split then
9: qnearest ← DynamicKDSearch (q, nleft, depth + 1,Cmin,C

′
max,qnearest, s,a)

10: else
11: qnearest ← DynamicKDSearch (q, nright, depth + 1,C′min,Cmax,qnearest, s,a)
12: s[axis]← split

13: a[axis]← 1
14: if PARTIAL DIST (q, s,a) ≤ DIST (q,qnearest) then
15: if q[axis] < split then
16: qnearest ← DynamicKDSearch (q, nright, depth + 1,C′min,Cmax,qnearest, s,a)
17: else
18: qnearest ← DynamicKDSearch (q, nleft, depth + 1,Cmin,C

′
max,qnearest, s,a)

19: return qnearest

If instead we wish to split at the hyperplane that intersects the point being
inserted, we use the axisnorm to define the hyperplane’s normal. Furthermore,
we may combine variations by interpolating between several options.

4.4 Kd-Tree Search

In Alg. 3, we present an algorithm of searching for a nearest neighbor configu-
ration q in the dynamic kd-tree defined in Sec. 4.3. The search begins with n as
the root of the kd-tree, a depth of 0, Cmin and Cmax as the root volume bounds,
an empty qnearest, and the split vectors s = a = 0.

The search proceeds recursively, following the child node on the side of the
splitting hyperplane on which q resides (lines 8–11). Upon return from recur-
sion, the search algorithm checks if it is possible that the other child tree could
contain a configuration closer to q than the nearest one. This check is performed
against the bounding box created by the splitting hyperplanes of the ancestor
nodes traversed to reach the current one. It is essentially the bounding box
defined by C′min and C′max. However, a full bounding box distance check is
unnecessary—only the distance between the point and the bounds closest to the
point are necessary. This distance is computed by the PARTIAL DIST function,
and is depicted in Fig. 2.

PARTIAL DIST (q, s,a) (line 14) computes the distance between a configura-
tion q and the corner of a volume defined by s and a. The components of s
are the split axis values between the current region and the region in which q
resides. The components of a are 1 for each axis which is defined in s and 0 oth-
erwise. This results in the PARTIAL DIST definition for the L2 distance metric:

PARTIAL DISTL2 (q, s,a) =
(∑d

i=1(qi − si)
2ai

)1/2
.
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Fig. 2. A kd-tree search for q determining if it should traverse the second node. The
search checks if it is possible for any configuration in the region contained within the
node to have a point closer than the one already found. In (a), the search computes the
distance between q and region A—this is a 1-dimensional L2 distance between q and
the hyperplane that splits regions A and C. In (b), the search computes the distance
between q and region B—and it computes a 2-dimensional L2 distance. Our method
extends this computation to the curved projection on a 3-sphere.

The partial distance metric must return a distance less than or equal to
the closest possible configuration in the node’s region. A poorly bound partial
distance (e.g. PARTIAL DIST = 0) is valid, however search performance will suffer,
dropping toO(n) in the worst case. Thus a tightly bound PARTIAL DIST is critical
to performance.

The PARTIAL DIST function in our projected volume mapping of SO(3) is
the distance between a configuration q and a volume defined by hyperplanes
partitioning a unit 3-sphere, and is complicated by the curvature of the space.
For this function to be tightly bounded, it must take into account that the volume
defined by the bounds on our projected manifold are curved (see Fig. 1). When
only 1 hyperplane is defined (i.e. the first split in SO(3)), the distance is the angle
between a configuration and a great circle defined by a splitting hyperplane’s
normal nsplit and its intersection with the unit 3-sphere. This distance is:

PARTIAL DISTP 3|nsplit
= sin−1(q · nsplit)

When 2 of the 3 axes are split, the distance is the angle between the configuration
and an ellipse. The ellipse results from projecting the line defined by the two
splitting hyperplanes onto a unit 3-sphere. If the split axis values are the normals
nb and nc in the projected a volume, and thus the d-axis is not yet split, the
partial distance is:

PARTIAL DISTP 3|nb,nc
= min

ω
cos−1 |q · ell(nb,nc, ω)|

where ell is an ellipsoid parameterized by the normals nb and nc, and varied
over ω:

ell(nb,nc, ω) =

ω,−ωnb[a]

nb[b]
,−ωnc[a]

nc[c]
,±

√
1− ω2 −

(
ω
nb[a]

nb[b]

)2

−
(
ω
nc[a]

nc[c]

)2


The distance is minimized at ω = γ/
√
η(γ2 − ηq[a]) where

γ = q[a]− q[b]
nb[a]

nb[b]
− q[c]

nc[a]

nc[c]
, η = 1 +

(
nb[a]

nb[b]

)2

+

(
nb[a]

nc[c]

)2

.



When all three axes are split (e.g., the b, c, and d axes in the a projected
volume), the distance is the angle between the configuration and the corner of
the hyperplane bounded volume defined by the 3 axes. If the split axis values
are the normals nb, nc, and nd (in the projected a volume), the partial distance
is:

PARTIAL DISTP 3|nb,nc,nd
= cos−1 |q · qcorner|

where: qcorner = normalize

(
1,−nb[a]

nb[b]
,−nc[a]

nc[c]
,−nd[a]

nd[d]

)
Each of these PARTIAL DIST functions for P 3 successively provide a tighter
bound, and thus prunes recursion better.

Each query in the SO(3) subspace must search up to 4 kd-trees of the pro-
jected volumes on the 3-sphere. The projected volume in which the query con-
figuration lies we call the primary volume, and the remaining 3 volumes are the
secondary volumes. The search begins by finding the nearest configuration in the
kd-tree in the primary volume. The search continues in each of the remaining
secondary volumes only if it is possible for a point within its associated volume to
be closer than the nearest point found so far. For this check, the partial distance
is computed between the query configuration and the two hyperplanes that sep-
arate the primary and each of the secondary volumes. There are two hyperplanes
due to the curved nature of the manifold and the double-coverage property of
quaternions. Since a closer point could lie near either boundary between the
volumes, we must compare to the minimum of the two partial distances, thus:

min
(
PARTIAL DISTP 3|nab

(q), PARTIAL DISTP 3|nba
(q)
)

where nab and nba are the normals of the two hyperplanes separating the volumes
a and b.

4.5 Nearest, k-Nearest, and Nearest in Radius r Searches

Alg. 3 implements the nearest neighbor search. We extend it to k-nearest neigh-
bor search by replacing qnearest with a priority queue. The priority queue con-
tains up to k configurations and is ordered based upon distance from q, with
the top being the farthest of the contained configurations from q. The queue
starts empty, and until the queue contains k configurations, the algorithm adds
all visited configurations to the queue. From then on, DIST(q,qnearest) (lines 3
and 14) is the distance between q and the top of the priority queue. When the
search finds a configuration closer than the top of the queue, it removes the top
and adds the closer configuration to the queue (line 4). Thus the priority queue
always contains the k nearest configurations visited.

To search for nearest neighbors in radius r, qnearest in Alg. 3 is a result set.
Distance comparisons on lines 3 and 14 treat DIST(q,qnearest) = r. When the
algorithm finds a configuration closer than r, it adds it to the result set in line 4.
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Fig. 3. Comparison of nearest neighbor search time and distance checks plotted with
increasing configuration count in the searched dataset. In (a) we plot the average time
to compute a single nearest neighbor for a random point. In (b) we track the average
number of distance computations performed by a search.

5 Results

We evaluate our method for nearest neighbor searches in four scenarios: (1) uni-
form random rotations in SO(3), (2) uniform random rotations and translations
in SE(3), (3) configurations generated by RRT [24] solving the “Twistycool” mo-
tion planning scenario in OMPL [3], and (4) configurations generated by RRT*
[2] solving the “Home” motion planning scenario in OMPL [3]. We compare
four methods for nearest neighbor searching: (1) “dynamic” is a dynamic kd-
tree using our method and midpoint splits, (2) “static” is a static-to-dynamic
conversion [9] of a median-split kd-tree using our method, (3) “rectilinear” is a
static-to-dynamic conversion of a median-split kd-tree using rectangular splits
[10] on SO(3), and (4) “GNAT” is a Geometric Near-neighbor Access Tree [12].
All runs are computed on a computer with two Intel X5670 2.93 GHz 6-core
Westmere processors, though multi-core capabilities are not used.

5.1 Random SO(3) Scenario

In the Random SO(3) scenario, we generated uniformly distributed random con-
figurations in SO(3) and compute nearest neighbors for random configurations.
We compute the average search time and the average number of distance com-
putations performed to search a nearest neighbor data structure of size n. We
vary n from 100 to 1 000 000 configurations, and plot the result in Fig. 3. The
average nearest neighbor search time in Fig. 3(a) shows an order of magnitude
performance benefit when using our method. The number of distance compu-
tations in Fig. 3(b) is a rough metric for how much of the data structure each
method is able to prune from the search. The performance gain in Fig. 3(b) gives
insight into the reasons for the performance gains shown in Fig. 3(a).
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Fig. 4. Comparison of nearest neighbor search time for random configurations in SE(3).
In (a) and (b) the translation space is bounded to a unit cube, and the translation dis-
tance is weighted 1 and 10 respectively. In (a) the SO(3) component of a configuration
is given more weigh, and thus has more impact on each search.

5.2 Random SE(3) Scenario

In this scenario, we build nearest neighbor search structures with random con-
figurations generated in SE(3). Using DISTRmP 3 , we evaluate performance for
α = 1 and 10 in Fig. 4. For small α, the SO(3) component of a configuration is
given more weight, and thus provides for greater differentiation of our method.
In Fig. 4 (a), we observe a 2 to 5× improvement in performance between our
method and the rectilinear method, and an order of magnitude performance im-
provement over GNAT. As α increases, more weight is given to the translation
component, so our SO(3) splits have less impact on performance. Hence, our
improvement drops, but is still 2 to 3× faster than rectilinear, and 8× faster
than GNAT.

5.3 RRT on the Twistycool Scenario

We evaluate the impact of our method in the “Twistycool” motion planning sce-
nario, using OMPL for both the scenario and the RRT planner. The Twistycool
puzzle, shown in Fig. 5(a), is a motion planning problem in which a rigid-body
object (the robot) must move through a narrow passage in a wall that separates
the start and goal configurations. At each iteration, the RRT motion planner
computes a nearest neighbor for a random sample against all samples it has al-
ready added to its motion planning tree. We have adjusted the relative weighting
α for translation and rotation from its default, such that each component has
approximately the same impact on the weighted distance metric.

As we see in Fig. 5(b), the performance of our method with the dynamic
kd-tree is more than 5× faster than GNAT and rectilinear split kd-trees. This
matches our expectations formed by the uniform random scenario results, and
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Fig. 5. Twistycool scenario and RRT nearest neighbor search times. The scenario in
(a) requires the red robot to move from its starting configuration on the left, through
a narrow passage in the wall, to its goal configuration on the right. The average time
per nearest neighbor search is plotted in (b).

shows little degradation with the non-uniform dataset created by this motion
planning problem.

5.4 RRT* on the Home Scenario

We ran the “Home” scenario using the RRT* motion planner included in OMPL.
As shown in Fig. 6(a), the motion planner computes a plan that moves a table
from one room to another while avoiding obstacles. The RRT* planner incremen-
tally expands a motion planning tree, while “rewiring” it towards optimality as
it goes. In each iteration RRT* finds an extension point using a nearest neighbor
search, and then rewires a small neighborhood after a k-nearest neighbor search.
Unlike RRT, we can allow RRT* to continue for as many iterations as desired,
and get incrementally better results. As with the RRT scenario, we proportion-
ally scale α so that the SO(3) and translation components have approximately
equivalent impact on the distance metric. As shown in Fig. 6 (b), our method
in both variants outperforms GNAT and rectilinear splits by roughly a factor
of 3. In these results we observe also that the median split of “static” and the
midpoint split of “dynamic” perform equally well, and the main differentiating
factor between the kd-tree methods is thus the SO(3) partitioning.

6 Conclusion

We presented a method for efficient nearest neighbor searching in SO(3) space
and by extension SE(3), using a kd-tree with a novel approach to creating hy-
perplanes that divide rotational space. Our partitioning approach provides two
key benefits: (1) it reduces the dimensionality of the rotation representation
from 4-dimensional quaternion vector to match its 3 degrees of freedom, and (2)
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Fig. 6. Home scenario and RRT* nearest neighbor search times. In the scenario in (a),
the motion planner must find a path that moves the red table “robot” from its starting
configuration in the lower right room to the goal configuration in the upper right. The
average time for nearest neighbor search is plotted in (b).

creates an efficient partitioning of the curved manifold of the rotational group.
We integrated our approach into RRT and RRT* and demonstrated the fast
performance and efficient scaling of our nearest neighbor search as the tree size
increases.

In future and ongoing work, we view our approach as something that should
augment or work well in tandem with existing nearest neighbor search algo-
rithms and implementations. We are looking to adapt our approach to include
the approximate nearest neighbor kd-trees of the Fast Library for Approximate
Nearest Neighbors (FLANN) [19] and contribute an implementation to OMPL.
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