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Abstract. This paper presents a fast exact nearest neighbor searching
data structure and method that is designed to operate under highly-
concurrent parallel operation on modern multi-core processors. Based
on a kd-tree, the proposed method is fast, supports metric spaces com-
mon to robot motion planning, and supports nearest, k-nearest, and
radius-based queries. But unlike traditional approaches using kd-trees,
our approach supports simultaneous queries and insertions under con-
currency, supports wait-free queries, and provides asymptotically dimin-
ishing expected wait-times for random concurrent inserts. We provide
proofs of correctness under concurrency, and we demonstrate the pro-
posed method’s performance in a parallelized asymptotically-optimal
sampling-based motion planner.
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1 Introduction

Nearest neighbor searching data structures are a fundamental building block for
many algorithms in robotics. Algorithms such as sampling-based robot motion
planners [7], typically need to repeatedly search and insert data into a near-
est neighbor data structure, and thus their performance benefits from nearest
neighbor operations that are fast. However, with the trend of modern CPUs
towards increasing computational parallelism in the form of multiple processor
cores, it is no longer sufficient for a data structure to just enable operations to
be fast. To harness the full computational power of a multi-core processor, algo-
rithms must also allow for concurrent operations across multiple cores without
slowdown. Slowdown is unfortunately worsened by increasing parallelism when
the data structure requires concurrent operations to wait for mutually exclusive
access to data to ensure correct operation. A concurrent data structure, on the
other hand, avoids this source of slowdown, by minimizing or eliminating the
requirement for mutual exclusion and the associated wait time. In this paper we
propose a concurrent data structure, and associated algorithms, for fast exact
nearest neighbor searching that is geared towards robotics applications.
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The proposed nearest neighbor data structure is based on a kd-tree [5], and
thus it provides for fast insert and search operations on metric spaces important
to many robotics applications—including Minkowski spaces (a common exam-
ple being Euclidean), SO(3) [11], and Cartesian products thereof [20]. In the
proposed data structure, as with kd-trees, branching nodes partition space into
spatially separated sub-trees. Fast insertion of a new point (e.g., a robot con-
figuration for a sampling-based motion planner) into the data structure comes
from the ability to quickly traverse the partitions to an insertion point. Fast
searches for a set of nearest neighbors to a query point come from the ability to
use the partitions to confine traversal to a spatially relevant portion of the tree.
With minor modifications to the searching algorithm, searches can also produce
nearest neighbor sets that are bounded in cardinality or bounded to be within
a radius from the query point.

The data structure we propose supports provably correct concurrent opera-
tions. This is in contrast to the traditional approach to kd-trees, in which con-
current operation without mutual exclusion leads to data structure corruption.
Corruption occurs when concurrent operations interleave mutations that invali-
date the computations of each other. The problem is only exacerbated by modern
compilers and CPUs as they often automatically and unpredictably change the
order of memory accesses to improve the performance of non-concurrent opera-
tions. For example, if one operation writes to memory location ‘A’ and then to
‘B’, a concurrent operation may see the change to ‘B’ before it sees the change
to ‘A’. While the reordered memory writes do not affect the correctness of the
operation in which they occur, they may become problematic for the correctness
of an operation running concurrently. An effective way to prevent corruption
caused by interleaved mutations and reordering of memory writes, is to only
allow one insert operation to happen at any moment in time by using a mutual
exclusion locking mechanism. But, by definition, locking prevents concurrent op-
erations, and thus all but one attempted concurrent insert operation will spend
time waiting. When an algorithm spends time waiting instead of computing, it
effectively slows down. To avoid this slowdown, the data structure we propose
supports concurrent wait-free queries, and it also supports inserts that wait with
asymptotic probability of zero.

In this paper we improve upon the performance of the concurrent nearest
neighbor data structure that we introduced in prior work [10]. In that work, a
lock-free kd-tree provided wait-free queries and lock-free inserts. The fast lock-
free inserts of that approach reduced the likelihood of insert waiting, but come
at the expense of increased search times due to imbalances in the resulting tree.
In this paper, insert operations produce a more balanced tree resulting in faster
queries, and we provide proofs of correct operation and the low probability of
waits.

We embed the proposed method in a parallelized sampling-based motion
planning algorithm to demonstrate its performance and ability to operate un-
der concurrency on a 32-core computer. The improvements proposed in this
paper double nearest-neighbor search performance when compared to our prior
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lock-free nearest neighbor search data structure, and lead to up to 30% faster
convergence rates of the motion planner. Sampling-based motion planners par-
allelize well [1], but as the results show, contention over exclusive access to a
non-concurrent nearest neighbor data structures can slow them down signifi-
cantly. The concurrent data structure we propose allows the parallelized motion
planner to find solutions and converge faster by generating orders of magnitude
more samples when compared to locked data structures.

2 Related Work

Our proposed nearest neighbor searching approach loosely follows that of a kd-
tree [5, 9, 19]. A kd-tree is a space-partitioning binary tree that splits branching
nodes along axis-aligned hyperplanes in Rn. When splitting hyperplanes occur at
the median of values in the subtrees, it creates perfectly balanced trees. However,
as originally proposed, kd-trees are limited to Rn with a Minkowski metric.

Yershova et.al. [20] extended the metric spaces supported by kd-trees to in-
clude SO(2), SO(3), and cartesian products thereof and with Rn. The SO(3)
partitions of this approach are along axis-aligned hyperplanes in Rn. Our prior
work [11] proposes partitioning SO(3) using hyperplanes that wrap around the
3-sphere manifold obtained from a quaternion representation of SO(3) rotations.
While the data structure we propose in this paper works with either SO(3) par-
titioning scheme, we expand upon the latter to address special handling required
when inserting values under concurrency.

Generalized nearest-neighbor approaches, such as the Geometric Near-neighbor
Access Tree (GNAT) [6] only require a well-behaved metric and thus support a
broader set of topologies than kd-trees. The generalized nature of such structures
does not take advantage of knowlege of the underlying topology as kd-trees do,
and thus may not be as efficient as kd-trees. Additional work is also required to
make such structures support concurrent and wait-free operations.

Approximate nearest neighbor searching approaches gain search efficiency
by sacrificing accuracy. Methods include locality sensitive hashing (LSH) [2] and
randomized kd-trees [18]. Our focus is on exact nearest neighbor searching as
the proofs of many sampling-based motion planners’ asymptotic feasibility (e.g.,
RRT [16]) and asymptotic optimality (e.g., RRT* [13]) implicitly rely on the
nearest neighbor structure being exact. However, if the trade-off of accuracy for
speed is appropriate, methods such as those proposed by Arya et al. [3] and Beis
et al. [4] shorten the kd-tree search process producing approximate results faster.
We believe similar methods could be readily applied to our proposed method to
allow for approximate nearest neighbor searching under concurrency.

Concurrent data structures, such as the binary tree proposed by Kung and
Lehman [15], allow correct operation while avoiding contention by having threads
lock only the node that they are manipulating. In prior work [10], we proposed
a kd-tree that allows concurrent modification and searching while avoiding con-
tention through the use of a lock-free atomic update. When inserting into this
kd-tree, the algorithm makes partitioning choices at the leaf of the kd-tree based
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upon the bounds of the region and/or the value in the leaf. Empirically this
approach works well for the random insertion order of the associated sampling-
based planner. However, better search performance is possible with a balanced
kd-tree as would be created by median splits. To better approximate median
splits in this work, we incorporate the approach described by Sherlock et al. [17]
that accumulates a predetermined number of values into leaves before performing
a median split on the values within the leaf.

3 Problem Definition

The problem definition is stated in two key parts: (1) correct concurrent opera-
tion, and (2) nearest neighbor searching.

Correct Concurrent Operation requires that memory writes of one operation
must not adversely affect the memory reads or writes of a concurrent operation,
while minimizing the time concurrent operations wait on each other. Once an
operation running on a CPU core inserts a point into the data structure, the
inserted point will eventually be reachable to all other cores. Once an operation
running on a CPU core reaches a point in the data structure, all subsequent
operations on that core must continue to reach the point.

Nearest Neighbor Searching finds all the nearest neighbors of a query point.
Let C be a topological space which is composed of the Cartesian product of one
or more sub-topologies in Rn and SO(3). Let q ∈ C be a single configuration
in the topological space with components from each sub-topology, e.g., q =
{pi, . . . , rj , . . .} , with pi ∈ Rni and rj ∈ S3 for each i and j. Each SO(3)
component is specified using the coefficients of a unit quaternion representing a
rotation in 3D space [14].

Let d(q1,q2) be the distance between two configurations, such that it is the
weighted sum of the distances of each sub-topology’s component:

d(qa,qb) =
∑
i

αid
p
Rn(pai ,pbi) +

∑
j

αjdSO(3)(raj , rbj ),

where αi and αj are positive real weight values, dpRn(·, ·) is an Lp distance metric
on Rn, and dSO(3)(·, ·) is the length of the shorter of the two angles subtended
along the great arc. Thus:

dpRn(pa,pb) =
( n∑

i

|pa,i − pb,i|p
)1/p

dSO(3)(ra, rb) = cos−1|ra · rb|.

If appropriate to the application, a similar effect to weighting the distance metric
can also be obtained by scaling the Rn coefficients instead.

Given a set Q = {q1,q2, . . . ,qn} where qi ∈ C, and a query point qsearch ∈ C
for some topological space C, the objective of k-nearest neighbors search, is to
find the set N ⊆ Q, such that |N| = min (k, |Q|), and:

max
qi∈N

d (qi,qsearch) ≤ min
qj∈Q\N

d (qj ,qsearch) ,
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Fig. 1. Lower-dimensional analog of SO(3) partitioning scheme [11]. In SO(3), quater-
nions are partitioned into 4 non-overlapping bounded regions of a 3-sphere, with the
negative axis mapped onto the positive axis due to the double-coverage property. The
2-sphere analog shown here is partitioned into 3 bounded region, with the x-centered
bounded region highlighted in red. Within the bounded region, evenly separated par-
titioning hyperplanes are shown in green for one axis and in blue for the other.

where k is a positive integer. With k = 1 it thus finds the nearest neighbor.

The objective of r-nearest neighbors search, where r is a non-negative real
value, is to find N ⊆ Q, such that:

N = {qi | d (qi ∈ Q,qsearch) ≤ r} .

4 Method

The proposed method is based upon a kd-tree. A kd-tree is a binary tree data
structure in which each branch successively partitions space by an axis-aligned
hyperplane, and the leaf nodes contain the points to search. Searching a kd-tree
for a query point begins at the root of the tree. When the search encounters
a branch, it recurses to the child on the same side of the branch’s splitting
hyperplane as the query point. When the search encounters a leaf, it checks the
distance between the leaf’s point and the query point, and adds the point to the
result set if the distance is small enough. When returning from recursion, the
search then checks the distance between the query point and the closest point
on the splitting hyperplane. If the distance between the points is small enough
to be added to the result set, then the algorithm recurses to search the other
child of the branch.

The partitioning approach for SO(3) [11], requires special handling for the
top-level SO(3) branch (see lower dimensional analog in Fig. 1). Unlike other
branches, this branch partitions space into 4 top-level volumes, one for each of
the four components of a quaternion. (See SO3Root in Fig. 2). Once the algorithm
has partitioned a value to a top-level SO(3) volume, the branches in the subtree
are binary splits—similar to branches in Rn, but with a hyperplane through the
origin and defined by a constrained normal (see [11])
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Node

region : Region

Branch

axis : int
prev : Leaf

Leaf

size : int
values : T[N]

SO3Root

child : Node[4]

RnBranch

split : real
child : Node[2]

SO3Branch

split : vec2d
child : Node[2]

Fig. 2. Diagram of a possible node design needed to implement the proposed data
structure. Each box represents a type of node that can be in the tree, with its name
(top) and its data members (below the separating line). Data members are listed as
name : type. Array types have their capacity listed in square brackets. Nodes inherit
all members from their ancestors (shown with open arrows), thus all node types have
a region data member. The three node types that inherit from Branch include a split
axis and prev pointer to the Leaf node that the branch replaced. The root of an SO(3)
subtree has four children, while the other branch types have a split plane definition
and two children. The Leaf node has a current size, and fixed capacity (N ) array of
values of the type (T ) stored in the data structure.

4.1 Data Storage

In previous work [10], we proposed a lock-free kd-tree that created a new branch
every time a leaf was inserted. That approach has the benefit of making in-
sertions quick and lock-free, but introduces an expense to search performance
from two factors: (1) there is little information from which to choose a splitting
hyperplane, leading to suboptimal tree-balancing, and (2) traversing a branch
is more time consuming than a simple point-to-point distance check of a leaf.
This performance issue is further exacerbated in algorithms that search more
frequently than they insert (e.g., sampling-based motion planning algorithms
such as [16, 13] that reject samples after checking the validity of paths to near-
est neighbors). In the approach proposed herein, we address these two factors to
improve search performance, by batching many points into leaves before split-
ting them into branches [17]. In our implementation, the leaf node’s batch size
is a fixed tunable number of the data structure.

4.2 Inserting Data

Inserting a value into a concurrent batched kd-tree (Alg. 1) starts at the
kd-tree’s root node (line 1) and traverses down the tree until it finds a leaf into
which it will insert the new point. At each level of the tree, the current node is
checked to see if it is a branch or a leaf. Empty trees and children are stored
as leaf nodes with 0 size, and thus do not require special handling. When the
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Algorithm 1 INSERT(T,u)

Require: T is the kd-tree, u is the value to insert
1: p← root of T
2: loop
3: n← load(p)
4: if n is a branch then
5: update n’s region to contain u
6: p← FOLLOW(n,u)
7: else if not try lock(n) then /* n is a leaf */
8: relax CPU
9: else /* acquired lock on n */

10: m← load(n.size)
11: if m < leaf capacity then
12: update n’s region to contain u
13: append u to leaf n
14: store(n.size,m + 1)
15: unlock(n)
16: return
17: c← SPLIT(n,u)
18: store(p, c)

Algorithm 2 FOLLOW(n,u)

Require: n is branch
1: if n is SO(3) root then
2: i← so3 volume index(u)
3: return n.child[i]
4: else if n is SO(3) branch then
5: return n.child[H(u[axis] · n.split)]
6: else if n is Rn branch then
7: return n.child[H(u[axis]− n.split)]

algorithm encounters a branch node (line 4), it updates the branch node’s region
and traverses to the child under which the new value will be inserted. When the
algorithm encounters a leaf it first attempts to lock the leaf (line 7) using a
fast spin locking mechanism such as compare-and-swap (CAS) on a boolean
flag. If the algorithm fails to lock the node, it issues an optional CPU-specific
instruction (line 8) for efficient spin locking, and then it loops to try again. Once
the algorithm successfully acquires the lock, it appends the value to the leaf if
there is room (line 11), or splits the leaf (line 17) otherwise. When appending
to a leaf, the algorithm ensures the new value is fully initialized before updating
the leaf’s size (line 14). The size update is a linearization point for making the
inserted value reachable to other cores. When splitting the leaf, the algorithm
replaces the leaf with the new branch (line 18), and then loops to insert the
value into one of the branch’s children.
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Fig. 3. Steps of splitting a leaf while operating under concurrency. In (a) the INSERT
algorithm traversed to the leaf to add the ‘x’, finds the leaf is full, and thus calls SPLIT
to create a branch. SPLIT partitions the branch along leaf’s horizontal dimension
resulting in the branch shown in (b). After SPLIT returns, INSERT then traverses to
the right side, adds to the leaf, and updates the leafs region (c). During the SPLIT
process, concurrent nearest neighbor searches traverse the old leaf. Once the INSERT
replaces the leaf with the branch, searches will traverse the branch instead.

Algorithm 3 SPLIT(n,u)

Require: n is a Leaf, u is the value to insert
1: axis← best axis(n’s region)
2: if axis is first SO(3) then
3: c← new SO3Root

4: for all v ∈ n.values do
5: i← so3 volume index(v)
6: append v to c.child[i]
7: return r
8: else
9: b0, b1 ← median split(p, axis)

10: split← 1
2
(max(b0.values) + min(b1.values))

11: return new branch with axis, split, b0, b1

Traversing to Insertion Point FOLLOW (Alg. 2) implements the branch
traversal required by the INSERT algorithm. When it encounters an SO(3) root
node, it traverses to the child whose partition contains the sample. When it
encounters an SO(3) branch or an Rn branch, it computes the signed distance
between the point to insert and the splitting hyperplane. The sign of the distance
selects the child using a Heaviside step function H(·) defined as:

H(x) =

{
0, x < 0

1, x ≥ 0.

Splitting Leaf Nodes When inserting into a full leaf, the INSERT algorithm
uses SPLIT (Alg. 3) to create a branch from the values in the full leaf. For an effi-
cient kd-tree the splitting process will choose a partition that: (1) minimizes the
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maximum distance between points in the resulting subdivision and (2) divides
the values into equal leaf nodes with the same number of elements (median split).
To that end, the SPLIT algorithm first selects the best axis for partitioning as
the one with the greatest extent between region bounds of the leaf. The region
bounds are maintained by INSERT. For Rn axes, the extent is the difference
between the minimum and maximum along each dimension of the bounds. For
SO(3) root nodes, the extent is π/2. For SO(3) branch nodes, the extent is the
arccosine of the dot product of the minimum and maximum normalized bounds
for the axis [11].

If the selected axis is the SO(3) root, the SPLIT algorithm creates a new
SO3Root branch node, and copies the old leaf’s values into the appropriate
child of the SO3Root (lines 3 to 6). Otherwise, for the remaining axis types,
median split (line 9) partitions the values of the old leaf evenly into two new
leaf nodes (see Fig. 3 (a) and (b)) using an efficient selection algorithm. The
SPLIT algorithm returns with a new branch that is split halfway between the
maximum of one child and the minimum of the other (line 11).

In the presence of concurrency, concurrent nearest neighbor searches will
continue to traverse the old leaf until INSERT atomically replaces the old leaf
with the new branch. This means that INSERT does not know if the old leaf
is being concurrently accessed, and thus cannot release the memory associated
with the leaf without risking a program error. The SPLIT algorithm presented
here stores a reference to the old leaf to allow the memory associated with the
leaf to be safely deallocated later.

4.3 Searching Operations

NEAREST (Alg. 4) implements k-nearest neighbor (with k as appropriate
and r =∞) and r-nearest neighbor (with k =∞ and r as appropriate) searches.
Traversal for searching for a nearest neighbor is similar to that of FOLLOW.
The primary difference is that after searching one child of the branch, NEAR-
EST may need to search the other children of a branch. The algorithms starts
with a pointer n to the root node of the kd-tree, and an empty set N of nearest
neighbors. It terminates recursion if the node’s region (as maintained by IN-
SERT) is too far away from the query point to be added to the nearest neighbor
set. If the node is a leaf (lines 3 to 7), it iterates through each value in the leaf,
updating the N as appropriate. Here it first loads the node’s size, ensuring that
it will only visit consistent values in the leaf based upon the linearization point
in INSERT.

When traversing an SO3Root node, NEAREST navigates the search key’s
SO(3) axis-major volume first (lines 9 and 10). It then searches the remaining
volumes in an arbitrary order (lines 11 to 12).

When traversing an SO3Branch node or RnBranch node (lines 15 to 19),
the algorithm first traverses a child in the same order as FOLLOW does. After
returning from recursion on that child, it then traverses the other child. By
recursing on the closer child first, updates to N will cause the traversal on the
farther child to terminate quickly on line 1.
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Algorithm 4 NEAREST(N,n,q, k, r)

Require: N is the set of nearest neighbor result so far, n is a pointer to the current
node, q is the query, k is the maximum |N | to return, r is the maximum radius

1: if |N | < k or dist(n.region,q) ≤ min(r,maxN) then
2: if n is leaf then
3: for all i ∈ {0, . . . load(n.size)} do
4: if |N | < k or dist(n.values[i],q) < min(r,maxN) then
5: if |N | = k then
6: N ← N \ (maxN)
7: N ← N ∪ n.values[i]
8: else if n is SO(3) root then
9: i← so3 volume index(q)

10: N ← NEAREST(N, load(n.child[i]),q, k, r)
11: for all v ∈ {0, 1, 2, 3} \ i do
12: N ← NEAREST(N, load(n.child[v]),q, k, r)
13: else
14: if n is SO(3) branch then
15: c← H(q · n.split)
16: else /* n is Rn branch */
17: c← H(q[axis]− n.split)
18: N ← NEAREST(N, load(n.child[c]),q, k, r)
19: N ← NEAREST(N, load(n.child[1− c]),q, k, r)
20: return N

5 Correctness and Analysis

In this section we prove that NEAREST is wait-free and correct with concur-
rent INSERTS (lemma 2), and provide analysis on the probability that INSERT
waits (lemma 4). Correct operation relies upon linearizable operations which
appear to occur instantaneously at a linearization point from the perspective
of concurrent operations. Thus, before the linearization point, the linearizable
operation has not occurred, and after the linearization point, the operation has
occurred—there is no intermediate point in which the operation partially occurs.
We prove that INSERT is linearizable (lemma 1) and that once a value is reach-
able it remains reachable (lemma 3). The following proofs depend upon release
and acquire ordering semantics where noted in the algorithms. These semantics
ensure that all memory writes that happen before the release-ordered store (via
store(a, ·)) become visible side-effects of an acquire-ordered load (via load(a)).
Implementations must explicitly ensure this ordering.

Lemma 1. The INSERT operation is linearizable.

Proof. INSERT can modify a leaf in one of two ways: (1) by appending a value to
a leaf, or (2) splitting the leaf into a branch. As such, there are two linearization
point cases to make INSERT linearizable.

Case (1): INSERTs do not store new values until they have exclusive write
access to a leaf, and thus no two INSERT operations will concurrently store
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a value into the same leaf. INSERT stores the new value one past the leaf’s
size limit before incrementing the size with a release-order store. Concurrent
operations do not read values in a leaf past the leaf’s size limit, thus storing the
incremented size is the linearization point for this case.

Case (2): INSERT splits a leaf by replacing it with a new branch node with
children populated from the values from the leaf. As INSERT locks the leaf
before populating the branch’s children, the same values will be present in both
leaf and branch. INSERT replaces the pointer to the leaf with the pointer to the
branch using a release-order store. Since concurrent operations will either load
a pointer to the leaf before the store, or to the branch after the store, the store
is the linearization point for this case.

Both cases have linearization points, and thus INSERT is linearizable. ut

In case (2), unlike case (1), the leaf is not (necessarily) unlocked, as concur-
rent INSERT operations waiting for the leaf will load the new branch after the
linearization point, and recurse to operate on a child of the new branch.

Lemma 2. The NEAREST operation is wait-free, and concurrent INSERT op-
erations do not cause incorrect operation.

Proof. The NEAREST operation contains no blocking waits or retry loops, and
thus will not wait on other operations. Correct operation under concurrency
results from the two linearization points of NEAREST.

In case (1), when NEAREST visits a leaf, it first performs an acquire-order
load of the leaf’s size before iterating through the values in the leaf. As incre-
menting the size is the linearization point, NEAREST will only iterate through
values in the leaf stored before the linearization point, and thus it will only
traverse consistent data.

In case (2), when NEAREST recurses to search a child of a branch, it per-
forms an acquire-order load of a pointer to the child. NEAREST will either load
the pointer before or after the corresponding linearization point of INSERT. If
NEAREST loads the child before the linearization point, it will recurse to visit
the leaf. If NEAREST loads the child after the linearization point, it will recurse
to visit the branch. All nodes remain valid once reached, including leaf nodes
that have been replaced by branch nodes, thus NEAREST will operate correctly
under concurrency. ut

Lemma 3. Once a value is reachable by NEAREST, the value will remain reach-
able to all subsequent NEAREST operations.

Proof. A value is first reachable after linearization point case (1) of INSERT. The
leaf in which the value resides remains reachable until linearization point case
(2) of INSERT. After the linearization point case (2), all values from the original
leaf reside in the child nodes of the branch that replaced the original leaf. The
originally reachable value thus remains reachable before and after linearization
point case (2), and the value will thus always remain reachable to subsequent
NEAREST operations. ut
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Lemma 4. With uniform random insertion, an INSERT operation waits, or
causes a wait, with probability (1 − ((n − 1)/n)p−1), where p is the number of
concurrent INSERT operations and n is the number of leaf nodes in the tree.
INSERT asymptotically almost surely does not wait.

Proof. An INSERT will loop, and thus effectively wait on line 7, if a concur-
rent INSERT had a successful try lock on the same leaf. Leaf nodes represent
a bounded subregion of the space with uniform distribution. We cast this as
the generalized birthday problem, and follow its derivation. Let P (An) be the
probability that an INSERT concurrently updates a leaf of the same bounded
subregion as any of the other (p− 1) concurrent INSERTs. This is equivalent to
1− P (A′n), where P (A′n) is the probability that no other INSERT concurrently
updates the same bounded region. We compute P (A′n) as the joint probability
that (p− 1) INSERT operations are updating different regions. Thus,

P (An) = 1− P (A′n) = 1−
(
n− 1

n

)p−1

.

It follows that limn→∞ P (A′n) = 1, and thus INSERT asymptotically almost
surely does not wait. ut

6 Results

We evaluate the proposed data structure by embedding it in PRRT* [10], a lock-
free parallelized asymptotically optimal sampling-based motion planner. The
data structure and planner implementations use the standard C++ atomic li-
brary [12] for memory operations that require release and acquire semantics.
PRRT* uses the proposed data structure for concurrent insert, nearest, and k-
nearest operations. We have PRRT* compute motion plans in two SE(3) rigid-
body scenarios from OMPL [8] on a computer with four Intel x7550 2.0-GHz
8-core Nehalem-EX processors, using all 32 cores.

The experiments compare both concurrent and locked nearest neighbor data
structures to show the benefit of using data structures designed for concurrency.
Locking on the data structure makes use of an efficient reader/writer lock, un-
der the observation that insertions are relatively fast and infrequent compared
to time spent nearest neighbor searching. Thus the locked version of the data
structure is exclusively write-locked when inserting, and shared read-locked when
searching. This prevents searches from traversing an inconsistent data structure
that would result from partial mutations and reordered memory writes of a con-
current insert. It also allows multiple concurrent searches that only block when
there is a concurrent insert.

We compare our proposed method to the linear (brute-force) implementation
included in OMPL, the GNAT implementation included in OMPL, the dynam-
ically rebalanced median-split kd-tree from prior work [11], and the original
lock-free kd-trees in PRRT*. The OMPL methods and the median-split kd-tree
method are read/write locked. The concurrent methods are also evaluated in
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Fig. 4. The proposed data structure speeds up parallelized motion planning in the
“Home” SE(3) scenario from OMPL. In this scenario, the motion planner finds a
path for the red table to move from the lower right to the upper right configuration.
The graph in (a) shows the time in milliseconds spent performing nearest neighbor
operations (insert, nearest, and k-nearest) relative to the size of the nearest neigh-
bor structure. To illustrate relative impact on overall planner performance, the graph
also shows the time spent in collision detection, which is typically the other domi-
nant time consumer in sampling-based motion planners. For the locked versions of the
nearest-neighbor structures, the time spent waiting for the lock is shown in the shaded
area—the lower boundary of the region is the time spent performing a nearest neig-
bor operation, and the height of the region is the time the planner must wait for the
nearest neighbor operation including the lock. Locked structures (dotted lines) become
prohibitively expensive to benchmark past a graph size of 105. With the concurrent
data structures (solid lines) the total wall-clock time to generate a data structure with
106 points averaged between 1 and 2 minutes. The graph in (b) shows the average path
cost relative to the estimated optimal path cost as it converges over wall-clock time.
The graph in (c) shows the time relative to the proposed method to compute the same
solution cost—the proposed method finds the same solution 10% to 30% faster than
previous lock-free methods.
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Fig. 5. Speeding up planning on OMPL’s“Cubicles” scenario. See description in Fig. 4.

locked form. The implementations of the locked versions of the kd-trees do not
make use of memory-ordering operations, and thus run slightly faster in the ab-
sence of concurrency. In all experiments, the leaf nodes of the proposed method
are configured to have a capacity of 8.

Figures 4 and 5 show two evaluated scenarios involving motion planning for
a robot in SE(3). In both scenarios the motion planner must find, and asymp-
totically optimize, a path for a rigid body robot through a 3D environment. The
topological space for nearest neighbor searching is thus R3 × SO(3). We set the
SO(3) distance scale factor to αSO(3) = 100, and leave the αR3 = 1 (the default).
The R3 space extends for hundreds of units, so this makes the two sub-topologies
approximately evenly weighted. This weighting has two effects: (1) it makes ro-
tations more expensive, thus as the motion planner converges, the robot rotates
less freely than otherwise, and (2) it ensures that the kd-tree splits both R3 and
SO(3) axes.

The figures 4(a) and 5(a) show the time spent in nearest neighbor operations
(both inserts and searches) per sampling iteration based upon the size of the
PRRT* graph (which is equivalent to the number of points in the nearest neigh-
bor data structure). These graphs show both the time spent searching (bottom
line of shaded regions) and the time spent waiting on a lock (shaded regions).
We generate a data structure sizes up to 105 with the locked versions, stopping
then because it becomes too time consuming to continue to the next order of



Concurrent Nearest-Neighbor Searching 15

magnitude. The concurrent versions of the kd-tree continue to 1 million. In both
graphs we observe that our proposed method performs better than alternatives,
even under high concurrency, with roughly half the time (the graph is log scaled)
spent compared to the best alternatives.

To demonstrate the relative impact on the motion planner, the graph in-
cludes the time spent in collision detection—which typically is the other most
time consuming part of a sampling-based motion planner. From the graphs, we
observe the time spent in collision detection shrinks as its computation time is
a function of shrinking expected distance between random samples. We observe
that nearest neighbor operations eventually dominate the per-iteration time.

The figures 4(b) and 5(b) show the overall effect on convergence rate of the
asymptotically-optimal sampling-based planner. Due to the acceleration of each
iteration, the motion planner is able to find lower-cost paths faster. The alternate
presentation of the same data in 4(c) and 5(c), shows that the proposed method
results in approximately 20% to 30% faster convergence of PRRT*.

7 Conclusion

This paper proposes and evaluates an exact nearest neighbor data structure that
handles concurrent inserts and queries. Based on a kd-tree, the proposed data
structure supports searching nearest neighbors on topologies relevant to robotics.
The paper described how to support Cartesian products of an arbitrary number
of Euclidean and SO(3) spaces with a distance metric that is the weighted sum
of sub-topology components within the concurrent data structure.

In evaluation, a parallelized asymptotically-optimal sampling-based motion
planner used the proposed data structure to accelerate motion planning. The
proposed data structure enabled higher performance than the motion planner’s
default lock-free kd-tree. Furthermore, the faster performance relative to the
lock-based alternatives demonstrates the importance of having a concurrent data
structure in parallel processing algorithms such as sampling-based motion plan-
ning that depend heavily on nearest-neighbor searching.

In future work, we plan to explore using the proposed data structure with
approximate nearest neighbor searching while maintaining its design for concur-
rency. Observing that the batching approach contributes significantly to perfor-
mance, we also plan on exploring tuning the batch-size parameter. The batch-size
might be optimized based upon static configuration, such as the topology; or on
dynamic data, such as the leaf node’s position in the tree and region in space.
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