
Multilevel Incremental Roadmap Spanners
for Reactive Motion Planning

Jeffrey Ichnowski1 and Ron Alterovitz1

Abstract— Generating robot motions from a precomputed
graph has proven to be an effective approach to solving many
motion planning problems. After their generation, roadmaps
reduce complex motion planning problems to that of solving
a graph-based shortest path. However, generating the graph
can involve tradeoffs, such as how sparse or dense to make
the graph. Sparse graphs may not provide enough options
to navigate around a new obstacle or may result in grossly
suboptimal motions. Dense graphs may take too long to search
and result in an unresponsive robot. In this paper we present an
algorithm that generates a graph with multiple sparse levels—
the sparsest level can be searched quickly, while the densest
level allows for asymptotically optimal motions. With the paired
multilevel shortest path algorithm, after the robot computes an
initial solution, it can then incrementally refine the shortest-path
as time allows. We demonstrate the algorithms on an articulated
robot with 8 degrees of freedom, having them compute an initial
solution in a fraction of the time required for a full graph
search, and subsequently, incrementally refine the solution to
the optimal shortest path from the densest level of the graph.

I. INTRODUCTION

For robots to take on tasks in our everyday lives, they must
be able to rapidly compute motions that avoid obstacles and
lead to a goal configuration. These motions are often sub-
ject to additional constraints based upon the robot’s design
or the task at hand. Unfortunately, computing an optimal
plan of constrained obstacle-free motions is computationally
complex [1] in the general case, with complexity increasing
exponentially with the robot’s degrees of freedom. This
complexity, combined with the desire to operate the robot
in an environment that has moving obstacles, motivates the
development of algorithms that either pre-compute a graph
(or roadmap) of motions [2] or that can compute motions that
approximate solutions rapidly. However, even when using
methods that precompute a graph of feasible motions, the
robot must be able to compute the shortest path on the
graph fast enough to avoid moving obstacles, and ideally
with a time-bounded worst-case execution time to allow
for safe operation. In this paper, we present algorithms for
this two-phase approach. The first algorithm pre-computes
a multilevel sparse graph of motion (Fig. 1) that, when
paired with the second algorithm, a multilevel graph search
algorithm, allows a robot to rapidly find an initial path and
subsequently use additional compute time to incrementally
refine it to an increasingly better path.

To facilitate rapid online computation of motions, graph-
based planning algorithms, such as the Probabilistic Road-

1Jeffrey Ichnowski and Ron Alterovitz are with the Department of
Computer Science, University of North Carolina, Chapel Hill, NC 27599,
USA {jeffi,ron}@cs.unc.edu

G3 = (V,E3)

|τ0|+ 5%

G2 = (V,E2 ∪ E3)

|τ0|+ 2%

G1 = (V,E1 ∪ E2 ∪ E3)

|τ0|+ 0.3%

G0 = (V,E0 ∪ E1 ∪ E2 ∪ E3)

path = τ0

Fig. 1. Robots can use multilevel spare roadmaps to rapidly compute an
initial path to a goal, and subsequently, incrementally refine that path to
be shorter and shorter. In this example, a holonomic 2D disc robot uses a
roadmap to compute a path along the floor while avoiding obstacles such
as tables and chairs. Using the sparsest roadmap (top/green), the robot can
quickly compute an initial path, and thus minimize the delay before it starts
moving or before it reacts to an obstacle blocking part of the roadmap. After
computing the initial path, the robot uses the increasingly dense roadmaps
(from top to bottom/blue), to incrementally compute a shorter path to follow.
The multilevel sparse roadmap graph has a single set of vertices and multiple
sets of increasingly dense edges connecting the vertices. In this depiction,
the graph has 4 levels of sparsity, with the sparsest graph G3 at the top
and the densest graph G0 at the bottom. The sparse graph results in an
initial path τ3 that is longer by a small percentage than the optimal path in
the dense graph. The algorithm then incrementally improves the path using
edges from the increasingly dense graph levels, until it finds the optimal
route in the densest graph. Each level increases the graph’s edge count by
an approximately equal number of edges (|E0| ≈ |E1| ≈ |E2| ≈ |E3|)—
a property of the sparse graph generation algorithm. This paper presents
algorithms to both generate the multilevel sparse graph and incrementally
search it.

Map (PRM) [2], RRG [3], and the algorithms presented here,
pre-compute a graph of motions that the robot can later
use to navigate an environment to accomplish a task. In
the graph, vertices represent viable robot configurations, and
edges represent viable motions between two configurations.
A robot uses this graph to find a path from the robot’s
current configuration to a goal configuration by computing
a graph-based shortest-path algorithm such as Djikstra’s or
A*. With these two-phase graph-based algorithms, much of
the computational complexity of motion planning ideally
goes into pre-computing the graph, allowing for fast online

computation of motions.
A robot that operates in dynamic environments, ones in

which obstacles change or move over time, must continually
react to changes to avoid collisions. Reactivity comes from
the robot sensing changes to its environment, planning
motions that take into account the sensed changes, and
then moving according to the updated plan. This sense-
plan-move loop is typically computationally-bounded by
the computational complexity of planning—thus in graph-
based algorithms, computing the shortest path is one of the
critical algorithms that must be re-executed every time a new
plan must be computed. When computing the shortest path
is slow, the robot cannot react quickly to changes in the
environment, and thus, at best, moves suboptimally, and at
worst, collides with an obstacle. Thus, for reactivity in a
dynamic environment, planning must be fast. With graph-
based shortest-path algorithms, computational complexity is
dominated by the branching factor of the graph—the more
edges per vertex, the slower the shortest-path computation.
To allow for fast shortest-path computation, the algorithm
presented here generates a multilevel graph in which each
level adds more edges to the graph, and the sparsest graph
allows for the rapid online computation of shortest paths.

When a robot operates in a safety-critical environment,
that is, when delays in planning can result in harm to a
human, planning must not only be fast but must have an
analytically bounded worst-case computation time. It can be
the case that planning in the average or expected case is fast,
but is (extremely) slow in some cases—and unfortunately,
such cases can occur when a collision is imminent. One of
the benefits of our proposed method is that the sparsest level
of the graph can be analytically bounded to produce a worst-
case computation time that is appropriate for safety-critical
operation.

While worst-case bounds on computation time are benefi-
cial for guarantees on reactivity and safety, the expected or
average case for graph search can often be much faster—
meaning that the robot could compute a better path with
a denser graph. Using a variant of Djikstra’s shortest-path
algorithm, the algorithms presented here allow the robot to
perform an online incremental refinement of its path as time
allows.

This refinement is further enhanced by the asymptotic
optimality of the graph generation algorithm presented.
Asymptotic optimality means that given enough computation
time, the graph will be optimal according to a cost function,
with probability 1. While an infinite graph is inappropriate
for fast online computation, this convergence property is
useful in ensuring that creating larger graphs, and later
searching graphs, will result in shorter paths.

II. RELATED WORK

Kavraki et. al proposed Probabilistic Road-Maps
(PRM) [2] as a sampling-based method to generate a graph
of motions for robots with high-dimensional configuration
spaces. This approach has proven effective at generating
solutions to complex motion planning problems. Karaman

and Frazzoli proposed kPRM* as an asymptotically-optimal
variant of PRM, that with enough computation time,
produces an optimal graph with probability 1. In the same
work, they also propose an incrementally constructed variant
of kPRM* called RRG [3].

Marble and Bekris introduced the Incremental Roadmap
Spanner (IRS) [4] planning algorithm that follows the outline
of kPRM* and RRG, but only includes a subset of edges,
thus producing a sparse graph. The sparse graph has an
asymptotic near-optimal guarantee, but with fewer edges
in the graph, it allows for faster graph-based shortest path
computation. Dobson and Bekris extend this work to building
sparse roadmaps by using additional criteria to leave out parts
of the graph [5].

In our previous work [6], a cloud-based computer com-
puted a parallelized version of IRS that also kept the under-
lying dense RRG graph. This graph allows the cloud-based
algorithm to selectively send both sparse and portions of the
dense graphs based upon the robot’s progress through a task.
In this paper, we extend beyond the two-levels of the graph
in both IRS and prior work to an arbitrary number of levels.

Several algorithms allow for the rapid initial computation
of a graph-based shortest path and subsequent refinement.
A*, a heuristic-enhanced shortest path algorithm serves as the
basis for Anytime Repairing A* (ARA*) [7]. ARA* uses an
inadmissible heuristic that finds an initial solution rapidly,
and in subsequent iterations, refines the heuristic and thus
solution, until it produces a graph-based optimal solution
with an admissible heuristic.

D* [8] and a subsequent algorithmic simplification in D*-
lite [9] compute a graph-based shortest path and keep around
information for a subsequent search. In a subsequent search,
after edge weights change on the graph, D* and D*-lite can
reuse information from the previous search to speed up their
subsequent refinement. Anytime Dynamic A* [10] builds
upon D* and ARA* by continually improving a solution
while computation time allows.

Hierarchical motion planners speed up planning on large
or complex problems by breaking the motion planning
problem down into a hierarchy of problems using a va-
riety of approaches. Cowlagi et al. [11] propose wavelet
decomposition, Hwang et al. [12] propose a mesh-based
simplification, and Multi-Scale LPA* [13] searches a regular
grid hierarchy. These approaches often require the planning
problem to have a prescribed structure to the problem (e.g.,
Rn configurations), whereas the planner proposed herein
can be applied to the same broad class of problems as
kPRM* and RRG. Other hierarchical motion planners, such
as PRM-RL [14], use a hierarchy of different planners to
address different problems (e.g., PRM for planning and
reinforcement learning for sensing and actuation variance).

III. PROBLEM STATEMENT

Let q ∈ C be a vector that represent the complete config-
uration of a robot (e.g, joint angles, position and orientation
in space, etc.), where C is the set of all configurations.
Let Cobs ⊂ C be the set of configurations that are invalid

e.g., due to obstacles or task- or robot-based constraint
violations. The set Cfree = C \ Cobs is thus the set of valid
or obstacle-free configurations. Let Cgoal ⊆ Cfree be the set
of goal configurations. Let L(·;qa,qb) : [0, 1] → C be a
problem-specific local planner that computes a trajectory
interpolated over [0, 1] as parameterized by configurations
qa and qb, with L(0;qa,qb) = qa and L(1;qa,qb) = qb.
The objective of motion planning is to compute a path
τ = {q0,q1, . . . ,qn} such that q0 is the robot’s initial or
current configuration, L(t;qi,qi+1) ∈ Cfree for all i ∈ [0, n)
and t ∈ [0, 1], and qn ∈ Cgoal.

Let G = (V,E) be a graph, such that V ⊂ Cfree
is the set of vertices and E is the set of edges, where
L(t;qu,qv) ∈ Cfree for all (qu,qv) ∈ E and t ∈ [0, 1].
When an asymptotically-optimal roadmap motion planner
adds additional vertices and edges in G, the lengths of
the shortest paths in G remain unchanged or shrink. The
objective of a reactive graph-based motion planner is to
make the worst-case shortest-path computation fast enough
to guarantee a computation within a specified time bound.
The objective of the multilevel sparse roadmap algorithms
here is to generate an asymptotically-optimal roadmap that
allows for reactive motion planning.

IV. METHOD

The objective of the multilevel sparse roadmap algorithm
is to generate a graph that may be used later to plan valid
motions for a robot. The vertices in the graph represent valid
robot configurations and the edges represent valid trajectories
between two vertices. The roadmap generation algorithm in
Sec. IV-A generates multiple levels of increasingly dense
graphs, each of which shares the same set of vertices,
and each level has an increasing number of edges. After
generating the roadmap, a robot can follow the shortest valid
path on the graph to accomplish a task, by incrementally
refining its path using the increasingly dense levels of the
graph as outlined in Sec. IV-C.

A. Multilevel Sparse Roadmap Generation

In this section we describe the form and generation of the
multilevel sparse roadmap.

The multilevel sparse roadmap algorithm generates a graph
of the form G = (V, (EL, EL−1, . . . , E0)), in which V is a
set of valid robot configurations, and Ei for i ∈ [0, L] are the
sets of valid trajectories between vertex pairs (as computed
by the local planner), and L is a configurable parameter that
defines the number of sparse graphs to generate in addition
to the dense graph. The subscript on E is the sparsity level,
where EL is the set of edges of the sparsest graph, and
EL ∪ EL−1 ∪ . . . ∪ E0 is the set of edges of the densest
graph. Note that by construction, each increasingly dense
level is a superset of less sparse levels.

Algorithm 1 outlines the generation of the multilevel
sparse roadmap. It starts by initializing an empty graph in
line 1. While the presented algorithm starts with an empty
set of vertices, in practice it may be desirable to initialize
the graph with a single start configuration. Adding more

Algorithm 1 MultilevelSparseRoadmap(L)
Require: L ∈ Z+ is the number of sparse graph levels to

generate
1: G = (V, (EL, EL−1, . . . , E0))← (∅, (∅,∅, . . . ,∅))
2: while not done do
3: qrnd ← random sample
4: if q ∈ Cfree then
5: N ← k-nearest neighbors of qrng using kRRG
6: V ← V ∪ {qrnd}
7: N ′ ← {qi ∈ N : L(t;qrnd,qi) ∈ Cfree ∀t ∈ [0, 1]}
8: mtotal ← |N ′|+

∑L
`=0 |E`|

9: for `← L down to 1 do
10: m` ← min (|N ′|, bmtotal/(`+ 1)c)
11: if ` = L and m` = 0 then
12: m` ← 1
13: mtotal ← mtotal −m`

14: while |E`| < m` do
15: T ← shortest path lengths from qrnd to N ′

16: if maxT =∞ then
17: qn ← argminq:T (q)=∞ distance(qrnd,q)
18: else
19: qn ← argmaxq T (q)
20: E` ← E` ∪ {(qrnd,qn)}
21: N ′ ← N ′ \ {qn}
22: for all qn ∈ N ′ do
23: E0 ← E0 ∪ {(qrnd,qn)}

than one pre-specified configuration to V (e.g., to force
specific waypoints), however, requires that lines 5 to 23 to
be executed for each pre-specified configuration beyond the
first.

Following the patterns of kPRM* and RRG, after initial-
izing the graph, the algorithm repeatedly generates random
samples (line 3) and adds valid samples to the graph,
stopping once a termination criterion is met (line 2). For
the multilevel sparse roadmap, the termination criterion
should be based on the complexity of the sparest graph
reaching the maximum tolerable for maintaining reactivity
when following the roadmap. Since the time to follow the
roadmap is a function of |V | and |EL| this computation may
be a simple polynomial with constants determined by an ap-
propriate analysis tool. Since robots, their tasks, processors,
and algorithm implementations vary widely, determining the
exact termination criteria for a desired level of reactivity is
beyond the scope of this paper.

After generating a valid random sample, the algorithm
then adds the sample to the graph. This process starts by
computing the k-nearest neighbors in V of the random
sample, and then discarding neighbors for which the local
planner does not compute a path in Cfree (line 7). The
value for k in line 5 that ensures asymptotic optimality is:
k ≥ dkRRG log(|V |+1)e, where kRRG = e+e/d, and d is the
dimensionality of C [3]. This follows from kPRM and RRG
algorithms. But whereas kPRM* and RRG would add edges
from the random sample to k neighbors in a single graph,
the multilevel spare roadmap adds edges to all k neighbors

but splits them among L+ 1 graph levels.
There are multiple possible criteria for distributing the can-

didate edges among the L+1 levels of the graph. For brevity,
we present a criterion that results in an even distribution of
edges between levels. Regardless of the distribution, though,
the implementation of the algorithm should ensure that at
least one edge is added to the sparsest graph per vertex so that
the sparsest graph is a connected graph. Also, an edge that
leads to connecting disconnected components of the graph
should be included in the sparsest level of the graph. The
aforementioned criterion is implemented by the loop that
starts on line 9. At each level, it computes a fraction of the
total edges that the level must have to evenly distribute the
edges (lines 10 and 13). The special case of requiring at least
one edge in the sparest graph is handled by the conditional
in line 12.

Once the algorithm determines the desired number of
edges for a level, it then adds one edge at a time to the sparse
edge set of that level in the loop on line 14. It adds edges
according to the criteria of either increasing connectivity
or reducing the longest path to a vertex. To evaluate these
criteria, it computes the shortest path from the random
sample to all remaining candidate edges (line 15). If any
edge cannot be reached, the algorithm will add an edge to the
nearest remaining neighbor that cannot be reached (line 17).
If all remaining neighbors can be reached, the algorithm will
add an edge to the one reachable by the longest path (line 19).
In the first iteration, the random sample is not connected to
the graph, so there will be no shortest path. It should be noted
that this is similar to the Incremental Roadmap Spanner [4],
which instead compares the shortest path to a multiple of the
length of a direct connection.

As the algorithm adds edges to each increasingly dense
level of the roadmap (line 20), it also removes them from
the candidate edge list (line 21). After adding edges to all
the sparse levels it adds any remaining edges to the densest
level E0 in line 23, thus ensuring that the densest graph is
equivalent to the graph generated by RRG.

Once the remaining candidate edges are in the graph, the
algorithm proceeds to the next iteration, repeating the process
and incrementally growing the graph. During the process,
the distribution of edges between the sparsity levels may
vary from the desired distribution due to graph connectivity,
obstacles, and or other motion constraints. However, in the
limit, the proposed algorithm will ensure that the desired
sparsity levels are achieved as it generates and adds more
highly connectable vertices.

B. Asymptotic Optimality of the Roadmap

The multilevel sparse roadmap algorithm presented here
will generate an asymptotically-optimal dense graph. This
follows from the construction of the graph following the
same principles as kPRM and RRG. With the same random
sample sequence, the multilevel sparse roadmap algorithm
presented here will generate the same set of edges as the
asymptotically-optimal RRG.

Algorithm 2 MultilevelShortestPath(qstart,qgoal, G)

Require: qstart ∈ V , qgoal ∈ V ,
G = (V, (EL, . . . , E0)) is a multilevel sparse graph

1: g(qgoal)← 0 // length of the shortest path
2: `current ← L // start at the sparsest level
3: repeat
4: Q← {qgoal}
5: while |Q| 6= 0 and qstart 6= argminq∈Q g(q) do
6: qmin ← argminq∈Q g(q)
7: Q← Q \ {qmin}
8: for `← L down to `current do
9: for all (qmin,q

′) ∈ E` do
10: c← g(qmin) + cost(qmin,q

′)
11: if q′ /∈ Q or c < g(q′) then
12: if valid(qmin,q

′) then
13: Q← Q ∪ {q′}
14: g(q′)← c
15: if significant changes in environment then
16: `current ← L
17: else
18: `current ← `current − 1
19: until `current < 0 or maximum time elapsed

C. Multilevel Sparse Roadmap Shortest Path

The goal of the path-finding algorithm is to find an initial
path in the sparse graph rapidly. This property allows the
robot to react to changes in the environment at a predictable
rate. As computation time allows, either because the compu-
tation time to find the initial solution was better than worst-
case, or because the environment does not change as the
robot moves, the path-finding algorithm will incrementally
improve the solution by using edges from the increasingly
dense graphs.

The algorithm that accomplishes this goal on the multi-
level sparse roadmap is presented in Alg. 2 and is based on
Djikstra’s shortest path algorithm with lazy collision detec-
tion. In this algorithm, the valid(· · ·) method on line 12
checks an edge for collision with a sensed obstacle. (Ideally,
obstacles and constraints known at roadmap generation time
will have been incorporated into the roadmap, and thus not
need to be checked here.) When collision detection is com-
putationally expensive, the implementation of valid(· · ·)
should perform cached lazy evaluation of the collision—that
is, the expensive computation will be performed once per
unique set of arguments, and thus subsequent evaluation is
fast.

The outer loop of the algorithm (re-)evaluates the shortest
path at increasingly dense sparsity levels (`current). The first
iteration only considers edges from the sparsest graph level.
Sparse graphs have fewer edges, and thus the shortest path
algorithm requires fewer computationally expensive calls to
valid in the inner loop (described next). Each time the
outer loop decrements `current, the inner loop has to consider
an increasing number of edges. However, since previous
iterations performed the expensive evaluation of the edges
from the previous sparsity levels, the inner loop will only

need to perform an incremental number of expensive edge
evaluations.

The inner loop of Alg. 2 evaluates the shortest path for
the current sparsity level `current. It operates by maintaining
a priority queue Q of vertices to evaluate, prioritized based
on the shortest path to the vertex. The algorithm initially
populated Q with the single vertex qgoal, since it searches
from the goal to the start. Each iteration of the loop on
line 5, removes the vertex with the shortest path from the
queue and evaluates the paths of its outgoing edges. This
evaluation only considers edges from the current level of the
sparse graph, thus the number of edges will proportionally
increase as the algorithm increases the sparsity level. Any
vertex that has the shortest path through the evaluated edge
will be (re-)queued in the priority queue.

In different applications other shortest path algorithms,
such as A*, and incremental shortest path algorithms, such as
D*-Lite [9], may allow for more efficient operation, e.g., due
to the nature of the sensing and collision detection routines.

V. RESULTS

We evaluate our method’s ability to enable a robot to
quickly compute an initial motion and then incrementally
refine it. For this evaluation, we give a Fetch robot the task of
carrying an open-top container without spilling its contents.
To perform this task, the robot uses its 7-joint articulated arm
and single torso prismatic lift joint, for a total of 8 degrees
of freedom. The robot and example of this task are shown
Fig. 2. We precompute a multilevel sparse roadmap offline. In
this precomputation process, the sampling routine generates
robot configurations (as vertices) that hold the container
upright, and the local planning routine generates trajectories
(as edges) that keep the container upright throughout the
motion. In some cases, the local planner is unable to generate
such a motion (e.g., due to self-collision in the interpolated
path), and the edge is left out of the graph. Using the
precomputed roadmap, we later generate and have the robot
solve random motion planning tasks of varying difficulty
and traversed distance. In these tasks, the robot’s starts at
a random configuration from the graph in which its end
effector lies to the right of the robot and computes a path to
a goal configuration in which its end effector lies to the left
of the robot and above a table (thus no tasks must traverse
purely below the table). The robot uses the multilevel shortest
path algorithm while performing lazy collision detection on
obstacles in its environment.

To evaluate the proposed method’s ability to quickly
generate solutions, we record and plot the time required for a
shortest-path search at each sparsity level over 100 runs, and
compare to the time required to search a fully dense graph
non-incrementally. From the results plotted in Fig. 3, we can
see that each incremental refinement requires a fraction of the
time that the full non-incremental search requires. The time
savings could then be passed along in the form of allowing
the robot to start moving towards its goal sooner.

To demonstrate that the proposed method can incremen-
tally refine the shortest path, we also record the shortest path

length and plot the results in Fig. 4. This plot shows that the
low-quality initial solution is quickly refined in subsequent
iterations by searching the increasingly dense graphs. When
the incremental search reaches the densest graph, it produces
the same shortest path as a full (non-incremental) search
does.

To help visualize the impact of the incrementally refined
shortest path, we plot the joint trajectories for a single
example task in Fig. 5. The initial path computed on the
sparest graphs requires 17.1 seconds to follow. As the mul-
tilevel shortest path algorithm refines the shortest path using
increasingly dense graph levels, the computed trajectory
shortens and smooths out, until it reaches the densest graph
and finds a path requiring 8.4 seconds to follow.

The results described above demonstrate an advantage
over the default approach of creating a single PRM. When
one creates a single PRM, the robot will either have (1) a
shortest-path solver that is too slow due to the graph being
too large or dense (e.g., “full” in Fig. 3), or (2) find paths
of poor quality due to the graph being too small or sparse.

VI. CONCLUSION

In this paper, we presented an algorithm that generates
an asymptotically-optimal roadmap as a graph with multiple
levels of sparse edges We also presented an algorithm that
allows a robot to use the multilevel sparse roadmap to
quickly find an initial shortest path and incrementally refine
it later. When compared to a non-incremental shortest-path
algorithm, the incremental version finds initial solutions
faster, allowing a robot to start moving sooner. Given ad-
ditional compute time, the incremental shortest path finds
shorter and shorter paths until it reaches the densest level—
at which point the path is equivalent to one found by a non-
incremental search of the densest graph. These properties can
allow a robot to react more quickly to changes in its environ-
ment while retaining the ability to generate asymptotically-
optimal shortest paths. We demonstrated this on an 8 degree
of freedom task computed for the Fetch robot.

In future work, we plan to explore varying the number
of edges in each sparse level of the graph, as well as
dynamically selecting the number of sparse levels. These
changes could readily be applied to the presented algorithm
and could allow a robot to select a multilevel sparse roadmap
setup to match robot or problem-specific requirements—e.g.,
how quickly the sparsest levels can be searched, and how
rapidly subsequent refinement shortens the shortest path.

We also plan to explore speeding up the shortest-path
search by integrating it with approaches from other incre-
mental and heuristic graph search algorithms. We believe
these approaches would further extend the benefits of the
proposed multilevel sparse graph. Related to these other
incremental and heuristic-based search algorithms lies the
notion that the robot could start moving before it has had
enough time to refine the shortest path to the optimal one
from the dense graph. In future work, we also plan to
explore incrementally refining the motion after the robot
starts moving on a sub-optimal path from a sparse graph.

Fig. 2. The Fetch robot computes a motion plan that carries a pitcher upright while avoiding obstacles. An offline process generates a multilevel sparse
roadmap in which all vertices and edges represent configurations and motions that avoid self-collision and keep the pitcher upright. The robot can use a
multilevel shortest path algorithm to quickly find motions on the graph and then incrementally refine them. See accompanying video for full motion.

0

5

10

15

20

full0123456789101112131415

co
m

pu
te

tim
e

search graph sparsity level

incremental shortest path
full shortest path

Fig. 3. Shortest-path compute time. The multilevel sparse roadmap
shortest-path algorithm quickly computes the shortest path on a sparse
roadmap and then subsequently refines it. Its initial computation starts
at the sparest level (in this example, 15), then incrementally refines the
path by searching on graphs of increasing density. In contrast, a full
(non-incremental) search on the densest graph (shown on the right) takes
significantly longer time to compute—resulting in long delays before the
robot starts moving.

0
10
20
30
40
50
60

full0123456789101112131415

sh
or

te
st

pa
th

search graph sparsity level

incremental shortest path
full shortest path

Fig. 4. Shortest path length. The multilevel sparse roadmap shortest-path
algorithm initially produces a low-quality path from the sparsest graph, and
then incrementally refines it. When the incremental shortest-path algorithm
reaches the densest level the resulting path is the same as a full (non-
incremental) search on the densest graph.

ACKNOWLEDGEMENTS

This research was supported in part by the U.S. National
Science Foundation (NSF) under Award CCF-1533844.

REFERENCES

[1] J. H. Reif, “Complexity of the Mover’s Problem and Generalizations,”
in 20th Annual IEEE Symp. on Foundations of Computer Science, Oct.
1979, pp. 421–427.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, June 2011.

[4] J. D. Marble and K. E. Bekris, “Asymptotically near optimal planning
with probabilistic roadmap spanners,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 432–444, 2013.

−π
0
π

` = 13

−π
0
π

` = 12an
gl

es

−π
0
π

` = 9jo
in

t

−π
0
π

0 2 4 6 8 10 12 14 16 18
` = 0

time (seconds)

Fig. 5. The shortest-path algorithm computes the shortest path on an
increasingly dense roadmap. In this plot, each line represents the sequence
of angles for a single joint. The combined trajectory avoids obstacles while
keeping the container upright. In the lower right portion of each graph is
the density of the graph that produced the result, with ` = 13 being the
sparsest graph, and ` = 0 being the densest graph. In this example, the
robot computes an initial low-quality trajectory quickly. As it searches on
increasingly dense roadmaps, it can refine the trajectory to be progressively
shorter as shown by the motion being completed at an earlier time, down
from 17 sec at layer 13 to 9 seconds at layer 0.

[5] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymp-
totically near-optimal motion planning,” The International Journal of
Robotics Research, vol. 33, no. 1, pp. 18–47, 2014.

[6] J. Ichnowski, J. Prins, and R. Alterovitz, “Cloud-based motion plan
computation for power-constrained robots,” in Algorthmic Foundations
of Robotics (Proc. WAFR 2016). Springer, 2016.

[7] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in neural information
processing systems, 2004, pp. 767–774.

[8] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in ICRA, vol. 94, 1994, pp. 3310–3317.

[9] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national con-
ference on Artificial intelligence. American Association for Artificial
Intelligence, 2002, pp. 476–483.

[10] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm.” in ICAPS,
2005, pp. 262–271.

[11] R. V. Cowlagi and P. Tsiotras, “Multiresolution motion planning
for autonomous agents via wavelet-based cell decompositions,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 42, no. 5, pp. 1455–1469, 2012.

[12] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path
planning by path graph optimization,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 33, no. 1,
pp. 121–129, 2003.

[13] Y. Lu, X. Huo, O. Arslan, and P. Tsiotras, “Multi-scale LPA* with
low worst-case complexity guarantees,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011, pp. 3507–3512.

[14] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis,
J. Davidson, and L. Tapia, “PRM-RL: long-range robotic navigation
tasks by combining reinforcement learning and sampling-based
planning,” CoRR, vol. abs/1710.03937, 2017. [Online]. Available:
http://arxiv.org/abs/1710.03937

