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Abstract

Local photometric descriptors are a crucial low level
component of numerous computer vision algorithms.
practice, these descriptors are constructed to be invdrian

to a class of transformations. However, the development

of a descriptor that is simultaneously robust to noise and
invariant under general deformation has proven difficult.
In this paper, we introduce the Topological-Attributed Re-
lational Graph (T-ARG), a new local photometric descrip-
tor constructed from homology that is provably invariant to
locally bounded deformation. This new robust topological
descriptor is backed by a formal mathematical framework.
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Figure 1. Sample Results. The image on the right is congtriuart
ter deforming the left image b30% and the red circles connected

by red lines correspond to matches according to the algorntfe-
sented in this paper.
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We apply T-ARG to a set _Of t_)enchmark images_to _e_valuatethat describe how non-rigid objects transform, such as an
its performance. Results indicate that T-ARG significantly animal moving its body or a cloth being folded. Observe

outperforms traditional descriptors for noisy, deforming
ages.

1. Introduction

Local photometric descriptors have found successful ap-

plication in numerous areas such as object recognitin [
wide baseline matchind f], and image retrievall[(]. Tra-

that outside of occluding points, the class of continuous de
formations is able to describe the transformation between
pairs of views of the same scene or the evolution of a de-
forming object seen from the same view. Under deforma-
tion, it is well known that the appropriate invariant is adep

logical one, i.e. the number of connected components or
holes. However, such invariants have two principal short-
comings: (1) they are not resilient to the presence of noise

ditionally these descriptors have been constructed inrorde @nd (2) they tend not to be distinct.

to be invariant to a specific class of transformations while

In this paper, we propose a novel framework for build-

remaining robust to noise. In practice, most have focuseding a topological descriptor that is invariant under logall
on the development of descriptors that are invariant underbounded deformations and that addresses these two short-

affine transformations as this is what occurs when a view- comings. First, we make the topological invariants robust

point changes relative to a rigid object with locally planar
regions. Unfortunately, this class of transformationsris u

to noise by defining them in a local region over several
inter-level sets of the intensity image. Second, we make the

able to encapsulate the class of continuous deformationgopological invariants distinct by describing the relaad
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11S-0703787, 11S-0724681, 11S-0840399, and 11S-090534d the Na-
tional Institute of Health under award R21EB011628.

structure of nearby topological invariants. In so doing, we
define a robust, distinct descriptor called the Topological
Attributed Relational Graph oF-ARG Fig. 1 illustrates the
performance of our descriptor on a typical pair of images.



1.1. Related Work are given two grayscale imagés I; : Q — R defined over

. .. _animage domaif c R? and related by:
Due to space constraints, we refer the reader requiring 9 < y

an introduction to local descriptors to the comprehensive Ii(x) = Ipo f(x) + p(x), Q)
survey of the field by Mikolajczyk et_al. 1[]. They also wherep : © — R is a scalar-valued function and: Q —
provide a useful performance evaluation of several local de () is a homeomorphism that satisfies:
scriptors including complex filterslp], gradient location '

and orientation histograms (GLOH)J], shape contextl], Ip(z)| < Kp,
scale invariant feature transform (SIFH),[spin image {], hi([|lz —2'[]) < |[f(z) — f(z)]|, and (2)
and steerable filter€]. In particular, SIFT and GLOH out- I1f (@) = f@)l < hu(||lz—2'])

perform all other descriptors. Our method can be l00sely {5, 4)1 1. 2/ € O whereh, . hy : Rt — R+ are monotonic
categorized with the so-called distribution based descrip increasing functions Witl?l;L(p) < hu(p) forall p € R

tors, like GLOH and SIFT, which use histograms to capture and||-|| is the Euclidean norm. The functiopandf can be

local image information. Importantly our method differs ,45yght of as a bounded perturbation and a locally bounded

from these aforementioned approaches since it is '”Va”amdeformation, respectively. The constdi, is a perturba-

to all locally bounded deformations. _ tion bound, and the functioris, andh;; bound the amount
Others have attempted to develop local descriptors thatsf |ocal deformation. Observe that outside of points of oc-

are deformation invariant. 'I_'he most promising SU‘?h de- cjusion, this model is able to describe the transformation

scriptor was developed by Ling et al5][who treat an in- - petween pairs of views of the same scene or the evolution

tensity image as a surface embedded in 3D space, with inf 5 deforming object. An example of such deformation
tensity weighted relative to distance in thgy plane. They  f,nctions are:

show that as this weight increases, geodesic distances on
the embedded surface are less affected by image deforma- h.(p) = (1 —Ka)p and hy(p) = (1+ Ka)p (3)

tion. They use geodesic sampling to construct a descriptofyhich corresponds tolaipschitz deformation model with
called the geodesic-intensity histogram (GIH). The method deformation constank,. This bounding function requires
though interesting, is not resilient to the presence ofe0is  that deformations are bounded linearly with respect to the
since noise in either image does not scale well with respectgistance between points in an image. Throughout the rest
to the weighting parameter. Our method on the other handof the paper, we assume that the imaggsnd I; satisfy
is provably robust to the presence of noise since it operateshe deformation model specified in Equation} 4nd @),
over several inter-level sets of the intensity image sieault  \here the perturbation bourfd, and the bounding defor-
neously. Our new descriptor T-ARG is motivated by our mation functions,, h are known. However, the actual
recent work that defines a topological description of occlu- perturbationp(x) and deformationy (z) functions are un-
sions during deformatior]. known.

Next, we describe explicitly the two problems we at-
tempt to address using our descriptor.

Our principal contributions are two-fold. First, in Sec- pygplem 1. Given an arbitrary pointz, € © and a set of
tion 3 we develop a notion of topological invariance under pointsA;  , find the point:; € A; such that:
the assumption of locally bounded deformation. Second, in . ] o
Section4 we show how these topological invariants can be ™ (o) — @l = o 1~ (o) — |- (4)
combined locally to define a descriptor that is distinct. The '
rest of the paper is organized as follows: Secflalescribes
our imaging model and describes the type of properties we
wish our descriptor to satisfy; Sectiérdescribes explicitly
how to employ T-ARG to compare descriptors; Section
compares the performance of T-ARG to SIFT and GLOH
using a precision versus recall metric; and Secfiaron-
cludes the paper.

1.2. Overview

The solution to this problem has direct implications foravid
baseline matching and image retrieval. Wilanis taken as
uniform grid of points, we call the solution to Probleha
grid matching point. Denoting the area of the sét by

|E| and definingB(z,r) = {y € Q| ||z — y|| < r}, our
second problem is related to the first but attempts to explic-
itly identify neighborhoods rather than points with suffict
overlap:

2. Image Model Problem 2. Given athreshola < [0, 1], called theoverlap

) ) ) ) _ threshold, neighborhood®(x, Ry) € QandB(z', Ry) C
In this section we introduce our imaging model and for- ¢ for somer, 2’ € Q and Ry, Ry > 0, is

malize the objectives of our work. Our analysis is done on . ,
grayscale images, but can be generalized to a multi-channel [/ (B(x, Ro)) N B(a!, By
imaging modality in a straightforward manner. Suppose we |f~H(B(z, Ro)) U B(z', R1)|

(%)



Note that the above quantity corresponds to the ratio be-spaceF that cannot be shrunk via continuous deformation
tween the area in the intersection and the union of the pairto a single point. Generalizing this notion let each of the

of neighborhood after mapping to the domainlef This homologygroups of the spacg be denotedd;(E). Sup-
guantity is directly related to determining region corm@sp pose that one is given a map: F; — E5 between two
dences which has important applications for object recogni spaces, we can in fact determine how topological proper-

tion and registration. ties transform undes by considering the homomorphism
_ ) (this generalizes the notion of a linear map to groups) in-
3. Set Filtrations duced byo denotedo* : Hy(E,) — Hyp(E>). The case

whenF; C FE, ando is theinclusion map is called &fil-
tration and is particularly important. To illustrate its utility
consider the following result:

In this section, we introduce the results necessary to ro-
bustly characterize a neighborhood of a point in terms of
topology. We begin by describing several results from alge-
braic topology, most importantly the homology group of a Lemma 1. Given the filtrationkFy, C Ey C E3 C E4 and
set. We then describe how our deformation model dictatesinclusion maps; ; : E; — E; wherei < j, then
the allowed transformations of the homologies for the pair
of images. We conclude the section by strengthening the re- ,qnk (M) < rank (M) . Vk >0,
sults on the transformation of homologies to local neighbor ker oa% ) ker o2,3% B
hoods of the image. The proofs of all of the results included . 6)
in this section can be found in a technical repétt [ whereker computes the kernel of its argument.

This result gives a straightforward method to quantify
the topological structure that must by carried frdip to

The objective of this section is to give a brief overview of E3 by analyzing the structure carried frof to 4. Im-
algebraic topology. A comprehensive introduction to these portantly, notice that neither of the mappings frémto >
ideas can be found in Chapt2of [3]. Algebraic topology  or from E5 to E;4 are needed in this result. In the next few
explicitly characterizes the properties of spaces thgpere  subsections, we describe how this result can be used to ex-
served under continuous deformation in terms of algebraictend homology to address its aforementioned deficiencies.
objects. Homology theory in particular transforms the gtud . .
of topological invariants into the study of groups. If, for-e 3.2. Global Filtration
ample, one wants to determine whether a pair of spaces are Let us begin by defining a set of pre-processed images.
homeomorphic, one can transform the problem into deter-
mining whether a pair of groups are equivalent. In fact, by

3.1. Background

Definition 1. Let thepre-processed imagebe defined as:

comparing the rank of the pair of groups, which is equal to z__( ) = infyeBla.go) Li(Y)

the number of basis elements required to generate the group, i (z) = infyep, p; Liy)

one can effectively determine whether the pair of spaces are i+(2) = Supye (e Li(y) (7)
homeomorphic. z++(17) = SUDyeB(a.g.(0) 1i(Y)

Naively comparing pairs of homology is generally insuf-
ficient to perform matching between pairs of images trans-for i € {0, 1}, wherep > 0 and
forming under a homeomorphism for two reasons. First, ho (o) =0
though pairs of images maybe transforming under a homeo- gi(p) = { Hlp . (8)
morphism the effect of digitization (especially along eslge hp(p) Wfi=1
can ruin the applicability of homology. To address this de- \we define the followinipter-level sets
ficiency, we define conditions on the homology over pro-

cessed images. Second, homology is too coarse a construct. Li—— = IZ_” la+ Kp, 00) NI (=00, b— K
This is due to the fact that comparison between the homolo- ~ Ei- = I7,— la,00) N1, ( 00, b] )
gies of different spaces is done via a counting argumentand ~ Eiy = I_ la,00) N I ' (—o00,b]

because homology is generally defined over entire spaces. Fii = Iz++[ — Ko, 00) N If_l_(—OO, b+ K]
We address homologies coarseness by localizing homology%or constants: andb such thab — a > 2K
over intensity and space. P
To understand these various extensions of homology, we The inter-level sets are the objects upon which we per-
must begin by describing homology more explicitly. The form homology computation and help us localize homology
0-homology, denotedH(FE), is a group whose rank is over each image’s intensity space. F@illustrates these
equal to the number of connected components in the spacere-processed images. Their corresponding inter-levsl se
E. Whereas, tha-homology, denotedH; (F), is a group are drawn in Fig3. The inter-level sets satisfy certain prop-
whose rank is equal to the number of distinct cycles in the erties:



Figure 2. Pre

I, (right). lllustration of several pre-processed imagesd(itg).

These pre-processed images are defined to compensateifor dig

zation effects along edges.

Lemma 2. The inter-level sets for any and b such that
b—a > 2K, satisfy:

Eo_— C f(E1-) C f(Er+) C Eogt
f(Er——) CEy— C Eoy C f(E1——)"

(10)

than the number of components that persist frBp. to
Ey. If this condition is violated for a pair of correspond-
ing inter-level sets, then the pair of images that were used
to construct these inter-level sets do not satisfy our image
model. Observe that by defining the inter-level sets on pre-
processed images, we avoid the problem of digitization ef-
fects along edges. An example illustrating an application o
this theorem can be found in Fig.

3.3. Spatially Localized Filtrations

The previous subsection gave a topological method to ro-
bustly determine whether entire images satisfied our defor-
mation model. In this subsection, we define a spatial local-
ization of this result. In order to obtain a localized charac
terization of an image, we begin by lettilg = {z1,,,} C
Q denote a uniform grid of points spacedunits apart. Our
objective in this subsection is to construct a local set of co

The result of the previous lemma ensures our choice of yitions similar to those described in Theorérhat must be
pre-processed images allows us to define a filtration be-g4tisfied by a point ir; that is a solution to Probler i.e.
tween sets in imagesand1. As a result of Lemmd, we

obtain the following result:

Theorem 1. Given imaged, and I;, and constants:, b
such that — a > 2K, then

rank <M
ker oj—_ jyix

)<

rank <7H’“(Ej) ) (11)

ker oj_ j+*

wherei,j € {0,1} such thatj # i, ando;—_ i+
E,__ — Eiiyando;_ ;. : E;_ — E;; aretheinclusion

maps.

: . T a
This theorem gives a computable condition in terms of the
ranks of homologies that must be satisfied by the corre-

sponding inter-level sets defined by imagand1. To un-
derstand this result, observe that the rankBeZi=)_ is

ET0;— iy *

equal to the number of connected component&jin that

have a non-empty intersection wif)_. This can be under-

stood as the number of components that persist ffpmto

E;,. Hence, this theorem tells us that the number of con-

nected components that persist fréfn__ to £y is less

(EO——’ED++

)

2.
(EO—'EO+)

..

(€, .E,.) E,_E)

1-="" 14+

Figure 3. Inter-level sets for imag@&sand1 from Fig. 2. The
left panel shows the séf,_ _ in white, and the sek.  in gray.

The other plots follow the same labeling convention. Asestat
Ho(E1- )

by Theoremi,

rank(

keroq_ _ 1

—) = 3 (i.e. the number of

connected components that persist frélin._ to £ ) which is

less thanrank(

Ho(Eg—)

kerog_ o4 *

) = 5.

a grid matching point.

First, we obtain neighborhoods around a paigtand
its grid matching pointz; € A; that satisfy a sequence of
inclusions.

Lemma 3. Given a pointzy € €, a corresponding grid
matching pointz, radiusry > hU(sl/\/i), and radius
ry > hzl(hU(Sl/\/i)), then

B(zg,r0-) C f(B(x1,m1)) C B(zo,70+) (12)
nd
B(l‘l,Tl_) C f_l(B(.%'Q,TQ)) C B(xl,r1+) (13)

where
r— = hal(T‘o — hU(
ro— = hr(r1) — hu(s1/V2) (14)
ro+ = hu(r1) + hu(s1/v2)
(

)
riq = hzl(To + hu(s1/v2))

As before, the inclusions in the previous lemma define a
filtration in terms of inter-level sets.

Definition 2. Let the(r, r1)-localized inter-level setde-
tween a pointey € €2 and its grid matching poini; be
defined as

Ei—_(x;) = FEi—_NB(x;,r_)

Ei, (xz) = Ei, N B(Ii,Ti)

Eir(x;) = Eip 0 B(wi, 1) (1)
Eiry (i) = Eipq N B(wi, rig)

fori e {0, 1}, ro > hU(Sl/\/i), ry > h;l(hU(Sl/\/i))
The radiir;— andr;, are given as in Lemma.



Note that thgrg, 1 )-localized inter-level sets satisfy inclu-
sion relations similar to the ones stated in Lentigy con-
struction. Hence, we have the following localized counter-
part to Theoreni:

Theorem 2. Given imaged, and I, constants:, b such
thatb — a > 2K, and radiirg > hy(s1/v/2) andry >
hit(hu(s1/v/2)), then for anyr, € Q and grid matching
pointx; € A; we have that

(

ran ( ) < ran )
)

wherei,j € {0,1} such thatj # i, ando;—_ i+
Ei(z;) — Eipy(z) ando;_jp @ Ej(z;) —
E; (x;) are the natural inclusion maps.

Hy (Ei——(z:))
ker oj—_ jy4%

Hy(Ej—(z;))

ker oj_ jix*

This result gives a way to identify the existence of a local
homeomorphism between neighborhoods arawyahdz .
That is, if these conditions are not satisfied, thgrcannot
be a point that correspondstg under our image model.

4. Topological Attributed Relational Graph

At this point, we in fact have a robust localized topolog-
ical descriptor that could be used to perform matching. In

each pair(xo o, r0,8) € Ao x Ag and corresponding grid
matching paifz1 o, z1,3) € A1 x Ay the distance bounds
in Theorenm3 must be satisfied.

To check the simultaneous satisfaction of all of these
conditions, we can recast our problem by constructing a
Topological-Attributed Relational Graph or T-ARG, Gy
as follows: let the nodes of this graph represent the points
x0,~ and label these nodes with the rank conditions defined
in Theorem2 and let the edges of this graph represent the
distance between points and be labeled using the distance
bounds from Theoren3. We can construct a similar T-
ARG, G, using the pointse; . In fact, we can define
a T-ARG G, using all the points im\;, the results of the
Theoremg and3 give constraints to determine a subgraph
isomorphism fromG, to G; C G1. More explicitly a cor-
respondence between the graphand a subgraph ig; is
defined by the satisfaction of Theorethand3. Hence, the
identification ofG; turns into the matching of Attributed
Relational Graphs for which the attributes are topological
rank conditions and distance bounds.

5. Implementation

In this section, we begin by explicitly describing how we
can solve the problems defined in Sectduising the T-

this section, we describe how to construct a graphical repre ARG. We also describe how we implement our algorithm.

sentation that integrates the localized topological attera
ization developed so far to render the constructed descript
more distinct.

Suppose as in the previous section, we have a grid of

pointsA; placeds; units apart, a set of radii and constants
{(ro,x, ax,bx) }rer that satisfy the conditions in Theorem
2 wherel is some indexing set, and let

rix = (hy'(rox) + hy'(roa))/2. (17)

Let us also assume a uniform grid of poiig = {z¢ } C
Q spacedsy > 2h(s1/+/2) units apart, and lefz; ,} C

The executables used to perform this implementation can be
found online’.

Solution 1. Given an arbitrary set of point& |, we can first
construct a grid of pointd\; placeds; units apart such that
A1 C Ay. Then given a point € 2 and another point’ €
A1, we identifyz’ as a possible grid matching point if there
is a subgraph isomorphism from a graghinto a graphg; .

Go is constructed using the pointsiay N B(x, Ry), andg,
uses the points in; N B(2', Ry), whereR; = hzl(Ro +
2hy(s1/v/2)) and Ry > 0. It is then straightforward to
re-project the solution in\; to the solution inA\ ;.

A1, be the set of corresponding grid matching points. The Note thatR; is defined using Theorefand Ry is set arbi-

following theorem gives a set of bounds between the dis-

tance of points imy and grid matching points in:

Theorem 3. Given the pair of pointzo o, zo,8) € Ao x Ag
and corresponding matching points: ., z1,3) € A1 x Ay,
then

hi' (20,0 —@o,s| —2hu (s1/V2)) < ||21,0—21,5 (18)
and
21,0 —21,8]| < Ay (||T0,0—20,5||+2Rhu (s1/V2)). (19)

For each of the points, , and corresponding grid matching
pointsz, -, the conditions specified by Theoréhmust be
satisfied by all tuple$ro x, 71,1, ax, by). Additionally, for

trarily based on how large of a neighborhood arounse
are interested in considering.

To solve Problen2, we are interested in determining the
overlap ratio between sefs ! (B(z, Ry)) and B(2/, Ry).
Note that ifz; is a grid matching point ta, then:

B(z1,R1-) C f~Y(B(z,Ro)) C B(z1,R14)  (20)

whereR;_ and R, are defined as in Lemnfa Using So-
lution 1, we obtain a set of possible grid matching points to
x. An upper bound to the overlap ratio betweBtz, Ry)
and B(z', Ry) can be computed by considering the maxi-
mum of the bounds using all possible grid matches.

Ihttp:// peopl e. engr. ncsu. edu/ ej | obat o/ Resear ch/
2011/ Feat ur eMat chi ng/


http://people.engr.ncsu.edu/ejlobato /Research/
2011/FeatureMatching/

Parameter | Description regions are said to match if their overlap ratio is greatenth

K, Perturbation bound. A value é&fis used. a specified threshold. Precision and recall are defined as:
Ky Deformation constant. A value of1 is )
used unless otherwise specified. Precisione. 12T correct matches by algorithm (22)
Table 1. Image Model Parameters # of total detections by algorithm
and

Solution 2. Given neighborhoodB(z, Ry) and B(z', Ry)
wherez, 2’ € 2, we identify a possible matching set with Recall=
overlap greater tham if

# of correct matches by algorithm
4 of total true matches

(23)

In contrast to other descriptors, T-ARG does not emplo
|B(z1, Fay) 0 B, By)| , (21)  adistance function to compgre feature vectors. Ratheri, é/i—
|B(z1, R1-) U B(z', Ri)| ther a feature satisfies the conditions of Theorémaad3,

in which case it matches, or it does not satisfy those con-
ditions, in which case it does not match. However, as de-
scribed in Sectiorb, we construct bounds for the overlap

In our implementation we construct our topological de- given our choice of parameters. By thresholding our es-
scriptors using the rank of th@homology group. Recall  timated bounds on the overlap using a parametgy, we
that the0-homology corresponds to the connected compo- €an get a precision/recall curve parameterized by the value
nents. For example, the rank gﬂk(Eif) is equal to the of this parameter as other descriptors do with their appropr
' eroi_ it * tely defined distance function. The time required to con-
number of connected componentsiih, that have a non- ately ) : T qul
empty intersection witt,_. In our implementation we as-  StrUct a descriptor for a single region is approximatély

sume the Lipschitz deformation model defined in Equation ©" 2.2 Dual-Core i7 CPU witfs GB of memory. For our

3. All the parameters required for our method are outlined method, we set the parameters as described in Talzdes

in Tablesl and2. Note that the image model parameters

are the on]y pigces of informa_tion required aboutthe image.5 1 General Deformation Images

The algorithmic parameters (i.e. Tal¥pon the other hand

represent parameters in our algorithm and do not affect the In order to analyze the performance of our approach in

wherez, is the possible grid matching point to that is
closest tar'.

validity of the approach. the presence of deformations we construct two synthetic
datasetsGraffiti andBoat The Graffiti images are of size
6. Results 800 x 640 and theBoatimages ar@50 x 680. We consider a

controlled perturbation using the functign 2 — Q given
In this section, we describe our performance on a dataseby:
constructed from standard benchmark images. We analyze
the performance of our descriptor by computing its preci- = (21 > _ (21 + 0.5 ¢ cos(0.0222) ) (24)
sion and recall as inl[l]. To determine a ground truth, two zo )] \ 22+ 0.5¢ cos(0.02z1) )’

where the factor specifies a maximum deformation factor

Parameter | Description (e.g. ¢ = 10 indicates a maximum deformation ©6%).

p Radius of morphological operator for pre-  We also study the effect of noise by adding a random uni-
processing. Value set th form perturbation to the images with magnitude equalto

50 Spacing for grid\,. Value set td. Examples from our dataset are illustrated in Higind4. A

51 Spacing for grid\;. Value set t@. subset of regions from the images to be matched are chosen

(ro,x,ax,by) | Radii and constant used to define the
topological rank descriptors. We use
all combination such thatry, €
{2,3,4,6,9,14,19, 24,30}, and [ay, by]
corresponds to any of the intervals ob-
tained from partitioning the range, 255
into 4, 8 and16 evenly spaced intervals.

o

Ry Radius of neighborhqod arogmj) used Figure 4. Point Matching Samples: The base image fronBtya
to construct graplj, in Solution1. A dataset (left) with corresponding neighborhod@is:, Ro). Corre-
value of30 is used. sponding matches found on an image showigg% deformation,

Table 2. Algorithmic Parameters i.e.c = 30 in Equation24 (right).
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Figure 5. Precision and Reca#t & 0.5): Results for theGraffiti
(left) andBoat(right) datasets. Results for image wih% defor-
mation (top),30% deformation and uniform random noise in the
interval [—10, 10] (middle), and40% deformation (bottom).

Figure 6. Precision and Reca#t & 0.2): Results for theGraffiti
(left) andBoat(right) datasets. Results for image wih% defor-
mation (top),30% deformation and uniform random noise in the
interval[—10, 10] (middle), and40% deformation (bottom).

to test. We select circular regions of radiisfrom both im- proves even though the performance of the SIFT and GLOH

ages centered around points from a uniform grid of points descriptors decreases. Finally, Figillustrates the depen-

Spacedl2 units from each other while remOVing the pOintS dency of our approach on the choice of paraméfgrfor

that arev0 Units from the boundary Of the image. Th|S giVeS the images W|t|‘80% deformation. We choose a ground

around2500 regions for each image in the datasets. truth threshold of- = 0.5 and an overlap threshold for our
Fig. 5 shows the comparison of our approach to SIFT algorithm ofr,, = 7/3. The plot illustrates the precision

and GLOH for a ground truth threshold of = 0.5. The and recall for our algorithm against SIFT and GLOH as we

first row corresponds to comparing the base images fromchange the value ok, from 0.05 to 0.20.

the Graffiti and Boat datasets against an image wib%

deformation and no noise. The second row corresponds td6.2. Homography Images

the base image being matched to an image &% de-

formation and with uniform noise in the interviat 10, 10]

added to each pixel. The final row corresponds to the base

image being matched to an image constructed with de-

formation and no noise. As expected from our method, we

Next, we analyze the performance of our approach by
constructing a new dataset, called tHemography Graf-
f|t| Dataset by applying a homography to the left image

obtain a very high recall rate since our derivations attempt Graffiti Dataset Boat Dataset

to avoid false-negatives. Observe that these results are ob ' !

tained using an estimated deformation valuel 0% (i.e. o8 - ff{,'. *o# oe

K4 = 10) which is far less than the actual maximal defor- 806 NETe K <020 1% g

mation for the images. Note that adding uniform random @04 o ¢ Oar —+—T-ARG
noise to an image (as shown in the middle row) and increas- 2§ Ky=0.05 0.2 ;’ mr- (S;'LF(;H
ing the deformation (as shown in the bottom row) have little 7 o7 os o5 1 M7 o7 o s
effect on the performance of our approach. 1-Precision

Fig. 6 illustrates similar results for a ground truth thresh- Figure 7. Dependency on deformation boukt. Results for
old of 7 = 0.2. In terms of the overlap ratio, this corre- Graffiti (left) andBoat(right) datasets as we changg from 0.05
sponds to treating pairs with less actual overlap as patlenti to 0.20. The ground truth overlap threshold is setrte= 0.5. The
matches. In this case, the performance of our algorithm im-overlap threshold for our algorithm is settg,, = 7/3.



Homography Graffiti Dataset
$ 1

tent Topology [4]. In the future we look forward to being
able to employ the computational tools available to compute
persistence to speed up our implementation and help build
an even more powerful topological descriptor. Other poten-
tial extensions of this work include: (1) its generalizatio

to account for larger lighting variations present in naltura
images, and (2) the development of a region detector to de-
termine proper choice of scale for regions of interest.
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Figure 8. Precision and Recaft & 0.5): Results for theHomog-
raphy Graffiti DatasetResults for image witth0° change in view-
ing angle (top left)30° change in viewing angle (top right}0°
change in viewing angle (bottom left), ag@° change in viewing
angle and uniform random noise in the interfaall0, 10] (bottom
right).

of Fig. 1 corresponding to a change in viewing angle by
10°, 30°,50°, and 30° with uniform noise in the interval
[—10,10] added to each pixel.

In order to give SIFT and GLOH an advantage we se-
lect200 regions by using the Harris Affine Region Detector
with a threshold oR80,000 [11]. We determine the over-
lap estimate between two regions by first normalizing each
detected region into a circular region of radius 30 and then
apply our algorithm. Fig.8 shows the comparison for a
ground truth threshold af = 0.5. Notice that regardless of
choosing regions specifically preferred by SIFT and GLOH
upon which to compare the performance of our matching
approach on, our method still outperforms the traditional
methods.

7. Conclusion

In this paper, we introduced T-ARG, a new local photo-
metric descriptor that can effectively perform deformatio
invariant image matching. T-ARG is a robust topological
descriptor backed by a formal mathematical framework. We [
applied T-ARG to a set of standard benchmark images with
applied deformations and perturbations and demonstrated

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

9]

[10]

11]

that T-ARG significantly outperforms traditional descrip- [12]

tors. In the immediate future we plan to apply the method
to naturally deforming scenes such as animals, cloth, and
medical images.

The utility of our approach is that it generalizes in
a straightforward manner the comparison of multidimen-

[13]

sional datasets undergoing bounded deformations. Therd14l

is a deep relationship between the bounds on the rank of
homology presented in Secti@and the theory of Persis-
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