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Abstract—Concentric tube robots, composed of nested pre-
curved tubes, have the potential to perform minimally invasive
surgery at difficult-to-reach sites in the human body. In order to
plan motions that safely perform surgeries in constrained spaces
that require avoiding sensitive structures, the ability to accurately
estimate the entire shape of the robot is needed. Many state-of-
the-art physics-based shape models are unable to account for
complex physical phenomena and subsequently are less accurate
than is required for safe surgery. In this work, we present a
learned model that can estimate the entire shape of a concentric
tube robot. The learned model is based on a deep neural network
that is trained using a mixture of simulated and physical data.
We evaluate multiple network architectures and demonstrate the
model’s ability to compute the full shape of a concentric tube
robot with high accuracy.

Index Terms—Concentric Tube Robots, Continuum Surgical
Robots, Shape Modeling, Machine Learning, Deep Neural Net-
works.

I. INTRODUCTION

ONCENTRIC tube robots are needle diameter robots

composed of nested pre-curved tubes [1]. By rotating
and translating the tubes with respect to one another, the
robot’s shaft takes curvilinear shapes. This enables these robots
to curve around anatomical obstacles to perform surgical
procedures at difficult-to-reach sites. Concentric tube robots
have the potential to enable less invasive surgeries in many
areas of the human body, including the skull base, the lungs,
and the heart [2].

Motion planning can enable concentric tube robots to move
safely through the body, reaching desired surgical targets while
avoiding colliding with sensitive anatomical obstacles, such
as blood vessels, nerves, and organs [3], [4], [5]. In order to
plan safe motions for concentric tube robots that automatically
avoid unintended collisions with the patient’s anatomy, mo-
tion planning algorithms simulate robot motion, performing
collision detection to ensure that the robot’s geometry does
not collide with obstacles [6]. In order to perform collision
detection, an accurate geometric model of the robot’s entire
shape is required.

Accurate prediction of the entire shape of a concentric
tube robot from its control inputs is challenging, and current
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Fig. 1. Given a concentric tube robot configuration defined by the translations
and rotations of the tubes (upper left), our neural network (upper right)
outputs coefficients for a set of polynomial basis functions (lower left) that
are combined to model the backbone of the robot’s 3D shape (lower right).

state-of-the-art shape models are often unable to accurately
account for complex and unpredictable physical phenomena
such as inconsistent friction between tubes, non-homogeneous
material properties, and imprecisely shaped tubes [7], [8].

In this work, we present a data driven, deep-neural-network-
based approach that learns a function that accurately models
the entire shape of the concentric tube robot, for a given set
of tubes, as a function of its configuration (see Fig. 1). The
neural network takes as input the robot’s configuration, and the
network outputs coefficients for orthonormal polynomial basis
functions in z, y, and z parameterized by arc length along the
robot’s tubular shaft. In this way, a function representing the
entire shape of the robot can be produced by one feed forward
pass through the neural network.

The key insight behind our parameterization is that the
uncertainty in the physics-based shape models is due mainly
to uncertainty in curvature and torsion. The arc length of the
robot’s shape, however, is independent of these and as such is
generally not subject to the same sources of uncertainty. We
can leverage this known state by parameterizing our shape
function by arc length. Additionally, we leverage the machine
learning technique known as transfer learning [9]. Transfer
learning allows our model to first utilize a large simulation
data set to learn the general structure of concentric tube robot
kinematics and then to leverage a smaller real-world data
set to learn the differences between the simulated data and
the real robot’s kinematics. We demonstrate that pre-training
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our network on simulated data produced by a physics-based
model, and then fine-tuning the model on real-world, sensed
concentric tube robot shapes enables the model to perform
more accurately than models trained on either simulated or
real-world data alone.

This paper extends work previously presented in [10]. We
extend that work by performing additional analysis on the
method via the evaluation of multiple network architectures,
comparing against models that do not utilize our pre-training
strategy, and comparing the computation time required to com-
pute shapes by our method with the physics-based method.

II. RELATED WORK

Concentric tube robots may reduce the invasiveness of a
variety of surgical tasks [2], potentially improving patient
outcomes. The extremely unintuitive manual control of these
devices has motivated research into their teleoperation [4],
[11]. Teleoperation requires some form of computational ac-
tuation of the robot, a function that has been served by both
traditional control methods and via motion planning.

Traditional control applied to concentric tube robots has
primarily focused on computing controls that are based on
desired tip movements. For instance, methods have been devel-
oped that compute controls based on the robot’s Jacobian [7],
[12]. Additionally, Fourier series based approximations of the
robot’s kinematics have been utilized for control [13]. How-
ever, in the presence of complex anatomy such local control
methods can struggle to compute collision-free motions that
require complex trajectories.

By contrast, motion planning enables concentric tube robots
to take a global view of motion in constrained anatomy,
allowing for more complex motions that avoid obstacles.
To do so, a few approaches have been proposed. In order
to enable fast computation, simplified kinematics have been
used in motion planning [14], [15]. Sampling-based motion
planning methods for concentric tube robots have also been
proposed [3], [16], [4], [11], [5].

In both cases where local control is utilized or motion
planning is utilized, in order to assure the concentric tube robot
does not collide with patient anatomy in unexpected ways, an
accurate shape model, mapping the control variables of the
robot to its physical geometry in the world, is required.

The shape of continuum robots can be sensed online using
sensors such as fiber Bragg grating (FBG) sensors [17], [18].
FBG sensors utilize specialized embedded optical fibers to
sense the shape of curved rods. FBG sensors have been used
with concentric tube robots to estimate their curvature both in
bending and in torsion [19]. These methods sense the shape
of the concentric tube robot as it moves in the physical world.
However, in order to plan safe motions for the robot, we
require a model that can anticipate the shape of the robot in
simulation, prior to execution of the motion on the physical
robot. For this reason, we require a method that computes the
shape of the robot in advance.

Most existing shape computation methods represent the
concentric tube robots using the Cosserat rod equations [20],
[21] that define a system of ordinary differential equations

which, when solved, provide the shape of the concentric tube
robot’s backbone. Such models have increased in complexity
over time, with the most advanced modeling physical effects
such as torsion [13], [7]. Other physical phenomena, such as
friction between tubes, has been investigated but not yet fully
and effectively integrated into such physics-based models [22].

Machine learning methods have been applied to both the for-
ward kinematics and inverse kinematics of continuum robots.
For instance, the inverse kinematics of tendon-driven robots
have been computed using various data-driven methods [23]
and feed forward neural networks [24]. Neural networks
have also been applied to learning the inverse kinematics of
pneumatically-actuated continuum robots [25]. Neural network
models have been successfully used to more accurately model
the forward kinematics and inverse kinematics of concentric
tube robots [26], [27]. An ensemble method has been applied
to learn and adapt a forward kinematics model for concentric
tube robots online [8]. However, these models only consider
the pose of the robot’s tip. In order to successfully plan and
execute motions that avoid unwanted collisions between the
robot’s shaft and patient anatomy, a model must accurately
predict the entire shape of the robot.

III. METHOD

In order to safely plan motions for concentric tube robots
operating around sensitive anatomical structures, we must be
able to anticipate the shape that the robot takes in the body
along its entire length, not only at its tip, as we actuate the
robot. For this reason, we consider the problem of accurately
mapping a concentric tube robot’s configuration, defined by
each of its tube’s rotations and translations, to the robot’s
geometry, along its entire length, in the world.

Our neural network model, trained on a combination of
simulated and sensed, real-world data, takes the robot’s con-
figuration as input and outputs coefficients for an arc length
parameterized space-curve function that represents the robot’s
backbone. This function, combined with knowledge of the
cross-sectional radii of the robot’s tubes, represents knowledge
of the robot’s shape in the world at that configuration (see
Fig. 1).

A. Ground Truth Data Generation

In order to learn a shape function for the concentric tube
robot, data representing the robot’s shape as a function of
its configuration must be gathered. To gather shape data, we
utilize a multi-view 3D computer vision technique called shape
from silhouette [28], in which multiple images of the robot’s
shape for a given configuration are collected from cameras
with known position and orientation (see Fig. 2).

We place two cameras at roughly orthogonal angles around
the robot such that the robot’s shaft is in the field of view
of both cameras. We then move the robot to a sequence of
randomly sampled configurations and image the robot at each
configuration with both cameras simultaneously (see Fig. 3a).
Then for each pair of images we automatically segment the
robot’s shaft in each image using color thresholding (see
Fig. 3b). For each pixel in the segmentation a ray is traced
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Fig. 2. We train the neural network using data from a physical robot. By
taking images from multiple cameras (blue arrows), the shape of the robot’s
shaft (pink arrows) can be reconstructed in 3D using shape from silhouette.

out from the camera’s position through its image plane (we
calibrate the cameras’ intrinsic and extrinsic parameters using
MATLAB’s Computer Vision Toolbox). These rays then pass
through a voxelized representation of the world, and voxels
that are intersected by rays from both cameras represent the
robot’s shape in the world (see Fig. 3c). We then fit a 3D space
curve to the voxels using ordinary least squares, resulting in a
curve that represents the true, sensed backbone of the robot.
We then train the neural network using points along the sensed
backbone as ground truth (see Fig. 3d).

B. Neural Network Model

Our neural network architecture consists of a feed forward,
fully connected network. We choose a feed forward, fully
connected network due to its simplicity and because the inputs
and outputs were clearly defined allowing us to learn a map-
ping without imposing any additional constraints associated
with more complex models. We utilize the parametric rectified
linear unit as our non-linear activation function between layers,
which we noted provided a slight performance improvement
over the standard rectified linear unit.

1) Input to the network: For a robot consisting of k tubes,
we parameterize the i tube’s state as

~i = {711 72,5, 73, } = {cos(ey),sin(a;), Bi},

where «; € (—m, 7 is the i tube’s rotation and §; € R is
the " tube’s translation, as in [27]. We then parameterize the
robot’s configuration as

S YE)-

This serves as the input to the neural network.
2) Output of the network: The network outputs 15 coeffi-
cients,

q= ("/17’727"'

Clz, C2z5 - - - C525 Cly, C2yy - - - C5y3, C12,C2z,y « - - C52,

which serve as coefficients for a set of 5 orthonormal poly-
nomial basis functions in x, y, and z parameterized by arc
length. This results in three functions, z(q,s), y(q,s), and
z(q, s), where

$(q, 5) - len(q) X (Clmpl(s) + CQzPQ(S) +-+ C5mP5(5))a

where s is a normalized arc length parameter between 0 and
1, and len(q) is the total arc length of the robot’s backbone in

TABLE I
COEFFICIENTS FOR THE ORTHONORMAL POLYNOMIAL BASIS FUNCTIONS.
S 52 53 54 55
Pi(s) | 1.7321 0 0 0 0
P2(s) | —6.7082 | 8.9943 0 0 0
P3(s) | 15.8745 —52.915 | 39.6863 | 0 0
P4(s) | —30.0 180.0 —315.0 | 168.0 0
P5(s) | 49.7494 —464.33 | 1392.98 | —1671.6 | 696.4912

configuration q. Then y(q, s) and z(q, s) are defined similarly
with their respective coefficients. The resulting shape function
is
shape(q, s) =< z(q, s),y(q, s), 2(q, s) > .

To evaluate the shape of the robot at a given configuration,
the neural network can be evaluated at q, and the resulting
coefficients define a space-curve function that can then be
evaluated at any desired arc length. This, combined with
knowledge of the robot’s radius as a function of arc length,
results in a prediction of the robot’s geometry in the world.

The orthonormal polynomial basis functions, generated us-
ing Gram-Schmidt orthogonalization, are visualized in Fig. 4,
and the coefficients that define the polynomials are shown in
Table 1. For example, Py (s) := 1.7321s, Pa(s) := —6.7082s+
8.994352, etc.

C. Training the Model

We first pretrained our model on 100, 000 data points (con-
figuration and backbone pairs), where the configuration was
sampled uniformly at random from the robot’s configuration
space and the backbone was generated by the physics-based
model presented in [7], a mechanics-based kinematics model
based on the Cosserat Rod equations. Such pretraining allows
us to utilize a large amount of simulation data in order to
prevent overfitting on the smaller amount of sensed, real world
data. Additionally, this allows the model to learn general
characteristics of how the concentric tube robot’s shapes are
defined by the configuration from the simulation model, and
then to learn the ways in which the physical robot differs from
simulation during fine-tuning.

We generated real world data by sampling uniformly at
random configurations and pairing them with the backbone
they produced in the real world, which we sensed via shape
from silhouette (see Figs. 2 and 3). We then split our real world
data into three sets. A training set of 7,000 data points, used
to fine-tune the model, a validation set of 1,000 data points,
used during training to evaluate convergence, and a test set
of 1,000 data points, which we left out for evaluating the
performance of the network. We utilize a pointwise sum-of-
squared-distances loss function and the ADAM [29] optimizer
during training. We utilize early exit of training at convergence
as evaluated by our validation set in order to prevent overfitting
on the training set. If 10,000 epochs of training have passed
without the model improving its performance as evaluated by
the validation set, training is stopped and the best version of
the model found until that time is used.

We demonstrate the motivation for the transfer learning
approach in this application in Fig. 5, in which we show a plot
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Fig. 3. To generate training data from the physical robot, (a) we take an image of the robot’s shape with two cameras with known positions relative to the
robot. (b) We then use a color thresholding technique to automatically segment out the robot’s shape (shown in red) from the green background in the images.
(c) We apply the shape from silhouette algorithm to generate a set of voxels in 3D space that correspond to the robot’s shape in the world (shown in blue).
(d) We generate a set of evenly spaced points that best approximate the set of voxels, resulting in a discretized version of the robot’s backbone in the world

(shown in blue).
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Fig. 4. The orthonormal polynomial basis functions generated using Gram-
Schmidt orthogonalization.
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Fig. 5. We generate training data both in simulation and from the physical
robot by sampling uniformly at random in the robot’s configuration space. To
demonstrate how these samples map to the robot’s workspace, we plot points
along the backbone of each data point from (a) the simulation data set, and
(b) the real world data set.

in the workspace of evenly spaced points along the backbone
of every configuration in our simulation training set in Fig. S5a
and our real-world training set in Fig. 5b. The simulation data
set represents greater density throughout the workspace of the
robot than is the case with the real-world data set.

IV. RESULTS

The specifications of the robot’s component tubes used in
the experiments are shown in Table II.

A. Evaluation of Polynomial Basis Functions

First, in order to evaluate how well the polynomial basis
functions are able to approximate the shape, we computed
the optimal set of coefficients for the 100,000 pre-training
data points using ordinary least squares. We then evaluated
how well the resulting shape representation approximated the
training data at 20 equally-spaced points along the backbone
of the shape, as in the training process. We then calculated the
maximum L? distance over the 20 points along the backbone
of the robot between the polynomial representation and the
ground truth for each of the 100, 000 configurations. Over the
100, 000 configurations, the mean of the maximum L2 distance
along the backbone was 0.044£0.037 mm. This demonstrates
that the polynomial basis functions are capable of representing
the shape of a concentric tube robot with accuracy well into
the sub-millimeter range.

B. Evaluation of Varying Network Architectures

Next, we evaluate how well our model is able to learn the
shape of real-world concentric tube robot configurations across
multiple network architectures. We train multiple networks
with numbers of hidden layers varying from 3 to 7 and
numbers of nodes per hidden layer varying from 15 to 60.
We also evaluate networks trained with simulated data alone
(Sim), trained with real data alone (Real), and pre-trained
with simulated data and fine-tuned with real data (Sim+Real).
We evaluate each model’s error on the test set of 1,000
data points. For each configuration of our 3-tube robot we
perform a forward pass through each network to determine
the coefficients for the shape function. We then evaluate that
function and the ground truth from the vision system at 20
evenly spaced points along the robot’s shaft. We evaluate the
results using three different error metrics.

1) Maximum deviation along the robot’s shaft—the L2
distance of the point that deviates from the ground truth
the most. This error value presents us with a maximum
deviation between the predicted shape and the ground
truth, a useful metric when considering safety related to
anatomical obstacle avoidance.
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TABLE II
TUBE PARAMETERS FOR THE 3-TUBE CONCENTRIC TUBE ROBOT.
Outer Diameter | Inner Diameter | Straight Length | Curved Length | Curvature
Tube _1
(mm) (mm) (mm) (mm) (m™)
Inner 1.3 1.0 245.9 66.6 9.3354
Middle | 1.9 1.6 163.1 45.6 4.6270
Outer 2.5 2.2 95.2 36.4 7.4184
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Fig. 6. A histogram of the maximum error along the robot’s shaft for the
learned model and the physics-based model, for each of the 1, 000 test points.
The distribution is shifted to the left in the learned model (Sim+Real 3x30),
indicating that it is more likely to produce lower error values.

2) Mean squared error along the robot’s shaft—the squared
L? distance from the ground truth, averaged along the
robot’s shaft.

3) Sum of the deviation along the robot’s shaft—the L? dis-
tance from the ground truth, summed along the robot’s
shaft.

We present the results of this analysis in Tables III, IV, and V.
For each data type and architecture we report the mean and
standard deviation of the error (in mm) across all test data
points. For each data type (Sim, Real, and Sim+Real), we
highlight the best performing model in bold, and highlight the
best performing model across all data types and architectures
in red.

Both the Real and the Sim+Real data types outperform the
simulation only models across all architectures for all error
metrics. For all three error metrics, Sim+Real outperforms
Real across all architectures except 5x15, but to a lesser extent.
This result aligns with the theory behind transfer learning [9],
which holds that pre-training on a large data set from a related
domain and then fine-tuning on a smaller data set from the
exact domain of interest allows the model to learn the general
properties of the related domain first, and then to be refined on
the nuance of the exact domain. The best model for all three
error metrics is trained on Sim+Real data, and has 3 hidden
layers of 30 nodes each.

C. Accuracy Comparison to Physics-Based Model

Next, we compare the accuracy of the best model from the
previous analysis to the physics-based model presented in [7].
In Fig. 6 we plot a histogram of the errors across the 1,000
test configurations for the maximum deviation error metric.

In Tables VI, VII, and VIII, we present further statistics for
the maximum error values over the 1,000 test configurations

123456 7 8 91011121314151617 181920
Index Along Backbone

Fig. 7. The L2 distance of points along the robot’s shaft between the ground
truth and those computed by our learned model (blue) and between the ground
truth and those computed by the physics-based model (red), plotted over the
length of the robot’s shaft indexed from the first position at the base of the
robot (where the error is 0 for both models), to the twentieth point at the
robot’s tip. The error for both models is greatest at the tip of the robot. The
values are averaged over the 1,000 test data points.

for both the physics-based model and the learned model for the
three error metrics. In the histogram in Fig. 6, it can be seen
that the error distribution of the learned model is shifted to the
left compared with that of the physics-based model, indicating
that the learned model is more likely to produce lower error
values than the physics-based model. Additionally, the learned
model produces lower minimum, maximum, and mean error
values for all metrics.

In Fig. 7, we plot the error of our model and the physics-
based model as a function of the position along the robot’s
backbone, averaged over the 1,000 test configurations. We
note that for both the physics-based model and our learned
model the error increases closer to the robot’s tip.

In Fig. 8 we show three shapes computed by our learned
model compared to the ground truth shapes. We plot in
Fig. 8a the configuration whose error is closest to one standard
deviation below the average error (maximum deviation error
metric), Fig. 8b shows the configuration whose error is closest
to the average error (maximum deviation error metric), and
Fig. 8c shows the configuration whose error is closest to one
standard deviation above the average error (maximum error
metric).

D. Timing Comparison to Physics-Based Model

Both control and motion planning for concentric tube robots
requires many shape computations to happen in a very short
amount of time. This necessitates a shape model that is
sufficiently fast to compute. One advantage of using neural
networks for our learned shape model is that computation can
be batched, i.e., you can calculate multiple passes through
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TABLE III
AVERAGE LEARNED MODEL ACCURACY RESULTS (MEAN =4 STD IN MM), MAXIMUM DEVIATION ALONG SHAFT
Model Architecture (width x depth)
Data Type 3x15 3x30 3x60 5x15 5x30 5x60 7x15 7x30 7x60
Sim 6.22+3.95 | 6.284+3.93 | 6.324+3.95|6.28+£3.94|6.30+3.95|6.31£3.94|6.32+3.98| 6.31+£3.94 | 6.32+3.96
Real 3.93+£250 | 3.66+240 | 4.08+2.41 | 4.384+2.43 | 3.81£2.35 | 4.114+2.46 | 3.95+2.34 | 3.65 £2.31 | 4.68 + 2.58
Sim+Real 3.69+245 | 3.35+2.39 | 3.49+242 | 468 £2.90 | 3.48+2.49 | 3.58 22.49 | 3.56 £2.50 | 3.53 £2.48 | 3.40 £ 2.41
TABLE IV
AVERAGE LEARNED MODEL ACCURACY RESULTS (MEAN = STD IN MM), MEAN SQUARED ERROR ALONG SHAFT
Model Architecture (width x depth)
Data Type 3x15 3x30 3x60 5x15 5x30 5x60 7x15 7x30 7x60
Sim 1224164 | 1244+16.4 | 123+ 16.5 | 12.1+16.5 | 12.34+16.6 | 12.3+16.6 | 12.3£16.7 | 12.3 +16.5 | 12.3 £ 16.7
Real 4.734+6.29 | 3.50+5.13 | 5.03+6.61 | 4.44+489 | 3.494+4.72 | 4.06+5.21 | 3.96 £4.81 | 3.54 +4.64 | 4.96 = 5.08
Sim+Real || 3.60 £5.44 | 3.03 +4.84 | 3.31 £5.27 | 594 £856 | 3.25+553 | 3.47+£5.86 | 3.36 =5.63 | 3.36 £5.66 | 3.11 +5.24
TABLE V
AVERAGE LEARNED MODEL ACCURACY RESULTS (MEAN =+ STD IN MM), SUM OF DEVIATIONS ALONG SHAFT
Model Architecture (width x depth)
Data Type 3x15 3x30 3x60 5x15 5x30 5x60 7x15 7x30 7x60
Sim 48.7£21.8 | 48.9+22.0 | 48.84+21.8 | 48.6 =21.7 | 48.8 +22.0 | 48.8 £21.8 | 48.8 +22.0 | 48.7 £ 21.8 | 48.8 £22.0
Real 31.2+13.7 | 25.84+£10.9 | 33.24+12.0 | 30.1+11.5 | 25.8+10.6 | 28.4 £10.7 | 28.6 +11.3 | 26.8 £10.7 | 31.8 £ 11.5
Sim+Real || 25.74+11.4 | 23.24+10.9 | 245+ 11.2 | 335+ 14.3 | 24.3£11.0 | 25.1 +11.5 | 24.7£10.9 | 24.8 = 11.1 | 23.8 £10.8
® Learned ® Ground Truth
100 100 100
£ IS IS
S S S
50~ 50 ~— 50 ~—
N N N

Fig. 8. We show three examples of the shape our learned model computes compared with the ground truth shape sensed in the same configuration. (a) We
plot the shape whose error is closest to one standard deviation below the average error, (b) the shape whose error is closest to the average error, and (c) the
shape whose error is closest to one standard deviation above the average error (using the maximum deviation along the robot’s shaft error metric).

TABLE VI

ERROR VALUE STATISTICS FOR THE PHYSICS-BASED MODEL AND OUR
LEARNED MODEL ACROSS THE 1000 TEST CONFIGURATIONS, MAXIMUM
DEVIATION ALONG SHAFT.

Physics-Based (mm) | Learned (mm)
Minimum 1.11 0.61
Maximum | 46.68 30.18
Mean 6.32 + 3.95 3.35+£2.39

the network (representing multiple shape computations) si-
multaneously, and it is almost as fast as computing a single
pass. This process, called batching, allows for many shape
computations to happen very quickly in parallel, a property

TABLE VII

ERROR VALUE STATISTICS FOR THE PHYSICS-BASED MODEL AND OUR
LEARNED MODEL ACROSS THE 1000 TEST CONFIGURATIONS, MEAN
SQUARED ERROR ALONG SHAFT.

Physics-Based (mm) | Learned (mm)
Minimum 0.30 0.05
Maximum | 246.62 82.58
Mean 12.32 £+ 16.60 3.03 £4.84

that the physics-based shape model does not currently share.

In Fig. 9 we present the time required by each of the
Sim+Real networks to perform shape computations. We per-
form 100,000 shape computations for each, with batch sizes
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TABLE VIIL
ERROR VALUE STATISTICS FOR THE PHYSICS-BASED MODEL AND OUR
LEARNED MODEL ACROSS THE 1000 TEST CONFIGURATIONS, SUM OF
DEVIATIONS ALONG SHAFT.

Physics-Based (mm) | Learned (mm)
Minimum 7.79 3.11
Maximum | 181.63 85.89
Mean 48.79 + 21.87 23.23 +10.90
m3x15 3x30 3x60 5x15 m5x30 m5x60 m7x15 m7x30 m7x60
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Fig. 9. The average time taken to compute the shape of the concentric
tube robot at a specified configuration, for 20 evenly spaced points along
its backbone. We present the average for each network topology (Sim+Real),
for varying batch sizes. For comparison, the physics-based model averages
1.73ms per shape computation.

varying from 1 (i.e. no batching) to 100,000 (i.e. computing
all shapes simultaneously). Included in the timing results are
the time required to make the passes through the network as
well as the time required to evaluate each resulting shape at
20 evenly spaced points along the backbone of the robot. We
present the average time per shape computation.

As can be seen, the models of less complexity (fewer
hidden layers and fewer nodes per layer) are faster. Addi-
tionally, increasing the batch size dramatically reduces the
time per shape computed, with the fastest (100,000 batch
size) taking on average =~ 0.0lms per shape computation
across all models. Without batching, the models range between
0.27ms and 0.51ms per shape computation. These values
represent a significant speed-up compared to the physics-based
model which takes on average 1.73ms per shape computation.
Without batching, the learned models are between 3.39 and
6.4 times faster than the physics-based model, and with the
largest batching, the learned models are ~ 173 times faster
than the physics-based model.

While it is not as easy to take advantage of batching during
traditional control of concentric tube robots, due to the iterative
nature of the required shape computations, during sampling-
based motion planning batching can be leveraged to great
effect.

V. CONCLUSION

In this work we present a learned, neural network model
that outputs an arc length parameterized space curve. This
allows us to take a data driven approach to modeling the shape

of the concentric tube robot and improve upon a physics-
based model. This may allow for safer motion planning
and control of these devices in surgical settings that require
avoiding anatomical obstacles, as a shape that deviates less
from the shape predicted in computation will be less likely to
unintentionally collide with the patient’s anatomy.

We note many areas of potential future investigation. In this
work, the model is only trained on cases where the robot is
operating in free space. There exist many surgical tasks that
require minimal force to be exerted by the robot on tissue that
our method would be well suited for, such as using the robot
as an endoscope via a chip-tip camera, utilizing the robot to
deliver energy-based ablation probes, and utilizing the robot
as a suction or irrigation catheter. However, many surgical
tasks will require non-trivial tissue interaction forces. In the
future, we intend to train models that account for the robot’s
interaction with tissue both at its tip and along the shaft of the
robot.

There are also many avenues to investigate additional
machine learning techniques and parameterizations related
to the method. For instance, we note the relatively minor
improvement we observed when combining simulated and real
training data compared to using only real training data. While
in a minimally invasive surgical setting, any improvement to
model accuracy is important, we intend to further investigate
ways to leverage the combination between real training data
and simulated training data to identify the role that simulated
training data may play in model accuracy. It may also be valu-
able to investigate the integration of learning with the physics-
based concentric tube robot models, via a hybrid model-
based and data-driven approach. We also believe it would be
valuable to investigate different loss functions during training
as well as the use of different neural network paradigms,
such as recurrent networks and hybrid networks. We will also
experimentally investigate how the sampling distribution of
the training sets affect the quality of the learned model. We
also plan on investigating whether the ideal network structure
varies depending on the number of tubes or tube parameters.

We also intend to augment the learned model to account
for other sources of uncertainty in concentric tube robot shape
modeling, including hysteresis. There also exist other choices
of basis functions. We chose orthonormal polynomials due
to their fast evaluation, but we intend to investigate other
types of bases for our shape representation. These and other
model parameter choices may have implications on the types
of shapes that it is able to predict well and the types that it
predicts less well. We consider a future characterization of this
relationship to be important.

Further, we plan to integrate the learned model with a
motion planner and evaluate its use in automatic obstacle
avoidance during tele-operation or automatic execution of
surgical tasks.

Finally, we believe that this approach is not limited to
concentric tube robots, but could be used for other forms of
continuum robots that have known arc-lengths, such as tendon
actuated robots. We intend to extend the method to work with
such systems.
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