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Abstract. Occlusions provide critical cues about the 3D structure of
man-made and natural scenes. We present a mathematical framework
and algorithm to detect and localize occlusions in image sequences of
scenes that include deforming objects. Our occlusion detector works un-
der far weaker assumptions than other detectors. We prove that occlu-
sions in deforming scenes occur when certain well-defined local topologi-
cal invariants are not preserved. Our framework employs these invariants
to detect occlusions with a zero false positive rate under assumptions of
bounded deformations and color variation. The novelty and strength of
this methodology is that it does not rely on spatio-temporal derivatives
or matching, which can be problematic in scenes including deforming
objects, but is instead based on a mathematical representation of the
underlying cause of occlusions in a deforming 3D scene. We demonstrate
the effectiveness of the occlusion detector using image sequences of nat-
ural scenes, including deforming cloth and hand motions.

1 Introduction

Inherent in the exhaustive work done on edge detection is the belief that discon-
tinuities in image intensity provide valuable clues about scene structure. Edges
resulting from occlusions are of special interest since they correspond to loca-
tions in an image where one surface is closer to the camera than another, which
can provide critical cues about the 3D structure of a scene. Occlusion detec-
tion is used in numerous applications including shape extraction, figure-ground
separation, and motion segmentation, e.g. [1–6]. The purpose of this paper is to
present a completely local, bottom-up approach to detect and localize occlusions
in order to provide this powerful low-level information to higher-level reasoning
methods. Our approach is applicable to image sequences including deforming
objects, which can present difficulties to classical methods.
� This material is based upon work supported by the National Science Foundation
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Fig. 1. The figure illustrates the inability of motion flow inconsistency to correctly
identify occlusions in scenes with deforming objects. Consider two images (right col-
umn) obtained at times t and t + 1 after a paper in 3D is folded along a crease (left).
Observe that this transformation is in fact not rigid and that there is no occlusion
in either image. Assuming perfect motion estimation from the images on the right
we would find that the gray colored checkerboard portion is moving to the left and
the white colored checkerboard portion is moving to the right, which would seem to
indicate the presence of a non-existent occlusion.

Traditional occlusion detectors rely almost entirely on spatiotemporal deriva-
tives or matching to detect the artifacts of occlusions. These artifacts fall into
two categories: motion flow inconsistency across an edge and the T-junction.
Unfortunately, both methods are effective only under restrictive assumptions
about the scene. The motion flow inconsistency approach implicitly assumes
that only rigid transformations take place, such as a foreground and background
layer moving in distinct directions. Due to this implicit assumption, motion in-
consistencies do not necessarily imply an occlusion, as illustrated in Figure 1.
Numerous methods are available to find T-junctions, but they all make assump-
tions about the orientations of the occluding contour. Moreover, even after a
T-junction has been detected, an occlusion may not be present. Our method to
detect occlusions works under far weaker assumptions than other methods. In
particular, we only assume a weak bound on the magnitude of deformation on
objects viewed by a camera and a bound on the color variations between frames.

In contrast to prior methods, we model the cause of occlusion, under a local
deformation model, and show that the proper measurement of certain topological
invariants serves as a definitive indicator to the presence of an occlusion. Prior
approaches do not give any analytical guarantee on the validity of their detec-
tions, only experimental results. Our approach, in contrast to existing methods,
is proven to yield a zero false positive rate as long as the required motion and
color variation bounds are satisfied. The strength of our framework is that it is
able to operate at different scales providing information that may otherwise be
unavailable while not relying on noisy derivatives, not making strict assumptions
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Fig. 2. The results of the occlusion detector presented in this paper applied to a se-
quence of images that depict a piece of cloth being folded. Observe the existence of
a self-occlusion. Frames of a sequence are shown (first three columns) and the corre-
sponding occlusion detections centered at time t1 (right).

about the orientation of occluding contours, not building complex appearance
models, and not performing any matching. In Figure 2, we apply our method
to an image sequence of a cloth deforming in 3D, creating a self occlusion. Our
method successfully detects the occlusion while producing no false positives.
Note that these local detections can be fed into a global process such as graph
cut in order to segment objects as is done in [2].

The contributions of this work are three-fold. First, in Section 3, we prove
that under a deformation model occlusions occur when there does not exist home-
omorphisms between pairs of images in an image sequences. Second, in Section
4, we define local topological invariants to detect an occlusion within an image.
Finally, in Section 5, we demonstrate the applicability of our occlusion detector
including some preliminary results on foreground/background segmentation.

2 Related Work

As described earlier, traditional approaches to occlusion detection can be di-
vided into two categories: those that attempt to detect motion inconsistencies
and those that detect T-junctions. Detecting motion inconsistencies is inspired
by the classic work of Horn and Schunck [7] and the observation that the mo-
tion between the two sides of an occluding edge are generally dissimilar. This
argument implicitly assumes that the objects being imaged undergo rigid trans-
formations. This argument is inapplicable if the projection is instead allowed
to transform in a more general fashion, as illustrated in Figure 1, and can re-
sult in false positives. The algorithms in this domain can be classified by the
varying level of assumptions used in order to make the motion estimate robust.
The presence of T-junctions in a contour has been shown to be a strong local
cue for occlusion [8]. Unfortunately, not all T-junctions are occlusions, which
can introduce false positives. Most algorithms in the T-junction domain can be
classified according to the methodology they employ to detect and classify them.

At one extreme of motion estimation is the class of layered motion segmen-
tation algorithms which employ a parametric model that is restricted to near-
planar, rigidly-moving regions for each layer to segment regions based on the
consistency of motion [9–12]. Incorporating a variety of techniques to estimate
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these models, these algorithms assume a fixed number of layers in the scene,
which does not scale well as the number of layers increases. Instead of relying
on this requirement, we argue that the low-level reasoning done by an occlu-
sion detector with a deformation model provides appropriate cues to high-level
reasoning algorithms like those performing layered motion segmentation.

At the other extreme of motion estimators are those that make the motion
estimate robust by smoothing the velocity field spatially or temporally [13, 14].
Regrettably, this has the unintended consequence of making the motion estimate
inaccurate at boundaries where occlusions occur. An alternative to this smooth-
ing approach is the use of an implicit model, either learned from local motion
cues estimated from training data or based on some fixed model of the distribu-
tion of motion cues in the vicinity of occluding boundaries [15–18]. Though these
approaches are appealing because they rely on well-defined statistical models,
they remain sensitive to deviations of the actual data from the trained model.

T-junction detection has a rich history. Until recently, there have been two
predominant approaches to T-junction detection: gradient or filter-based ap-
proaches [19–22] and model-based template matching [23]. These approaches
work singularly to detect the T-junctions rather than distinguish an occlud-
ing T-junction from a non-occluding T-junction. More recently, others define
what they call a proper T-junction as a T-junction at which an occlusion takes
place [3]. They detect these proper T-junctions by exploiting a rank constraint on
a data matrix of feature tracks that would normally be classified as outliers in a
multiple-view geometry problem. Although mathematically correct, the method
can be overly sensitive to even slight deviations from the given rank condition.
Inspired by this work, other alternatives have exploited a discriminative frame-
work to classify these proper T-junctions [1, 2]. Unfortunately, these methods
utilize 2D spatiotemporal slices instead of volumes which mean that detections
can only be made in fixed orientations.

In contrast to prior work, we prove that, under a deformation model, oc-
clusions occur when pairs of images are not equivalent via deformation. We
construct local topological invariants which exploit this result to localize oc-
clusions in an image. Our method applies under weaker assumptions than the
aforementioned detectors.

3 Modeling Scenes and Images

In this section, we describe our scene model. We let objects in R
3 correspond

to sets in the space. Each point on the surface of an object at a given time
is assigned a color. We initially assume that the color at a given point on the
surface of an object does not change over time, but we allow the object to deform
via a homeomorphism. For simplicity, this model ignores lighting, shadows, and
specularities while extensions to account for such effects are discussed in Section
4.2.

The motion of an object is determined via a continuous family of homeomor-
phisms: F (x, t) : R

3 × R → R
3, where F (·, t) is a homeomorphism from R

3 to
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R
3 for each t. The camera is located at the origin of our coordinate system. The

image domain, Ω, is defined to be a sphere of radius 1 centered at the origin,
S

2. We employ an omni-directional camera model in order to avoid occlusions
at the boundaries of the field of view. We consider the effect of boundaries and
the case of directional cameras in the next section. Throughout our analysis, we
assume for convenience that the camera is static and the world is moving. Fortu-
nately, our analysis applies to situations where the camera and the environment
are moving and changing simultaneously. We also assume objects in the scene
remain outside the unit sphere at all times.

A color image, I : Ω → R, and depth image, D : Ω → R
3, are defined

for every point s ∈ Ω via a ray drawn from the origin passing through s. We
consider 1D color images (i.e. grayscale) for simplicity. The depth value assigned
to s is obtained by finding the point in R

3 at which the ray beginning at the
origin through s first intersects. The color value at s is defined similarly. The
set of occluding contours in an image is the set of points at which the depth
image is discontinuous. The following result connects the homeomorphisms in
R

3 to homeomorphisms in Ω.

Proposition 1. If there are no occluding contours for an ordered set of depth
images indexed by t in [0, 1], then Dt(s) provides a homeomorphism between Ω
and Dt(Ω) ⊂ R

3 which implies that f(s, t) := D−1
t (F (Dt(s), t)) is a continuous

family of image homeomorphisms for which It1(f(s, t1)) = It2(f(s, t2)) for all
t1 and t2 ∈ [0, 1].

We refer to the existence of a family of continuous image homeomorphisms for
which It1(f(s, t1)) = It2(f(s, t2)) as the Image Homeomorphism Criterion.
If this criterion is violated, then using the previous theorem we conclude that an
occluding contour exists. Though this argument guarantees the existence of an
occlusion, it does not help us localize the occluding contour either temporally or
spatially. The reader may wonder if the converse of Proposition 1 is valid. The
following observation provides an important partial converse to the proposition:

Proposition 2. If the Image Homeomorphism Criterion is satisfied by a set of
color images, then there exists a realization of an object in R

3 that generates the
same color images with no occluding contours.

One such realization corresponds to forming a sphere of radius 2 centered at the
origin and coloring the sphere according to the color image. The motion homeo-
morphism F (x, t) for R

3 is then just the extension of the color image homeomor-
phism f(s, t). This result verifies that the Image Homeomorphism Criterion is in
fact the best achievable result to guarantee the existence of occlusions without
making additional assumptions.

4 Localizing Occlusions

In this section, we introduce an approach to locally detect occlusions in image
sequences over discrete time by extending the ideas in Section 3. This is done
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by introducing an additional constraint on the size of deformations in R
3. Then,

we generalize the concepts for image sequences in which color information also
varies. Finally, we focus on the case in which the image homeomorphisms can
be decomposed into a translational and deformation component.

4.1 Local Detections Without Color Variation

To begin, we introduce a constraint on the size of deformations in R
3:

Definition 1. A family of homeomorphisms F (x, t) : R
3 ×R → R

3 is said to be
Lipschitz if for all x ∈ R

3, t1 and t2 ∈ R

||F (x, t1) − F (x, t2)|| ≤ K|t1 − t2|

for some constant K that is independent of x, t1 and t2. The smallest such K
is called the Lipschitz constant.

From now on, we require that the continuous family of homeomorphisms, F ,
that R

3 transforms under be Lipschitz, and the Lipschitz constant, K, gives an
upper bound on the size of these deformations. In practice, this requirement
demands bounding the speed of objects in R

3 based on the rate at which the
camera captures images. If no occluding contours are present, then the induced
image homeomorphism is also Lipschitz with the same constant, K, since all
objects are required to remain outside of S

2.
In order to verify if the Image Homeomorphism Criterion has been violated,

we study changes to topological invariants of the set I−1([a, b]), where [a, b] ⊂ R.
In particular, we focus on the number of connected components. To illustrate the
problem with näıvely comparing the number of connected components to detect
local occlusions, consider the sets in Figure 3(a) and corresponding neighbor-
hoods drawn in the rest of the figure. The first neighborhood, Er, is a square
with a side of length 2r drawn in Figure 3(b). The second neighborhood Er+K

Fig. 3. Illustration of how to count connected components for neighborhoods Er and
Er+K. (a) The original image before any window is applied. Counts of connected com-
ponents: (b) 6 in Er; (c) 5 in Er+K; and (d) 5 in Er after identification using Er+2K .
Without identification we would erroneously conclude that the Image Homeomorphism
Criterion is violated and that there is an occlusion.
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has a side of length 2(r + K) drawn in Figure 3(c). Er has 6 connected com-
ponents while Er+K has 5 connected components suggesting that some set has
disappeared and that the Image Homeomorphism Criterion has been violated.
However, there are no occlusions in this instance. The problem arises because
we count the same set twice in the smaller neighborhood. We remedy this prob-
lem by identifying sets in Er that correspond to the same connected component
in Er+2K . This solution inspires the construction of a sort of local topological
invariant.

Definition 2. Given a color image I over the image domain Ω, two collection
of intervals, B = {[ak, bk]}NB

k=1 and B′ = {[a′
k, b′k]}NB

k=1, the histogram of con-
nected components in a neighborhood E ⊂ Ω given the bins B is defined
as the vector αE(I|B) = (αk)NB

k=1, where

αk = cc
(I−1([ak, bk]) ∩ E

)
,

and cc(A) is the number of connected components in the set A. Under the as-
sumption that E ⊂ E′ and [ak, bk] ⊂ [a′

k, b′k] for all k, the histogram of
connected components in E identified with the neighborhood E′ given
the bins B and B′, denoted αE|E′(I|B,B′), is computed in the same way ex-
cept the connected components in I−1([ak, bk]) ∩ E are identified (i.e. treated
as the same connected component) if they correspond to the same component in
I−1[a′

k, b′k]) ∩ E′.

Definition 3. The color support in a neighborhood E given the bins B
is the vector σE(I|B) = (σk)NB

k=1, where σk is 0 if I−1([ak, bk]) ∩ E = ∅ and 1
otherwise.

Employing this new method to calculate connected components, guarantees
that under Lipschitz image homeomorphisms, the histogram of connected com-
ponents in a neighborhood Er identified with the neighborhood Er+2K is always
less than the histogram of connected components in a neighborhood Er+K . If
we apply this procedure to the example in Figure 3 and compare the number
of connected components, we find that the Image Homeomorphism Criterion is
not violated (the number of connected components in Er after identification is 5
which is the number of components in Er+K). The following result proves that
this argument can be used to identify local violations of the Image Homeomor-
phism Criterion, which allows us to define a local occlusion detector.

Theorem 1. Given bins B, neighborhoods Er, Er+K , and Er+2K centered around
a common point s, and color images It1 and It2 where |t1 − t2| = 1, if either

αEr|Er+2K
(It1|B,B) ≤ αEr+K (It2|B) (1)

or
σEr+K (It2|B) ≤ σEr+2K (It1|B) (2)

is violated, where the inequality is checked element wise, then the Image Home-
omorphism Criterion is not satisfied between It1 ∩ Er and It2 ∩ Er+K .
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The argument for the proof proceeds as follows: For a scene deforming under
a Lipschitz homeomorphism, if a set is in the interior of the neighborhood Er,
then it is in the interior of Er+K . If two sets in Er are connected in Er+K

then the path connecting them is in Er+2K which explains why identification
using Er+2K guarantees the condition in Equation 1. The second condition just
specifies that the colors observed in Er+K are present in Er+2K .

At this point, we make two additional remarks. First, the previous theorem
allows us to consider occlusion detection in the case of directional cameras in
a straightforward manner. Second, observe that Theorem 1 works both forward
and backward in time so that appearance and disappearance events, which are
each just types of occlusions, can be identified locally.

4.2 Generalizing to Color Variation

In this section, we generalize our model to include color variations in the im-
ages. These variations may include soft shadows and slow lighting variations.
However, we do not claim to solve the problem for strong shadows and specu-
larities which are a challenge for all occlusion detection algorithms. In order to
quantify the amount of uncertainty allowed, we consider color variations that
are Lipschitz over time with constant Kc. That is, if f(s, t) is a family of image
homeomorphisms, we must have

|It1(f(s, t1)) − It2(f(s, t2))| ≤ Kc|t1 − t2|
instead of I(f(s, t1)) = I(f(s, t2)) (i.e. Kc = 0) as was assumed in the previous
section. From now on, we require that the color variations be Lipschitz with
constant Kc.

We generalize the results of Theorem 1 to incorporate color variations.

Theorem 2. Assume the same setup as in Theorem 1 with Lipschitz color im-
ages with Lipschitz constant Kc. Define Bc := {[ak − c, bk + c]}NB

k=1 for c > 0. If
either

αEr|Er+2K
(It1|B,B2Kc) ≤ αEr+K (It2|BKc) (3)

or
σEr+K (It2|BKc) ≤ σEr+2K (It1|B2Kc) (4)

is violated, then the Image Homeomorphism Criterion under color variation is
not satisfied between It1 ∩ Er and It2 ∩ Er+K.

Figure 4 illustrates this process where an object is moved behind a book
resulting in an occlusion detection. The sets I−1

t1 ([ak, bk]) ∩ Er are shown in
white on the middle row for increasing k from left to right, the sets I−1

t1 ([ak −
2Kc, bk + 2Kc])∩Er+2K are also shown in gray on the middle row, and the sets
I−1

t2 ([ak − Kc, bk + Kc]) ∩ Er+K are shown on the bottom row. The images in
this example are of size 240 × 240, B = {[40(k − 1), 40k]}7

k=1, r = 40, K = 10,
and Kc = 5. The outcome for this example is

αEr|Er+2K
(It1|B,B2Kc) = [1 0 1 2 0 0 0]�
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Fig. 4. Demonstration of our local topological occlusion detector. Three images cor-
responding to an object moving behind a book (top). The sets I−1

t1 ([ak, bk]) ∩ Er and
I−1

t1 ([ak − 2Kc, bk + 2Kc])∩Er+2K are shown in white and gray respectively (middle).
The sets I−1

t2 ([ak −Kc, bk +Kc])∩Er+K are shown on the bottom row. Our framework
detects an occlusion since the condition in Equation 3 is violated.

and
αEr+K (It2|BKc) = [0 0 2 1 1 0 0]�.

Since the condition in Equation 3 is not satisfied, we conclude that an occlusion
has occurred.

4.3 Estimating Translational Component

Theorem 2 gives a mechanism to detect occlusions in situations in which the
motions and deformations of objects in 3D are unknown. In certain situations,
it may be convenient to take advantage of this structure and decompose the
homeomorphism into a translational and pure deformation component.

In this section, we assume that the image homeomorphism can be locally
decomposed as follows:

f(s, t) = ft(s, t) + fd(s, t),

where ft is a translation and fd is a deformation with Lipschitz constants Kt

and Kd, respectively. Using the framework developed in the previous section,
we would need to compare the connected components in Er and Er+Kt+Kd

. If
Kt >> Kd then Er+Kt+Kd

would be a large set which would decrease the utility
of our algorithm to detect occlusions.

In order to take advantage of our knowledge about the translation compo-
nents of the homeomorphism, we would like to split Er+Kt+Kd

into N2
t evenly

spaced regions that cover Er+Kt+Kd
. The diameter of the decomposed regions
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needs to be sufficiently larger in order to guarantee that the conditions in The-
orem 2 are fulfilled by at least one of the subregions whenever the Image Home-
omorphism Criterion is satisfied. Figure 5 illustrates this situation. In order to
guarantee that a deformed neighborhood Er is found in the interior of at least
one of the decomposed regions, an overlap of greater than 2(r+Kd) between the
regions is required. If we let 2(r+D) be the length of the side of the decomposed
regions, then the minimum length required corresponds to:

D = Kd +
Kt

Nt
. (5)

Solving for the spacing d required between centers of the regions, we obtain

d =
2
Nt

Kt. (6)

Hence, given that we have decomposed the neighborhood Er+Kt+Kd
into

N2
t regions of length 2(r + D) with centers spaced d units away, then the Image

Homeomorphims Criterion between regions Er at time t1 and Er+Kd+Kt at time
t2 is violated if the conditions in Equations 3 and 4 are not satisfied by any of
decomposed regions. This result is used in Section 5 to identify occlusions be-
tween objects with large translational components. Note that this decomposition
approach can be used to estimate motion flow between regions without direct
tracking or differential operators applied to the images.

Fig. 5. Choosing an appropriate length for the coveraging sets of Er+Kt+Kd with Nt =
2. (a) Given a region Er, and bounds Kt and Kd, our objective is to obtain a cover
that guarantees that Er can be found within one of the covering sets. (b) A coverage
in which Er is not contained within any of the covering sets since the coverage does
not have enough overlap. The dark square corresponds to one of the regions in the
coverage. (c) Given that the overlap between the region is greater than 2r + 2Kd then
the neighborhood Er can be found in at least one of the covering sets. The length of
the sets needed to guarantee this fact are labeled 2r + 2D.



Occlusion Detection Using Topological Invariants 11

5 Experiments

In this section, we present experimental results for occlusion detection applying
Theorem 2 to make local detections. We also briefly consider how to utilize these
results to perform foreground segmentation.

5.1 Implementation

The implementation of our approach takes the following image deformation pa-
rameters: the Lipschitz constants Kc, Kt and Kd. It also requires the following
algorithmic parameters: the radius for the base regions r, the color bins B, and
the number of subsections Nt in which each local neighborhood is decomposed.
For simplicity we take Nt to be odd. Note that any choice of the algorithmic
parameters is appropriate (e.g. different choices of radius r may yield different
detections, but still no false positives). The algorithm takes a base image It1

and marks detections against image It2.
We define a grid of points evenly spaced by a distance d (as defined by

Equation 6). For each of the points in It1 we compute αEr|Er+2D
(It1|B,B2Kc)

and σEr+2D (It1|B2Kc), where D is given by Equation 5. For each of the points
in It2 we compute αEr+D (It2|BKc) and σEr+D (It2|BKc).

For a fixed location x in the grid, let Er be the neighborhood centered at x
in image It1 and let Er+Kt+Kd

be the neighborhood centered at x in image It2.
We test the conditions in Theorem 2 by comparing the histogram of connected
components of Er against each of the histograms from the resulting N2

t regions
in which Er+Kt+Kd

is decomposed. If the conditions are not satisfied by any of
the regions then position x at time t1 is marked as an occluded location.

5.2 Detecting Occluding Contours

To begin, we consider results on real images. Figures 2 and 6 illustrate the re-
sults of applying our algorithm on a variety of image sequences: a deforming
cloth, a walking person, a closing hand, and a folding colored Macbeth board.
The first three columns correspond to frames from the sequence and the last
column is the detection results corresponding to the frame at time t1. Ani-
mations of the image sequences and the detected occlusions can be found at:
http://www.cs.unc.edu/~ron/research/ECCV2010/

See the supplementary materials for animations of the image sequences and
the detected occlusions.

Our method successfully detected occlusions without introducing any false
positives. Note that several occluding contours were not highlighted in our de-
tections due to our unconstrained assumptions about the scene (i.e. we made
no prior assumptions about the environment and allowed for any type of defor-
mations). To illustrate this point, consider the image sequence with the closing
hand (second row in Figure 6). Though there are occluding contours along the
edges near the palm of the hand, the hand’s movement does not reveal the exis-
tence of any local occlusions here which means that the Image Homeomorphism
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Fig. 6. Detection results for image sequences of a walking person, a closing hand, and
a folding colored Macbeth board. Sample frames are displayed (first three columns)
and the occluding contours corresponding to the frames at time t1 (right column).

Criterion is never violated. Proposition 2 implies that there exists a 3D realiza-
tion of each image in this sequence around this edge that does not contain an
occlusion. By applying more global reasoning, one could hope to recover these
type of detections, which is the focus of future research.

The method presented in this paper is not directly comparable to other ap-
proaches in the literature since our goal is to obtain local detections in uncon-
strained deforming scenes, an area that has not previously been explored. In
future work, we plan to integrate local detections into consistent occluding con-
tours for deforming scenes, which requires a new dataset of deforming scenes for
evaluation and comparison of approaches.

5.3 Foreground/Background Segmentation

In this section, we briefly consider how one can employ the presented occlu-
sion detector to do foreground versus background segmentation. We assume
that there are two objects each with distinguishable color distributions, one per-
forming the occluding (the foreground) and the other being occluded (the back-
ground). When an occlusion occurs, the neighborhood Er contains samples of a
set that becomes occluded and the neighborhood Er+K contains samples of the
set that perform the occlusion. We can use this elementary information to learn
the color distribution of the foreground and background. After this distribution
has been learned, we can test to which segment a given pixel belongs. Figure 7
illustrates this approach applied to a synthetic (top row) and real (bottom row)
image sequences.
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Fig. 7. Foreground/background segmentation results for a synthetic sequence of a ball
moving through a room with multicolored tiles (top) and a real sequence of a hand
moving in front of a checkerboard (bottom). Sample frames from the sequences (first
two columns). Occlusion detections in white and segmentation by learning color distri-
bution in red (right column) centered at time t1.

6 Conclusion

In this paper, we present a mathematical framework to detect and localize oc-
clusions in image sequences of scenes that can include deforming objects. The
method works by measuring changes in a local topological invariant, which guar-
antees a zero false positive rate when certain motion and color variation bounds
are satisfied. Our occlusion detector works under far weaker assumptions than
other detectors. If the 3D scene transforms in a more restrictive fashion, the
method presented in this paper can be viewed as complementary to traditional
detectors. We also presented preliminary results on extending the detections to
perform figure-ground separation when the model undergoes Lipschitz defor-
mations. Most current such algorithms employ a fixed statistical model for the
variation allowed in the background, but the framework presented here is more
general and can work in tandem with a statistical model.

As future research, we plan to study how to integrate this local information
in order to come up with global solutions to problems such as segmentation and
matching. The descriptors that we used for identifying occlusions can also be
thought of as topological features which are robust to deformations. Integrating
the information from these local descriptors could lead to the development of
new matching and recognition techniques.

The generality of our framework can benefit applications such as tracking in
medical applications which involve soft, deformable tissues. For example, knowl-
edge of occlusions could help in the reconstruction of surgical scenes and in
performing foreground/background segmentation in scenes with soft tissue.



14 Lobaton et al.

References

1. Apostoloff, N., Fitzgibbon, A.: Learning Spatiotemporal T-Junctions for Occlusion
Detection. In: IEEE Conf. on Computer Vision and Pattern Recognition. (2005)

2. Apostoloff, N., Fitzgibbon, A.: Automatic video segmentation using spatiotempo-
ral T-junctions. In: British Machine Vision Conf. Volume 3. (2006) 1089

3. Favaro, P., Duci, A., Ma, Y., Soatto, S.: On exploiting occlusions in multiple-view
geometry. In: IEEE Intl. Conf. on Computer Vision. (2003) 479–486

4. Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions.
Intl. J. of Computer Vision 12 (1994) 5–16

5. Niyogi, S., Adelson, E.: Analyzing and recognizing walking figures in XYT. In:
IEEE Conf. on Computer Vision and Pattern Recognition. (1994) 469–474

6. Stein, A., Hebert, M.: Local detection of occlusion boundaries in video. Image and
Vision Computing (2008)

7. Horn, B., Schunck, B.: Determining Optical Flow. Artificial Intelligence 17 (1981)
185–203

8. Biederman, I.: Recognition-by-components: A theory of human image understand-
ing. Psychological Review 94 (1987) 115–147

9. Ogale, A., Fermuller, C., Aloimonos, Y.: Motion segmentation using occlusions.
IEEE Trans. on Pattern Analysis and Machine Intelligence 27 (2005) 988–992

10. Smith, P., Drummond, T., Cipolla, R.: Layered motion segmentation and depth
ordering by tracking edges. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence 26 (2004) 479–494

11. Xiao, J., Shah, M.: Accurate motion layer segmentation and matting. In: IEEE
Conf. on Computer Vision and Pattern Recognition. Volume 2. (2005)

12. Yin, P., Criminisi, A., Winn, J., Essa, I.: Tree-based classifiers for bilayer video
segmentation. In: IEEE Conf. on Computer Vision and Pattern Recognition. (2007)

13. Anandan, P.: A computational framework and an algorithm for the measurement
of visual motion. Intl. J. of Computer Vision 2 (1989) 283–310

14. Black, M., Anandan, P.: Robust dynamic motion estimation over time. In: IEEE
Conf. on Computer Vision and Pattern Recognition. (1991) 296–302

15. Black, M., Fleet, D.: Probabilistic detection and tracking of motion discontinuities.
Intl. J. of Computer Vision 38 (2000) 231–245

16. Fleet, D., Black, M., Nestares, O.: Bayesian inference of visual motion boundaries.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA (2003)

17. Nestares, O., Fleet, D.: Probabilistic tracking of motion boundaries with spa-
tiotemporal predictions. In: IEEE Conf. on Computer Vision and and Pattern
Recognition. Volume 2. (2001) 358–365

18. Stein, A., Hoiem, D., Hebert, M.: Learning to Find Object Boundaries Using
Motion Cues. In: IEEE Intl. Conf. on Computer Vision. (2007) 1–8

19. Beymer, D.: Finding Junctions Using the Image Gradient. Massachusetts Institute
of Technology, Artificial Intelligence Laboratory (1991)

20. Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Trans. on
Pattern Analysis and Machine Intelligence 13 (1991) 891–906

21. Li, D., Sullivan, G., Baker, K.: Edge detection at junctions. In: Alvey Vision Conf.
Volume 2. (1989)

22. Perona, P.: Steerable-Scalable Kernels for Edge Detection and Junction Analysis.
In: European Conf. on Computer Vision, Springer-Verlag London, UK (1992) 3–18

23. Parida, L., Geiger, D., Hummel, R.: Junctions: detection, classification, and recon-
struction. IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (1998)
687–698


