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Abstract— Continuum Reconfigurable Incisionless Surgical
Parallel (CRISP) robots consist of multiple needle-diameter
flexible instruments that are assembled into a parallel structure
inside the human body. With a camera placed at the tip of one
of the instruments, the CRISP robot can be used to inspect
anatomical sites in constrained body cavities in a minimally
invasive manner. We introduce a motion planner for CRISP
robots that computes manipulations of the flexible instruments
outside the body such that the camera can visually inspect
a user-specified site of clinical interest inside the body. Our
sampling-based motion planner ensures avoidance of collisions
with anatomical obstacles inside the body, enforces remote-
center-of-motion constraints on the instrument’s entry points
into the body, and efficiently handles the expensive computation
of CRISP robot kinematics. We also extend the motion planner
to estimate the set of points inside a body cavity that can be
visually inspected by the camera of a CRISP robot for a given
setup. We demonstrate our method in a simulated endoscopic
medical procedure in the pleural space around a lung.

I. INTRODUCTION

The Continuum Reconfigurable Incisionless Surgical Par-
allel (CRISP) robot [1] is a new type of continuum robot
[2], [3] that consists of multiple needle-diameter flexible
instruments that are assembled together inside a body cav-
ity to perform minimally invasive medical procedures. The
CRISP robot typically includes (1) a flexible instrument
with a working channel through which a tool (e.g., chip-
tip camera, ablation probe, etc.) is passed, and (2) one or
more additional flexible instruments that are inserted into
the body cavity and attach to the first instrument via snares,
creating a strong, parallel kinematic structure (see Fig. 1).
The parallel nature of the structure provides strength to
the robot, enabling the device to apply larger forces during
medical procedures when required. The tool’s tip can be
repositioned and reoriented inside the body by robotically
moving the instruments outside the body in concert.

The CRISP robot is an ideal platform for inspecting and
manipulating tissues on the surface of a pleural effusion,
which is a collection of excess fluid in the pleural space
around the lungs. Pleural effusions can be caused by over
50 different diseases [4]. Accurate diagnosis of the disease
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Fig. 1. An overview of the CRISP robotic system and motion planning
framework. (a) The needle-diameter flexible instruments form a paral-
lel structure inside the body whose shape is modified by actuating the
instruments outside the body. (b) The instruments can be inserted and
rotated to change the view of the camera at the tip. (c) The motion
planner incrementally computes a tree data structure of collision-free robot
configurations, which can be used to manipulate the instruments (shown
in red) outside the body to reposition and reorient the camera tip while
ensuring the instruments avoid anatomical obstacles inside the body.

is critical, as the underlying cause can be deadly and may
have drastically different treatment paths. Thoracoscopy is
the gold standard and involves insertion of endoscopic tools
through the ribs [5]. Endoscopic tools give clinicians direct
visualization of the pleural space. However, thoracoscopy is
invasive: it requires incisions, and major complications are
reported to be as high as 15% [6]. A CRISP robot, with a
chip-tip camera deployed through the tool working channel,
has the potential to combine the minimal invasiveness of
needles with the ability of endoscopic tools to systematically
inspect the interior surface of a patient’s pleural effusion.

We introduce a motion planner for CRISP robots that
manipulates the flexible instruments outside the body such
that the tool tip camera can see a user-specified site of
clinical interest inside the body. The motion planner com-
putes motions such that all the flexible instruments inside
the body avoid collision with anatomical obstacles, including
the chest wall, the lung surface, and potential connections
between the lung and chest wall. The configuration of the
CRISP robot is the position and orientation of the instru-
ments outside the body, and the motion planner computes
a sequence of configurations that avoids collisions with



anatomical obstacles inside the body, enforces remote-center-
of-motion constraints on the tube’s entry points into the body,
and enables visibility of the desired clinical site inside the
body with the tool’s camera. Motion planning for CRISP
robots is challenging because evaluating their kinematics
for each configuration requires modeling the elastic and
torsional interactions of the robot’s constituent tubes, which
is computationally expensive. We introduce a sampling-based
motion planner that efficiently propagates presolved state
information for the kinematic model through a tree data
structure in configuration space to accelerate motion plan
computation.

The set of sites that can be inspected via the camera at
the tool tip of a CRISP robot is heavily influenced by the
robot’s setup, i.e., where on the skin surface the tubes enter
the body and where the snares grasp the tool instrument. We
demonstrate how our motion planner can be used to both
estimate the set of points on the pleural effusion surface
that can be seen by the tool tip camera of a CRISP robot
for a given setup, as well as provide collision free motion
plans for the robot to view the points on the pleural effusion
surface. This analysis can provide physicians with insights
into CRISP robot setups that are appropriate for specific
clinical tasks that require pointing the camera at specific sites
in the pleural effusion.

We demonstrate the speed and effectiveness of our new
motion planner for CRISP robots in simulation using a
pleural effusion segmented from a patient CT scan. We
demonstrate both the method’s ability to plan motions for
the robot to view specific clinically relevant sites as well as
the ability to estimate the set of points that can be seen by
the CRISP robot’s tool tip camera.

II. RELATED WORK

Motion planning for the CRISP robot [1] is influenced by
the way the shape of the robot is calculated. This influence is
not unique to the CRISP robot and is a consideration present
in motion planning for other continuum surgical robots.

One continuum surgical robot with related mechanics is
the concentric tube robot [7]. Concentric tube robots are
needle-like surgical manipulators composed of thin, nested,
pre-curved nitinol tubes. Similar to the mechanics of the
CRISP robot, the tubes of the concentric tube robot elas-
tically interact in different configurations to influence the
robot’s shape. Using various control methods, prior work has
achieved position control of concentric tube robot tips [8],
[9], [10]. Sampling based motion planning has also been
used to control concentric tube robots. Torres et. al. use
a combination of a precomputed roadmap and an inverse
kinematics controller to achieve interactive rate planning for
concentric tube robots [11]. Lyons et. al. apply optimization-
based motion planning using a simplified kinematics model
[12].

Another related medical robotic device for interventional
medical procedures is steerable needles, which are composed
of a highly flexible tube and employ an asymmetric tip to
steer through soft tissue [13]. Motion planning for steerable

needles has been achieved in a variety of ways [14], [15],
[16], including sampling-based motion planning [17], [18],
[19].

Automatically controlling the motion of cameras to view
specific sites can be challenging, as discussed by Christie et
al. [20]. Rosell et al. plan motions of a virtual bronchoscope
to view lesions in the lung through the airway [21] but are
restricted in their motion to the structure of the bronchial tree.
In non-medical applications, probabilistic roadmaps have
been applied to plan camera paths in virtual environments
when given a specified goal position and orientation for the
camera [22]. There has also been work in computer vision
on how to plan new viewpoints for a camera such that object
recognition is optimized [23], [24]. These works primarily
consider how to plan the viewing angles of the camera, while
we primarily focus on motion planning for a medical robot
that contains a camera for purposes of viewing specific sites
in cluttered and constrained spaces.

III. PROBLEM FORMULATION

A. CRISP Robot

We consider a CRISP robot composed of N needle-
diameter tubes. One of these tubes has a chip-tip camera
affixed to its tip which we refer to as the camera tube, Tc. The
remaining N−1 tubes are deployed with snares, and will be
referred to as snare tubes, T k

s , where k is an integer uniquely
identifying a specific snare tube. In order to perform accurate
mechanical modeling, we require as input each tube’s inner
diameter (ID) and outer diameter (OD). We also require a
description of the chip-tip camera, in the form of its angular
field of view, θv .

A CRISP robot’s set of tubes can be assembled into paral-
lel structures inside the patient’s body in an infinite number
of ways. We require as input a description of the CRISP robot
state (illustrated in Fig. 2). We make a distinction between the
CRISP robot’s setup state and the robot’s actuatable state.
We define the CRISP robot’s setup state as:

{rc, r1, . . . , rN−1, s1, . . . , sN−1}, (1)

where r ∈ R3 denotes the tubes’ entry points into the
patient’s body, expressed in a global coordinate system, and
the scalars sk denote the arc length along the camera tube at
which the kth snare tube attaches to the camera tube. The
subscript c denotes a value corresponding to the camera
tube, and an integer k denotes the value corresponding to
the kth snare tube. This setup state is set prior to the
surgical procedure and is not varied during motion execution.
The entry points r remain fixed as remote center of mo-
tion (RCM) constraints, preventing the system’s tubes from
pulling laterally on the patient’s body during maneuvers,
and the snare grasping locations sk remain fixed throughout
the surgical procedure. We then define the CRISP robot’s
actuatable state as:

{Rc, R1, . . . , RN−1, `c, `1, . . . , `N−1}, (2)

where R ∈ SO(3) denotes the tubes’ orientations at their
entry points as expressed in a global coordinate system, and
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Fig. 2. A stiff outer sheath introduces the tubes into the body entry points
rc, r1, and r2. The snares grasp the camera tube at arc lengths s1 and s2.
A mechanics-based model predicts the states of the camera tube xc and the
snare tubes, x1 and x2, in arc length.

the scalars ` describe how far each of the tubes extend
beyond their respective entry points into the body. This
actuatable state represents the robot’s state which will be
varied during the execution of motions during the surgical
procedure. The CRISP robot’s total state then becomes the
union of the setup and actuatable states.

B. Motion Planning

We consider the problem of planning motions for a CRISP
robot. To produce motion, each tube can be actuated via
changing its orientation at the entry point into the pleural
effusion space and translating the tube into and out of the
space.

We define an instance of the robot’s actuatable state as a
configuration q = {Rc, R1, . . . RN−1, lc, l1, . . . , lN−1}. The
space of all configurations the robot can assume is then Q ∈
SO(3)N × RN .

For a given configuration q ∈ Q we define the shape of
the CRISP robot as a function

P(q, T, s) : SO(3)N × RN ×N × R 7→ R3.

Function P is a 3D space curve representing the backbone of
tube T , at arc length s in the domain [0, lTmax]. Function P,
combined with knowledge of the cross-sectional OD of each
tube allows us to calculate the shape of the entire CRISP
robot. Also note, that as a special case, pcamera is the 3D
location of the camera on the tip of Tc, and it has a direction
of view defined by the vector vcamera which is tangent to
the space curve at pcamera.

We then define a motion plan Π = (q0,q1, . . . ,qn) as
an ordered sequence of robot configurations. We define a
collision free plan as a plan for which the shape of the
robot at every configuration in the plan does not collide with
obstacles in the environment, and an interpolation between
adjacent configurations does not collide with obstacles in the
environment. We then define a valid plan as a plan that is
collision free and achievable given the robot hardware.

When computing a motion plan, our method takes as input
a CRISP setup, an initial configuration q0, a Computed
Tomography (CT) scan from which we will define the
environment, and a goal point pgoal, the location in the
anatomy that the physician is attempting to view with the

camera. Our method then produces as output a plan Π, which
is a collision-free sequence of configurations that will result
in the robot being able to view pgoal.

When evaluating the quality of a candidate setup, we
require as input the setup, an initial configuration q0, and the
CT scan. Then, instead of outputting a plan to a specific goal
point, we instead output a set of cells on the interior surface
of the pleural effusion which can be seen by manipulation
of the CRISP robot with that specific setup, which we define
as a visibility set.

IV. METHOD

A. Motion Planning

To model the environment for our motion planner, we
use an occupancy grid. The grid has free cells, Sfree, in
which the robot is allowed to freely move, and occupied
cells, Sobs, which the motion planner treats as an obstacle
and restricts the robot from moving into. To generate these
sets, we segment the pleural effusion from the CT scan using
a semi-automatic region-growing method [25]. We set Sfree

to be the cells in the CT scan consistent with the pleural
effusion and Sobs to be the inverse segmentation. We also
define a third set, Sbound to be the cells in Sobs which are
adjacent to Sfree which will contain the goal point of interest
pgoal and which will be the set we attempt to visualize in
the evaluation of a setup.

We solve the motion planning problem formulated in
Sec. III-B using a sampling-based approach. We implement
a planner based on the Rapidly-Exploring Random Trees
(RRT) method [26]. The RRT method begins at a root
node, the initial configuration, and iteratively and randomly
constructs a tree structure where each node in the tree is a
valid configuration, and an edge linking two nodes is a valid,
collision free motion between them. As the tree grows, it
expands and explores the obstacle free configuration space
of the robot. Once a node is found which has a camera pose
with a clear view of the goal point, pgoal in the lung, the tree
can be traced back to the root node, and a valid plan from the
initial configuration to a goal configuration has been found.

Specifically, we begin with our root node. We then sample
a randomly generated point in configuration space. We
linearly interpolate between the two configurations, using
spherical linear interpolation (SLERP) to interpolate between
the rotational degrees of freedom. We then propagate along
the line segment starting at the root node for a random
percentage of the line segment, computing the shape of the
robot and checking it against Sobs at a fine discretization. If
the robot collides with obstacles or reaches a configuration
that the forward kinematics solver is unable to solve, we stop
at the prior step of the discretization. We then add the last
valid configuration and edge to the tree. This process is then
repeated, but the node from which to start the propagation
is chosen as the nearest neighbor in the tree to the newly
sampled point.

This process continues until a time limit has passed or until
a configuration has an unobstructed view of pgoal, whichever
comes first.



To perform collision detection, we need an accurate es-
timate of the robot’s shape at a given configuration. To
calculate the robot’s shape at a given configuration, we use
a modification of the mechanics-based model developed by
Mahoney et al. [1] and described in greater detail in Sec.
IV-B. Having calculated the backbone shape of each tube,
and knowing each tube’s radius, we are able to efficiently
check for collisions between the robot’s geometry and the
occupancy grid. This is done by interpolating along the shape
of each flexible instrument, identifying which cells the shape
will occupy, and doing an index lookup into the CT-derived
occupancy grid for those cells.

To identify whether at a sampled configuration pgoal is
visible from the camera on the tip of Tc we implement a
ray trace. First, the camera position and direction of view,
pcamera and vcamera are inferred from the tip of the shape
computed for Tc. The vector between pgoal and pcamera is
computed, and it is compared with vcamera. To identify if
pgoal lies within the field of view of the camera, we examine
the angle between the two vectors. If the angle is larger than
θv/2, then pgoal does not lie within the field of view of
the camera. If, however, the angle is less than θv/2, then
pgoal does lie in the field of view of the camera. This is
not enough, however, because there must exist line of sight
between the camera and pgoal—the view of pgoal may be
occluded by another part of the patient anatomy. To identify
if there exists clear line of site, a ray is traced from pcamera

to pgoal. If the ray strikes an occupied cell in Sobs before it
reaches pgoal, there is not clear line of site and the motion
planning continues. However, if there exists clear line of site
then the plan is traced back to the root initial configuration
and is returned.

B. Mechanics & Solution Seeding

One of the most computationally intensive aspects of the
method is computing the forward kinematics of the CRISP
robot that determines its shape. This is done for every node
in the tree, and at every finely discretized point along each
edge in the tree. The forward kinematics is calculated both
to ensure the configuration is collision free everywhere on
the CRISP robot’s body and to identify the camera pose.

The forward kinematics of the CRISP robot results from
its mechanics, which were initially presented in [1]. In this
paper, we assume that the flexible instruments of a CRISP
robot can be physically held by robot manipulators at the
point where the tubes enter the patient’s body. This reduces
the dimensionality of the CRISP robot’s actuation space
to only include orientation of each tube at the body entry
point and each tubes’ insertion length into the body. This
assumption also simplifies the system mechanics and can
be physically implemented in practice using stiff introducer
sheaths through which the flexible instruments can be de-
ployed. What follows is a summary of the simplified CRISP
robot’s mechanics and forward kinematics.

We model the CRISP robot using the Cosserat rod equa-
tions that govern the backbone position p ∈ R3, orientation
expressed as a rotation matrix R ∈ SO(3), internal moment

m ∈ R3, and internal force n ∈ R3 of each tube. The full
system state x consists of the Cosserat-rod states for each
tube packed as:

x =
[
xc x1 . . . xN−1

]
(3)

where xc are the Cosserat-rod states of the camera tube (the
tube grasped by the others), and xk are the Cosserat-rod
states of the kth snare tube. Note that x is a column-vector
but we express it in the form of (3) for compactness.

The forward kinematics of a multi-tube system are formu-
lated as a multi-point boundary value differential equation,
where the Cosserat-rod states of the snare tubes propagate
along their backbone in arc length 0 ≤ s ≤ `k, as

x′k(s) = [p′k R′k m′k n′k] , (4)

and the states of the camera tube propagate along its back-
bone in arc length 0 ≤ s ≤ `c, as

x′c(s) = [p′c R′c m′c + α n′c + β] , (5)

where the arc length derivative of the Cosserat-rod states as
well as the terms α and β can be found in [1]. The tube
lengths (`c and `k) and the initial values of the tube position
(pk(0) and pc(0)) and orientation (Rk(0) and Rc(0)) at
the body entry points are given by the corresponding entry
point position and orientation from the starting state, (1) and
(2). The initial values of the Cosserat-rod internal moments
(mk(0) and mc(0) ) and forces (nk(0) and nk(0)) for both
the snare and camera tubes are determined later to satisfy
the constraints of the multi-point boundary value problem.

The constraints of the multi-point boundary value problem
include a constraint at each of the grasp points sk on the
camera tube’s body. The grasp constraints enforce the tip
position of the snare tube to be coincident with the camera
tube’s position at arc length sk and the tip pose of the snare
tube is constrained so that there is a constant rigid body
rotation that maps the snare tip orientation to the backbone
pose of the camera tube’s orientation at arc length sk as

ck =

[
pk(`k)− pc(sk)

RT
c (sk)Rk(`k)Rx − I

]
= 0 (6)

where Rx ∈ SO(3) is the rotation in the [−1, 0, 0]T direction
by 90◦ and I ∈ R3×3 is the identity matrix.

Under the assumption that the system is quasistatic and
in the absence of applied forces and moments at the camera
tube’s tip, the force and moment at the camera tube’s tip will
be zero, leading to the additional constraint of

cc(`c) =

[
mc(`c)
nc(`c)

]
= 0. (7)

The N − 1 grasp constraints ci and the tip constraint cc
can be packed into the total constraint vector

c =
[
cc c1 . . . cN−1

]
= 0. (8)

The multi-point boundary value problem is solved by varying
the snare and camera tube’s initial conditions of their mo-
ments (mk(0) and mc(0) ) and forces (nk(0) and nc(0)) so



that the total constraint equation (8) is satisfied. When solved,
the multi-point boundary value problem yields the system’s
forward kinematics. We accomplish this using a numerical
optimization routine known as a “shooting” method, where
an initial seed of the snare and camera tube’s initial internal
moment are iteratively perturbed to minimize ‖c‖ [1].

The runtime of the forward kinematics computation is
heavily dependent on the initial conditions seeded into the
shooting method. If the initial conditions lie far from the true
solution, not only will the shooting method converge more
slowly, but it may not converge to a solution at all. However,
if the initial conditions lie close to the true solution, then the
shooting method will run much more quickly and the forward
kinematics will be solved faster.

This insight is a significant motivation for our choice of
an RRT based motion planner. RRT’s incremental growth
property means that we can always view tree expansion
as a sequential small perturbation on an already solved
forward kinematics problem. More specifically, as we expand
the tree, we seed the initial conditions of each subsequent
shape calculation with the true values found at the state
from which it is propagating. Because each step is relatively
small, we are always seeding the initial moments and forces
with a solution that lies close to the true solution. We
note a substantial computational speedup associated with this
property compared to seeding the initial moments and forces
with a generic set of initial conditions, as discussed in Sec.
V-C.

C. Candidate CRISP Setup Evaluation

An adaptation of our method can be used to evaluate a
specific candidate CRISP setup and initial configuration by
generating a visibility set. Rather than attempting to find
a plan from the initial configuration to a viewpoint for a
specific pgoal, one can ask the question “What is the total
set of all points that can be viewed in the space, if we start
at a specific q0 using a given candidate setup?” An answer
to this question may be useful in evaluating how effective
an initial configuration and setup is. To answer this question,
we attempt to generate the set of all points in Sbound which
can be viewed by the robot starting at q0 with the candidate
setup. This can be viewed as the endoscopic equivalent of
evaluating the reachable workspace of the robot.

We extend our method to construct a visibility set by
allowing the tree to expand for a fixed and relatively long
duration of time, while observing which cells in Sbound

can be seen from each configuration in the tree. Rather
than checking whether a specific pgoal can be seen, we
instead ask what the set of cells is which is visible from
the configuration. This is done in a similar fashion as above,
but all cells in Sbound are evaluated and filtered by their
relative angle to vcamera. For each cell that lies in the field
of view of the camera, a ray is then traced to a point p in
the cell, and the cell in Sbound at which the ray terminates
is added to the visibility set. The union of the sets for each
configuration in the tree then becomes the total visibility set
and is returned.
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Fig. 3. An isometric view of the segmented open pleural effusion volume,
bone structure, and lung is shown on the left. Frontal and sagittal views of
the pleural effusion volume are shown on the right. Note that the collapsed
lung lies on the posterior side of the pleural effusion.

V. RESULTS

We demonstrate the speed and effectiveness of our new
motion planner for CRISP robots in a simulated scenario
based on a pleural effusion segmented from a patient CT
scan. We ran the motion planner on an Intel Xeon E5-1680
CPU with 8 cores running at 3.40GHz and 64GB of RAM.

A. Generating Visibility Sets

We first evaluated the ability of the method to generate vis-
ibility sets for two CRISP robot setups. Each setup included
one snare tube and the camera tube, where the snare tube is
affixed to the camera tube 1 cm from its tip. Both tubes have
an OD of 1.02 mm and an ID of 0.84 mm. The two starting
setups are shown in Fig. 4 in the pleural effusion space. The
setups initially point the camera in different directions and
have differing entry points and orientations into the effusion.

For each setup, we ran the motion planner for 1 hour to
explore the space and recorded cells on the pleural effusion
surface that could be seen by the camera. As can be seen
in Fig. 5, from each setup the robot is able to visualize a
large portion of the interior surface of the pleural effusion.
After 1 hour, Setup 1 has visualized 38% percent of the
pleural effusion surface and Setup 2 has visualized 57%
percent of the pleural effusion surface. The difference in
the visibility sets between the two setups implies that the
ability of CRISP to visually inspect a particular set of goal
points is dependent on choosing a high quality setup. The
computed visibility sets can provide feedback to a physician
on the usefulness of each specific setup. The union of the
two visibility sets covers 80% of the total effusion surface,
illustrating that using multiple setups increases the size of
the visibility set and can enable the physician to see most of
the pleural effusion.

B. Motion Planning to View a Specific Goal Point

We next evaluate the motion planner for computing a
motion to view a specific goal point using the chip-tip
camera. Using ≈ 49, 500 goal points on the surface of the
pleural effusion, we show in Fig. 6 the percentage of the goal
points which have been visualized as a function of time. The
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Fig. 4. The setups and initial configurations for both Setup 1 (left column)
and Setup 2 (right column). The pleural effusion is rendered transparent so
the initial shape of the robot can be visualized.
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Fig. 5. The visibility sets found by the motion planner for Setup 1 (left
column) and Setup 2 (right column) after 1 hour of computation. The portion
of the surface visualized is rendered in orange.

percentage of points found can be viewed as the probability
that the motion planner finds a plan to visualize a goal point
if it were sampled uniformly from the set of visible points
found by that specific setup (solid lines) or if it were sampled
from all points on the interior surface of the pleural effusion
(dashed lines). An example of a motion being planned to
view a specific goal point can be seen in Fig. 7.

C. Mechanics Solution Seeding

To evaluate the efficacy of seeding the forward kinematics
computation with the solution of an already known near-
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Fig. 6. The percent of goal points seen by the camera as a function of
the motion planner’s exploration time for each setup. Solid lines show the
percent of goal points seen by the camera with respect to each setup’s
visibility set. Dashed lines represent the percent of goal points seen with
respect to the total number of points on the pleural effusion surface.

Fig. 7. A motion plan viewed from inside the pleural effusion. Potential
points of interest on the interior surface of the pleural effusion are rendered
as blue spheres, with the specific goal point rendered in pink. The plan
goes from the initial configuration (a), through collision free intermediate
configurations (b) and (c), to a configuration in which the tip of the camera
tube can view the goal point in (d).

by shape, we repeated the experiments but without the
the seeding. Instead, we initialize each shape calculation
with the solved solution of only the initial configuration,
corresponding to the root node in the tree.

At the end of the hour-long planning time, the motion
planner for Setup 1 without the mechanics solution seeding
had only planned visualizations for 30% of the total cells
in Sbounds compared to the 38% found by the planner with
the mechanics solution seeding. For Setup 2, the planner
without the seeding had only computed motion plans to
visualize 38% of the cells compared to the 57% found by the
motion planner with the mechanics solution seeding. A stark
difference was also found in the number of configurations
being added to the tree. For example, from Setup 1, after 1



hour the motion planner without the seeding had only added
2,177 configurations to the tree, while the motion planner
with seeding had added 37,855 configurations. For Setup
2, the motion planner without the seeding had added 2,627
configurations, while the motion planner with the seeding
had added 36,610 configurations. The ≈ 14 times increase
in the number of configurations when using the seeding
suggests a significantly more expansive motion planning tree
capable of viewing more user-specified points of interest.

VI. CONCLUSION

CRISP robots provide new avenues for performing mini-
mally invasive, incisionless medical procedures. Our motion
planner for CRISP robots computes manipulations of the
needle-diameter flexible instruments outside the body such
that the camera can visually inspect a user-specified site of
clinical interest inside the body. Our sampling-based motion
planner ensures avoidance of collisions with anatomical
obstacles inside the body, enforces remote-center-of-motion
constraints on the flexible instrument’s entry points into
the body, and efficiently handles the expensive computation
of CRISP robot kinematics. We also extended the motion
planner to estimate the set of points inside a body cavity
that can be visually inspected by the camera of a CRISP
robot for a given setup.

In future work, we plan to build upon this new motion
planner to bring CRISP robots closer to clinical use. We
plan to further accelerate the motion planner using sampling
heuristics, precomputation, and parallelization. Additionally,
we plan to extend the motion planner to account for un-
certainty such as patient motion during the procedure. We
also plan to develop methods that utilize the motion planner
to automatically optimize the setup of a CRISP robot on a
patient-specific basis to ensure the camera can see sites of
clinical interest. We also plan to integrate our motion planner
with a physical robot prototype and evaluate the performance
of the integrated physical system.
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