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Abstract. We introduce a method for splitting the computation of a
robot’s motion plan between the robot’s low-power embedded computer,
and a high-performance cloud-based compute service. To meet the re-
quirements of an interactive and dynamic scenario, robot motion plan-
ning may need more computing power than is available on robots de-
signed for reduced weight and power consumption (e.g., battery powered
mobile robots). In our method, the robot communicates its configuration,
its goals, and the obstacles to the cloud-based service. The cloud-based
service takes into account the latency and bandwidth of the connection
between it and the robot and computes and returns a motion plan within
the time frame necessary for the robot to meet requirements of a dynamic
and interactive scenario. The cloud-based service parallelizes construc-
tion of a roadmap, and returns a sparse subset of the roadmap giving the
robot the ability to adapt to changes between updates from the server.
In our results, we show that with typical latency and bandwidth limi-
tations, our method gains significant improvement in the responsiveness
and quality of motion plans in interactive scenarios.

1 Introduction

Cloud-based computing offers a vast amount of low-cost computation power on-
demand. It offers the ability to quickly scale up and down compute resources
so that you can have more computing when you need it, and not pay for it
when you do not. To place in context the price of cloud computation power,
the July 2016 prices for 1 second of 360-cores of computation can be less than
$0.0047 [1]. This implies that with an embarrassingly parallel algorithm [2], a
5-minute computation can be cut to less than 1 second. And because you pay
for the resources that you use, the same computation would require $0.0047
whether using 1-core for 360 seconds, or 360-cores for 1 second. To access these
immense computing resources, the only thing that is required is a connection to
the internet.

Mobile robots are often designed and built to keep weight and power con-
sumption as low as possible to achieve an acceptable duration of autonomy before
requiring recharging. This design concern naturally dictates that the computa-
tion power on such a robot is limited—for example, to a low-power single-core
processor. Motion planning is a computationally intensive process [3], and as
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Fig. 1. Comparison of robot only and cloud computing for robot motion planning. The
robot has limited computing power in order to reduce weight and increase battery life,
however it has low latency access to its sensors and actuators. The cloud-computing
has vast amounts of on-demand computing power available, but has a higher latency
access to the robot and the information it sends.

such, if the mobile robot has more than a few degrees of freedom, its computa-
tional demands for motion planning can quickly exceed its available computa-
tional power.

In a static environment, the robot can compute its motion plan a priori and
execute it. If the robot has no demands on when it needs to compute the motion
plan, it can sit motionless while it computes the motion plan locally. On the other
hand, if it needs a motion plan quickly, it can use cloud computing resources to
greatly decrease the time to compute a motion plan, and start executing sooner.

In a dynamic environment, however, the robot must not only compute a
complete motion plan, but it must also sense changes in the task’s goal and
the robot’s environment and update its motion plan accordingly. As in a static
environment, the robot can use a cloud-based computation to rapidly produce
an initial motion plan. However, the network complicates matters when it comes
to updating the plan due to changes in the environment since the network has
limited bandwidth and introduces a network latency-based delay. The delay due
to network latency and bandwidth may introduce enough of a lag that the mobile
robot relying solely on cloud-based motion planning would not be able to respond
to changes in its environment quickly enough to avoid a collision.

In this paper we propose a method for a mobile robot to compute and execute
a motion plan by offloading much of the computational cost of motion planning to
the cloud, while remaining reactive enough to respond to a dynamic environment
and avoid obstacles.

2 Related Work

The NIST definition of cloud computing [4], provides a good high-level overview
of the capabilities of the cloud. Broadly, cloud computing encompasses a “ubig-
uitous, convenient, on-demand network access to a shared pool of computing



resources that can be rapidly provisioned and released...”. Cloud-robotics and
automation are a subset of cloud-based computing related to robotics—it en-
compasses a broad range of topics, including access to big-data libraries, high-
performance computing, collective robot learning, and remote human interac-
tion. Kehoe, et al. provides an excellent survey of cloud-robotics in [5].

In this paper we focus on cloud-computing as an on-demand high-performance
computing platform to accelerate motion planning. Bekris et al. [6] use the cloud
to precompute manipulation roadmaps. The robot uses the roadmap to compute
the shortest collision-free path, lazily determining if edges on the roadmap are
blocked as determined by the latest sensor data. They observe that a dense pre-
computed roadmap, while covering more space and capable of producing shorter
paths between configurations, has the negative effect of increasing bandwidth re-
quirements to transfer the roadmap and taking more time to perform a search.
They thus use techniques such as SPARS and IRS (described below) to reduce
the roadmap size and evaluate the tradeoffs. Our approach follows from that
observations, but instead computes and updates the roadmap at an interactive
rate.

In [7], Kehoe et al. use a cloud-based data service to facilitate recognition
of objects for grasping. The approach uses a custom Google image recognition
service that is trained to recognize objects and estimate grasp points. In a subse-
quent related paper [8], Kehoe et al. use cloud-based computation to massively
accelerate through parallel computation, a Monte Carlo sampling-based grasp
analysis and planning. The paper demonstrates the cloud’s ability to scale to
500 compute nodes and achieve a 445x speedup.

Parallel processing has been successfully used to accelerate motion planning
computations. In [2], Amato et al. demonstrate that probabilistic roadmap gener-
ation is embarrassingly parallel—meaning that little effort is needed to separate
the sample generation into multiple parallel processes. The method described
in [9] uses lock-free synchronization to parallelize multi-core shared-memory
sampling-based motion planning algorithms with minimal overhead and observe
linear and super-linear speedup. Carpin et al. describes an OR-parallel RRT
method [10] that allows for distributed generation of sampling-based motion
plans among independent servers—the algorithm chooses the best plan gener-
ated from the servers participating, and the result is a probabilistically better
plan. Otte et al.’s C-FOREST [11] algorithm improves upon OR-parallel RRT by
exchanging information between computers about the best path found, resulting
in speedup in the motion planning on all parallel threads.

Robots are increasingly integrated into networks of computers. With the
advent of ROS [12] and similar systems, network connected robots are becoming
the norm. ROS’s network stack is designed for a high-bandwidth, low-latency,
local private/protected network to facilitate unified access to the robot’s sensor,
actuators, and embedded systems. Cloud-based computing, on the other hand,
has lower bandwidth, higher latency, and is generally publicly accessible (except,
for example, when using a VPN), and thus requires additional consideration
above the network stack.



The probabilistic roadmap method (PRM) [13] generates a connected graph
of robotic configurations in a precomputing offline phase. The robot later uses
the roadmap to find a path from an initial configuration to a goal configuration
by following along the edges of the graph. The k-PRM* [14] method improves
upon PRM by defining a connectivity level (k) needed to guarantee asymptotic
optimality.

Sparse roadmaps and roadmap spanners such as SPARS [15] are an effective
technique in reducing the complexity of motion planning roadmaps. They can
produce asymptotically near-optimal roadmaps, which maintain reachability of
the non-sparse graph, while limiting the size of the graph to thresholds needed
for lower-end computing platforms. In our method we adopt and parallelize
the incremental roadmap spanner (IRS) of [16] to reduce the roadmap size for
transmission over the internet.

Once the robot has a roadmap, whether sparse or not, it needs a path finding
algorithm to navigate its structure. Shortest-path finding algorithms such as Di-
jkstra’s algorithm and A* search find optimal paths, but can suffer from a slow
compute time that makes them inappropriate for reactive path planning. D* and
D* Lite algorithms perform a search from goal to start and track information
in the graph that allows them to be incrementally updated when changes to the
roadmap (e.g., from moving obstacles) occur—this provides a performance ben-
efit in that only a partial graph search is needed anytime there is a change in the
roadmap. The Anytime Repairing A* [17] and Anytime D* Lite [18] algorithms
use an inadmissible heuristic in A* to find a path quickly, then incrementally
improve the plan in subsequent iterations.

3 Problem Definition

Let C be the configuration space for the robot—the k-dimensional space of all
possible configurations the robot take. Let Cqee € C be the subset of configura-
tions that are collision free. Let q € C be the k-dimensional complete specification
of a single robotic configuration (e.g., the joint angles of an articulated robot).
Let Qgoal € Ciree be the set of goal configurations. Given a starting configura-
tion qg, the objective of motion planning in a static environment is to compute
a path 7 = (4o, q1,...,dn), such that the path between q; and q;41 is in Cereo
as traversed by a local planner, and q, € Qgoal

When the robot operates in a dynamic environment, Cg.ce changes over time.
Let Ciee(t) € C be the obstacle-free configuration space at time ¢, and let
Qgoal(t) C Ciree(t) be the goal at time t. Given the robot starting configura-
tion qp at time ¢y, the objective of motion planning in a dynamic environment is
to compute a path T = ([qg,to]T , [q{,tl]T ey [q}wtnr), such that the path
between q; and q;41 is in Ceee(+) as traversed by a local planner from time ¢; to
tit1, and an € ngal(tn)-

In a dynamic environment Cg.eo(t) may only be known at time ¢, and within
the sensing capabilities of the robot. We consider obstacles in the environment
that fall into the following categories: (1) known static obstacles that do not



change over the course of the task (e.g., a wall), (2) unknown static obstacles that
are static, but are not known until sensed by the robot, and (3) dynamic obstacles
that are moving through the environment and whose motion is unknown in
advance.

The robot, being in its environment, has fast access to the input from its
sensors, and is able to incorporate them into its planning to avoid moving obsta-
cles. The cloud computing service does not have sensors relevant to the robot’s
scenario and thus only has access to the sensed environment via what the robot
communicates to it.

Motion planning computation is split between two computing resources: (1)
the robot’s embedded local computer, and (2) the remote cloud computer(s).
Without loss of generality, we assume the robot’s computer is a low-power single-
core processor with some percentage of compute time dedicated to motion com-
putations. The cloud-computing servers are fast multi-core computers.

The two computing resources communicate via a network with quantifiable
bandwidth and latency. Bandwidth (R) is measured in bits per second, and is
much lower than the bandwidth achievable between CPU and RAM. Latency
(t1) is measured as the time between when a bit is sent and when it is received.
The bandwidth is low enough that sending a complete roadmap from client to
server would hamper the robot’s ability to adapt quickly to changing environ-
ment. The latency is high enough that the planning process must compensate
for it in it requests updates to the motion plan.

4 Method

We introduce a new set of algorithms to effectively split motion plan computation
between a robot and a cloud-based compute service based upon the strengths of
each system. The robot is in the environment and has fast access to sensors, but
it has a low-power processor—it is thus responsible for sensing the environment
(i.e., detecting obstacles and estimating current state), reacting to dynamic ob-
stacles, and executing collision-free motions. The cloud-based compute service is
connected to the robot by a possibly high-latency low-bandwidth network, but
has fast on-demand computing power—it is thus responsible for rapidly comput-
ing and sending to the robot a motion planning roadmap that encodes feasible
collision-free motions.

When the robot starts a new task, it initiates a cloud-planning session by
sending a request with the task and environment description to the cloud-based
computing service. The cloud computer receives the request, starts a new cloud-
based motion planning session, and computes a motion plan. Once the motion
plan is of sufficient quality (as determined by the task), the cloud-based service
sends the motion plan to the robot so that the robot can begin execution of the
task.

The cloud-based service operates as a request-response service; each request
the client makes results in a single response from the service. In the algorithms
presented, the request-response communication is asynchronous unless otherwise



Algorithm 1 Robot Computation

Input: the initial configuration grobot, goal region Qgoal, known static obstacles W
1: G = (V,E) « (9,9) {roadmap is initially empty}

2: T < & {path is initially empty}

3: send plan_req(to, Qrobot, W, Qgoal) = cloud

4: while grobot & Qgoal do

5: (W, D) < (sensed static obstacles, tracked dynamic obstacles) {sense}
6:  if recv roadmap_update <= cloud then

7 Incorporate update into robot’s roadmap G

8: treq < (current time) + tstep

9: Qreq < compute where robot will be at treq

10: send plan_req(treq; Qreq; W, Qgoal) = cloud

11:  if changes in (G, W, D) or (Anytime D*’s ¢) > 1 then
12: T < compute/improve path using Anytime D*

13: Qrobot — follow edges of shortest path 7 {move}

stated. Within a planning session, the service retains state from one request-
response cycle to the next so that it does not start from scratch at each point
in the process.

4.1 Roadmap-Based Robot Computation

The robot’s algorithm is shown in Alg. 1. It initializes the process and starts the
cloud-planning session in lines 1 to 3. As part of initialization it creates an empty
graph for the roadmap and sends an initial planning request. It then starts a
sense-plan-move loop (line 4) in which it will remain until it reaches a goal.

The sensing process at the start of each loop iteration is responsible for
processing sensor input to construct a model of the static obstacles in the envi-
ronment (W), and to track the movement of dynamic obstacles (D). Since the
static environment changes infrequently (e.g., as the robot rounds a corner to
discover construction blocking its path), an implementation can save bandwidth
by only sending changes to the static environment as it discovers them.

In the planning part of the loop, the robot incorporates new data from the
cloud service, computes a local path around dynamic obstacles, and requests plan
updates as it needs them. The robot internally represents its estimate of Cgee
using a roadmap encoded as a graph G = (V,E), where V are configurations
(the vertices) of the graph, and E are the collision-free motions (edges) between
configurations in V. On line 6, the robot checks if the cloud service has responded
to the robot’s most recent request with an update to the roadmap. When the
robot receives the cloud’s roadmap, it incorporates the new data into the robot’s
roadmap, and initiates a new cloud planning request with the latest information
from the environment.

Alg. 1 requests updates as frequently as possible, however if excessive network
utilization shortens battery life in an implementation, requests can be made less
frequently, for example, only when the robot has moved sufficiently out of its
available roadmap. To send a request, the robot computes where it will be at time



tstep in the future following its current plan. The value of ¢y, is a parameter of
the system, and accounts for the network round-trip and cloud processing time
to compute the update.

If the robot has encountered a change to the graph, or any of the static or
dynamic obstacles, or its current path (7) can be refined further, it computes or
improves the path using an Anytime D* planner [18], with a time component
as described in [19]. Anytime D* defines and uses a runtime value in € (line 11)
to incrementally refine the robot’s path. It starts by setting the value of € > 1
which it uses to modify the A* heuristic to find a sub-optimal solution quickly.
As the algorithm iterates, it decreases € and correspondingly refines the path
with the new heuristic, resulting in an improved plan. When € = 1, the solution
is optimal. As the last part of the loop, Alg. 1 moves the robot along the shortest
path it computed.

When the robot computes its local path it saves computation time by only
considering collisions between paths on the roadmap and the dynamic obstacles.
The robot does not need to recompute self-collision avoidance, collisions with
static obstacles, or other motion constraints, as this information is incorporated
into the roadmap that the cloud service computes.

4.2 Roadmap-Based Cloud Computation

Cloud-based computation in our algorithm computes a roadmap for a robot to
use when navigating through an environment and around obstacles. Because this
algorithm runs on the cloud-based compute service, it has access to immense
computational resources, enabling computation of a large, detailed roadmap.
When building a roadmap, the cloud-based computation only considers the ob-
stacles in the environment that are sent to the cloud from the robot—since the
robot only sends static obstacles, the roadmap does not include avoidance of
dynamic obstacles.

The robot starts a cloud planning session with an initial request for a
roadmap. A session corresponds to a single robotic task and cloud-computing
process that spans multiple requests from the robot. At the start, both the cloud
and the robot have an empty graph as a roadmap. The cloud computes an initial
roadmap and sends the relevant portion of the roadmap to the robot to begin
execution of the task. As the robot needs additional areas of the roadmap, it
sends additional requests to the server, and the server responds with updates to
the roadmap. Optionally, in parallel, cloud process optimizes and extends the
roadmap between request/response cycles.

Alg. 2 shows the cloud computing process for a single cloud-based motion
planning session. The session starts with an empty graph G = (V,E) = (2, 2).
The algorithm builds the graph (Sec. 4.3) by generating vertices (V) and dense
edges (E); and selects and maintains a sparse subset of edges Eg € E. The sparse
edges retain graph connectivity and are used to reduce the transfer size, while
the dense edges give the robot more options to react to dynamic obstacles. Alg. 2
also maintains a subgraph Gyobot = (Vriobot € V, Erobot C E) that tracks the
portion of the G sent to the robot.



Algorithm 2 Cloud Planning Session
1: G=(V,Es CE) «+ (2,9)

2: Grobot = (Vroboty Erobot) <~ (®7 @)

3: W « o {static obstacles}

4: loop
5:  recv plan_req(treq; Qreq; YW, Qgoal) <= robot {blocking wait for next request}
6: V< {qeVU{Qreq}|Yw e W:clear(q|w)}

70 E<+ {(qe,q) € E|Vw €W : link(qe, qp | w)}

8: while tnow < treq — tres and not satisfactory solution do

9: update G and qgoar using k-PRM*+IRS on W and Qgoal

10: ( ;obotv E;obot) — serialize,graph(G, qreq7 ngah GTObOt)

11:  send plan_res(Vioho: \ Viobots Erobot \ Erobot) = robot

12: (Vrobot, Erobot) — (Vl/robow E;obot)

The cloud planning session starts when it receives a plan_req (plan request)
from the robot (line 5). This request corresponds to the plan req sent by the
robot in Alg. 1 line 3. The cloud computer adds the requested configuration qyeq
to the graph and updates the existing graph for any new static obstacles that
are added W (lines 6 and 7). This step makes use of two application-specific
functions to produce a valid roadmap: clear(q) computes whether or not q €
Crree (€.g., via collision detection algorithms); and 1ink(qe, qs) checks if the path
between q, and qp is in Cgee as traversed by the robot’s local planner. It then
builds the roadmap until it runs out of time or it has a solution of satisfactory
quality (lines 8 and 9). The compute time limit is the target completion time
treq minus the amount of time for the robot to receive the response t,cs. Thus e
is computed as the sum of graph serialization time and total network transfer
time. The graph is then serialized using the method described in section 4.4, and
the new vertices and edges selected for serialization are sent back to the robot
as a plan_res (plan response) in line 11. Optionally, at the end of the loop the
cloud computer may continue to update the roadmap in the background until it
receives another plan_req from the robot.

4.3 Lock-free Parallel k-PRM* with a Roadmap Spanner

The cloud-based service computes a roadmap using k-PRM* [14] with the Incre-
mental Roadmap Spanner (IRS) [16], accelerated by a lock-free parallelization
construction we introduce in this section. k-PRM* is an asymptotically optimal
sampling-based method that generates a roadmap. IRS selects an asymptotically
near-optimal sparse subset of the edges generated by k-PRM* and results in a
graph with significantly fewer edges as compared to k-PRM*. The edges from
k-PRM* are the dense graph edges (E). The edges selected by IRS are the sparse
graph edges (Es C E).

The server computes k-PRM*+IRS using a parallel lock-free algorithm in
which all provisioned cores run Alg. 3 simultaneously to generate and add ran-
dom samples to a graph in shared memory. The main portion of the algorithm
proceeds similarly to the non-parallel version, with the key differences being that:



Algorithm 3 Lock-free Parallel k&-PRM* IRS Thread

Input: G = (V, E) is an initialized graph shared between threads, Jv € V : is_goal(v)
1: while not done do
2:  Vrand < new vertex with random sample and connected component Crand
Crand.goal < is_goal(vrand)
if clear(vrand) then
for all vyear € k-nearest(V, vrand, {k =}[log (|[V| + 1) * krrc]) do
if 1ink(vrand, Vnear) then
sparse < shortest_path_dist(Vrand, Unear) < Wstretch * dist(Vrand; Unear)
add_edge(Vrand, Unear, SParse)
add_edge(Unear, Urand, SParse)
solved « solved or merge_components(vrand.CC, Unear-CC)
V < V U vrana

H

—

(1) nearest neighbor searching is fast and non-blocking due to the use the lock-
free kd-tree described in [9], (2) graph edges are stored in lock-free linked lists
(Alg. 4), and (3) progress towards a solution is tracked via connected compo-
nents that are stored in lock-free linked trees (Alg. 5). As with k-PRM*, in each
iteration this algorithm generates a random robot configuration and searches for
its k-nearest neighbors using k from [14]. The algorithm checks if the path to
each neighbor is obstacle-free (line 6), and if so, adds edges to the PRM graph
(lines 8 and 9). As the algorithm builds the graph, it adds dense edges consis-
tent with k-PRM*. When the shortest path distance between two vertices in the
graph is shorter than a stretch weighted (wstretcn) straight-line distance, it adds
sparse edges consistent with IRS.

Algorithm 4 add_edge(Vrom, Vto, SParse)

€dense <— New edge to vy, With edense.-next = vrom.dense_list_head
while not CAS(viom.dense list_head, edense-n€xt, Edense) do
€dense-NE€Xt < Vgom.dense_list_head
if sparse then
add edge to v, to sparse list of edges with CAS loop similar to one for dense list
while vgom.cc.parent # nil do
Vfrom -CC $— Vfrom.cC.parent {Lazy update of vertex’s connected component}

The algorithm adds edges to the graph using Alg. 4. Each vertex in the
graph has a reference to the head of two linked lists: one for E, and one for Eg.
Updating the list makes use of a“compare-and-swap” (CAS) operation available
on modern multi-core CPU architectures. CAS(mem, old, new), in one atomic
action, compares the value in mem to an expected old value, and if they match,
updates mem to the new value. CAS, combined with the loop in line 2, updates
the lists correctly even in the presence of competing concurrent updates.

The algorithm tracks progress towards a solution by maintaining information
on each connected component (“cc” in Alg. 4) in the roadmap. When it adds an



Algorithm 5 merge_components(C,, C)

1: repeat

2 while C,.parent # nil do C, < C,.parent

3 while Cj.parent # nil do C} + Cp.parent

4: until CAS(C,.parent,nil, Cy)

5: repeat

6: while Cj.parent # nil do C} + Cp.parent

7: Cherged + new component

8: (Crmerged-start, Cmerged.goal) < (Cq.start or Cy.start, Cq.goal or Cy.goal)
9: until CAS(Cj.parent, nil, Cmerged)

10: return Cherged.start and Cherged.goal

Algorithm 6 serialize _graph(G, Qreq; Qgoal; Grobot)
Input: G= (V7 Es - E)? Gl‘ObOt = (VrobotaErobot)v s.t. Vrobot c Va Erobot c E
1: ( ;obotv E;Obot) A (Vrobot, Erobot)

2: Virontier = forward frontier(Qreq, E)

3: p(-) + path_to_frontier(Qgoal, Virontier; E})

4: V;Obot <~ V;obot U Virontier

5: Q < {q € Veontier} {populate FIFO queue}

6

7

8

: while |Q| > 0 do
q: < remove head from Q
for all (qi7 qS) € Es: qs ¢ V;obot do

9: ( ;obota E;obot) <~ (V;obot u {q5}7 E:obot u {(q17 qs)})
10: append qs to Q

11: if p(qs) # nil and (qi, p(ai)) & Elopor then

12: if p(q;) & Viobot then

13: append p(q) to Q

14: V;obot — Vllfobot U p(ql)

15: E;obot <~ E:obot U (th(ql))

16: return (V;obotvE;obot)

edge between two vertices, it also merges the connected components associated
with the vertices (Alg. 5). This is done by maintaining a “parent” link from
the pre-merged component to the post-merged component. The most recently
merged component is thus found by repeatedly following parent links to the
root of the connected components. Each connected component also maintains
booleans tracking whether or not the component contains a vertex at the goal
and/or start. Once a connected component is found that includes both a start
and goal vertex, the graph contains a path between the two.

4.4 Roadmap Subset for Serialization

The roadmap serialization process selects a compact, relevant subset of a
roadmap and converts it into a serial (linear) structure suitable for transmission
over a network. Alg. 6 selects which vertices and edges of the graph to serialize.
The process of converting the selected vertices and edges to sequence of bytes is
left an implementation detail. Since bandwidth is limited, the process selects a



Algorithm 7 path_to_frontier(qgoal, Virontier; E)

1: g(Qgoa1) + 0 {cost to goal}

2: p(Qgoal) ¢ nil {forward pointers}

3: U < {Qgoal } {priority queued ordered by g(-)}
4: while |Vfronticr‘ >0 do

5: Qmin < remove (min U) from U

6: Vfrontier — Vfrontier \ {qmin}

7. for all (4from,Qmin) € E do

8: d <+ g(Qmm) + COSt(qfromy qmin)

9: if gtrom € U or d < g(gfrom) then
10: 9(Qtrom) < d

11: insert/update qgrom in U

12: p(qfrom) <= Qmin

13: return p(-)

small subset of the configurations in the roadmap to send to the robot. To allow
the robot to navigate around dynamic obstacles in its immediate vicinity, as well
as find the best route to goal, the cloud selects a subset of configurations that
includes ones reachable from ¢,oq Within a time bound ¢,.x, as well as the path
to goal for each such vertex.

Serialization selection begins by finding the frontier between the vertices
reachable from qreq within the time bound ¢pax, and vertices not reachable
(line 2). The forward_frontier algorithm is a modified Dijkstra’s algorithm that
terminates once it finds paths longer than ¢,,,x. Since Dijkstra’s expands paths in
increasing path length, this will terminate once it has found all paths reachable
within t,... It returns all vertices Vigontier reachable within the frontier. The
selection process then computes the shortest path from all goals to the vertices in
Viontier (line 3). This process, shown in Alg. 7, is a modified Dijkstra’s algorithm
that terminates once it has found a path to all vertices in Vgongier-

In the last step in Alg. 6, the vertices from the frontier set are appended
to Vi .. along with all configurations along their shortest paths to goal and
reachable by the sparse edges. Line 5 populates the queue from Vigongier. The
loop starting on line 6 iterates through each configuration in the queue, adding
sparse neighbors and steps along the shortest path to goal as it encounters them.
By checking the graph before appending to the queue, the algorithm ensures that
vertices are queued at most once. When the loop completes, the new graph subset
is ready for sending to the robot. Then the cloud service sends only the changes
in the graph from one response to the next (Alg. 6 line 11).

5 Results

We evaluate our algorithm on a Fetch robot [20] by giving it an 8 degree-of-
freedom task in an environment with a dynamic moving obstacle. Our cloud-
compute server runs on a system with four Intel x7550 2.0-GHz 8-core Nehalem-
EX processors for a total 32-cores. The cloud-computing process makes use of
all 32-cores. The cloud-compute server is physically located approximately 6 km



Fig. 2. The Fetch robot using our cloud-based motion planning for the task of grasping
the bottle resting on the table while avoiding both the static obstacles (e.g., table) and
the dynamic obstacle (a tube sensed via an RGBD camera). In frame (a) after the Fetch
approaches the table with its arm in its standard rest configuration and it initiates
the cloud-computation process. The Fetch’s embedded CPU is tasked with sensing
and avoiding dynamic obstacles, while a cloud-computer simultaneously generates and
refines its roadmap. In frame (b), the Fetch begins its motion, only to be blocked in
frame (c) by a new placement of the obstacle. The Fetch is again blocked in frame (d),
moves again around the obstacle in frame (e), and reaches the goal in frame (f).

away from the robot, and the network connection between the server and robot
supported a bandwidth in excess of 100 Mbps with a latency less than 20 ms.
To model the impact of slower network connections, in our experiments we de-
liberately slowed packet transmission to model a fixed maximum bandwidth of
Rgim and a fixed minimum round-trip latency of ¢z_,  subject to noise sampled
from a Gaussian distribution with standard deviation of 0.16¢z,_,, .

We implemented our algorithm as a web-service accessible via HTTP [21].
The robot initiates a request by sending an HTTP POST to the server, and
the server responds with an HTTP response code appropriate to the situation
(e.g., “200 OK” for a successful plan, “503 Service Unavailable” when the server
cannot acquire sufficient computing resources). Requests and responses are sent
in a serialized binary form. To minimize overhead associated with establishing
connections, both the cloud server and the robot use HT'TP keep-alive to reuse
TCP/IP connections between updates, and are configured to have a connection
timeout that far exceeds expected plan computation time.

The Fetch robot has a 7 degree of freedom arm, a prismatic torso lift joint,
and a mobile base. In our scenarios, prior to the cloud-based computation task,
the Fetch robot navigates to the workspace using its mobile base without using
the cloud service. This process introduces noise to the robot’s base position and
orientation. Once at the workspace, we give the Fetch robot the task of moving
from a standard rest configuration (Fig. 2(a)) to a pre-grasp configuration over
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Fig. 3. Effect of different values for R¢m and tr_ . Graph (a) shows the wall-clock
time for the Fetch robot to complete its pre-grasp motion task, where the orange line
is the time for the robot to complete the task without the cloud service. Graph (b)
compares the number of edges generated by the cloud computer (dashed lines) and the
number of edges sent to the robot (solid lines) for the varying network conditions. The
simulated network latency affects the amount of compute time that the cloud has for
each update. Longer latencies lead to less time for available for computation, and thus
leads to slower task completion time and fewer edges on the roadmap.

a table (Fig. 2(f)), requiring it to plan a motion using 8 degrees of freedom (i.e.,
the arm and prismatic torso lift joint). In this setting, the static obstacles are the
table, floor, and surrounding office space. We also include a dynamic obstacle: a
cylindrical tube that moves through the environment.

The sequence in Fig. 2 shows the full integrated system running, with the
Fetch robot successfully moving its arm around the obstacles. At the beginning
of a task, the Fetch communicates its position and orientation in the workspace
to the cloud service and requests a roadmap for its task. The software uses
custom tracking software and the Fetch’s built in RGBD camera to determine
the location of dynamic obstacles. When it computes a change in trajectory
(e.g., to avoid a dynamic obstacle, or in response to a refined roadmap from the
cloud), it sends the trajectory to the controller via a ROS/moveit interface.

We also ran our method in simulation to evaluate performance under vary-
ing networking conditions. We simulated the tube dynamic obstacle sweeping
periodically over the table at a rate of 0.25 Hz (approximately 1 m/s). While
the dynamic obstacle has a predictable motion consistent through all runs, the
simulated sensors only sense the tube’s position and orientation and do not pre-
dict its motion. As the tube obstacle is considered dynamic, the robot does not
send information about it to the cloud computer, and it must avoid the tube
by computing a path along the roadmap using its local graph. The robot and
cloud are not given any pre-computation time; once given the task, the robot
must begin and complete its motion as soon as it is able. We measure this as
the “wall clock time to complete task.”



The Fetch robot has a 2.9 GHz Intel i5-4570S processor with 4 cores. For our
scenario, we limit our client-side planner to fully utilize a single core, under the
assumption that in a typical scenario the remaining cores would leave sufficient
compute power to run other necessary tasks, such as sensor processing.

As a baseline for comparison, we have the robot’s computer generate a k-
PRM* using a separate thread. This thread updates the graph used by the
reactive planner at a period of 250 ms. The k-PRM* planner considers only the
static environment and self-collision avoidance as the constraints on the roadmap
generation, and generates a fully dense roadmap (no sparse edges). The reactive
planner uses the roadmap to search for a path to the goal. While searching the
roadmap, the robot lazily checks for collisions with the dynamic obstacle. In 50
runs, the robot completes the task with an average of 32.3 seconds.

We run the scenario using our method and simulate and vary the latency and
bandwidth of the network between the robot and the 32-core cloud-computer.
To maintain reactivity, the robot requests an update as soon as it receives the
response to the previous request. Since the requested solve time (freq) is set to
250 ms, an update is requested and received every 250 ms. The latency means
that only a portion of the 250 ms can be used to compute a roadmap. The
results in Fig. 3(a), averaging over 100 runs, show that the robot assisted by the
cloud computation outperforms robot-only computation in almost all simulated
cases. As we might expect, the slowest bandwidth and highest latency cause the
performance benefit of using the cloud-based service to disappear. At the lowest
latencies, the cloud-based solution outperforms the robot-only computation by
1.7x, reducing the task completion time to 19.0 seconds.

In Fig. 3(b), we show the savings that result from using the roadmap spanner
and our serialization method. When latency is low, the cloud computer can spend
more time computing, producing a roadmap that has on average 232649 edges.
IRS and serialization reduce it to an average of 24236, a savings of close to 90%.

Fig. 4 shows the effect of roadmap serialization parameter ¢, on our cloud-
based motion planning. A smaller t,,x implies less of the roadmap is sent to the
robot, which results in reduced bandwidth usage but at a cost to the quality of
the roadmap. As the robot executes its task, a proportionately higher portion of
the server’s dense roadmap is sent to the robot (see Fig. 4 (a)). From Fig. 4 (b),
we see that if £« is too small, the robot is slower to find a collision-free path past
the dynamic obstacle. Conversely, there is little gain for increasing t,.x beyond
a certain threshold since unnecessary portions of the graph are sent to the robot,
essentially wasting network bandwidth, leading to diminished performance.

6 Conclusion

Cloud computing offers access to vast amounts of computing power on demand.
We introduce a method for power-constrained robots to accelerate their motion
planning by splitting the motion planning computation between the robot and
a high-performance cloud computing service. Our method rapidly computes an
initial roadmap and then sends a mixed sparse/dense subgraph to the robot.
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Fig. 4. The serialization parameter tmax affects the size of the graph on the robot and
the robot’s task completion wall time. In these graphs the simulated network is fixed
at Rsim = 1 Mbps and Tr_ = 200 ms and the server solve time is 250 ms. Graph (a)
shows that larger values of ¢,,q4, result in more of the dense edges of the graph being
serialized and sent to the robot. In (b), we see that having tmaz be too small results
in a high failure rate (where failure means not reaching goal after 2 minutes), while
having it too large increases the variance of the execution time.

The sparse portions of the graph retain connectivity and reduced transfer size,
while the dense portions give the robot the ability to react to obstacles in its
immediate vicinity. As the robot executes the plan, it periodically gets updates
from the cloud to retain its reactive ability.

In our experiments, we applied our method to a Fetch robot, giving it an 8
degree of freedom task with a simulated dynamic obstacle. With our method,
the split cloud /robot computation allows the robot to react to dynamic obstacles
in the environment while attaining a more dense roadmap than possible with
computation on the robot’s embedded processor alone. The scenario requires a
minimal amount of pre-computation time (less than a second) before the robot
starts to execute its task. As a result, the task time-to-completion is significantly
improved over the alternative without cloud computing.

In future work we will incorporate mobility into the planning for the Fetch
robot to make use of its wheeled base. We will also implement the proposed
framework using a commercial cloud-based service and investigate approaches
that efficiently allocate cloud-computing resources, including for the short inter-
vals of computation needed for single tasks. We will also evaluate this method
on different scenarios and different robot types.
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