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Abstract— We present a new method for continuously and
accurately estimating the shape of a continuum robot during a
medical procedure using a small number of X-ray projection
images (e.g., radiographs or fluoroscopy images). Continuum
robots have curvilinear structure, enabling them to maneuver
through constrained spaces by bending around obstacles. Ac-
curately estimating the robot’s shape continuously over time is
crucial for the success of procedures that require avoidance
of anatomical obstacles and sensitive tissues. Online shape
estimation of a continuum robot is complicated by uncertainty
in its kinematic model, movement of the robot during the
procedure, noise in X-ray images, and the clinical need to
minimize the number of X-ray images acquired. Our new
method integrates kinematics models of the robot with data
extracted from an optimally selected set of X-ray projection
images. Our method represents the shape of the continuum
robot over time as a deformable surface which can be described
as a linear combination of time and space basis functions. We
take advantage of probabilistic priors and numeric optimization
to select optimal camera configurations, thus minimizing the
expected shape estimation error. We evaluate our method using
simulated concentric tube robot procedures and demonstrate
that obtaining between 3 and 10 images from viewpoints
selected by our method enables online shape estimation with
errors significantly lower than using the kinematic model alone
or using randomly spaced viewpoints.

I. INTRODUCTION

Continuum robots have a continuously bending, curvilin-
ear structure and have the potential to enable new medical
procedures by maneuvering through constrained anatomical
spaces in a snake-like manner. Examples of continuum robots
with the ability to reach difficult-to-access sites in the human
body include bevel-tip steerable needles [1], concentric tube
robots [2], [3], superelastic backbone robots [4], and highly
articulated robotic manipulators [5]. To fully harness the
potential of these devices, physicians must know the entire
curvilinear shape of the continuum robot inside the body.
This shape information is required to guide the robot’s end
effector to the clinical site while ensuring that the robot’s
curvilinear shape avoids anatomical obstacles and sensitive
tissues such as bones, arteries, and nerves.

Accurately and continuously estimating the shape of a
continuum robot over the duration of a procedure is chal-
lenging using currently available tools. Kinematics models
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Fig. 1. Our objective is to accurately estimate the shape of a continuum
robot over time during a procedure using a small number of optimally
selected 2D X-ray projection images. We assume the X-ray sensor is
mounted on a C-arm (top), a commonly used medical device that rotates
the X-ray sensor about the patient lying on an operating table. Our method
computes optimal viewpoints for the X-ray sensor to maximize the quality
of the online shape estimation of the continuum robot. We apply our method
to concentric tube robots, a type of continuum robot (bottom).

of continuum robots are imprecise. The curvilinear shape
of a continuum robot inside the human body is difficult
to predict due to the robot’s compliance, noisy actuation
resulting from miniaturization, and the uncertainties resulting
from device/tissue interaction. The shape of the robot could
be precisely reconstructed at discrete time points from a CT
scan (or from multiple X-ray images), but these imaging
modalities should ideally not be used continuously since
they rely on ionizing radiation; an estimated 2% of cancers
are attributable to excessive use of radiation-based medical
imaging [6]. Other available imaging modalities are either
prohibitively expensive for routine procedures (e.g. MRI)
or do not offer sufficient resolution to accurately track a
continuum robot (e.g. 3D ultrasound).

In this paper, we propose a new method to continuously
and accurately estimate the shape of a continuum robot over
the duration of a procedure using only a small number of
X-ray projection images (e.g., radiographs or fluoroscopy
images). Our approach begins by estimating the continuum



robot’s shape using a kinematics model, and then refines the
estimate using data extracted from X-ray projection images.
Although the X-ray images are acquired one at a time at
discrete time points, our method is capable of accurately
estimating the robot’s shape continuously over the duration
of the procedure by integrating the kinematics model with
data from previously acquired images.

Our method is directly applicable to procedures involving
continuum robots in which an X-ray imager is mounted on
a C-arm, which is capable of rotating the imager in a circle
around the patient, as shown in Fig. 1. This type of imaging is
often used in interventional radiology procedures. We assume
the angle of the C-arm can be measured and controlled.
We note that our approach can be applied to continuum
robots with or without embedded fiducial markers. To further
improve shape estimation quality, we also optimize the
viewpoint of the X-ray imager for each image in order
to maximize the improvement in the quality of the shape
estimation. This approach could provide physicians with a
low-cost, high quality estimate of the robot’s shape with
minimal radiation exposure for the patient.

To enable continuous shape estimation, we represent the
shape of the continuum robot over time as a deformable
surface which can be described as a linear combination of
time and space bases. With the bases specified or learned a
priori, our online problem becomes the optimization of the
coefficients which correspond to the bases. We optimize the
coefficients by using information from a sequentially optimal
set of viewpoints. Our method takes advantage of Bayes’
rule and numeric optimization to estimate the uncertainty
of the continuum robot shape reconstruction and minimize
reconstruction errors by minimizing the uncertainty. We
apply our method in simulation to concentric tube robots, a
class of thin, dexterous continuum robots. We can accurately,
continuously estimate robot shape in simulation using only
3 to 10 X-ray images over the duration of a procedure.

II. RELATED WORK

Our approach for online shape estimation of continuum
robots integrates information from an uncertain kinematics
model with computer vision methods for 3D reconstruction.
In vision-based 3D reconstruction, a 3D shape model of
an object is computed from projection images taken from
multiple viewpoints, where the images can be optical or
X-ray projection images. Such 3D reconstruction methods
typically require images from at least two viewpoints as well
as identification of corresponding points that are visible in
each image [7].

Methods using epipolar geometry have been introduced to
compute 3D reconstructions of curvilinear, tubular objects
from optical or X-ray projection images. To address the chal-
lenge of point correspondences, methods have used brute-
force search [8], fiducial markers embedded in the tubes [9],
self-organizing maps [10], and minimization of reprojection
error subject to device-specific plausibility constraints [11].
Another approach used learning algorithms in conjunction
with training data to map visual features identified in the

images to a shape estimate of the robot [12]. The above
methods focus on creating a single 3D reconstruction, and
new images need to be acquired to re-estimate the robot
shape every time the robot moves. Consequently, for medical
procedures relying on X-ray images these 3D reconstruction
methods will require excessive radiation exposure to the
patient over the course of a dynamic procedure.

An alternative to optical and X-ray images is 3D ultra-
sound imaging. Although the resolution of 3D ultrasound
is low, recent algorithmic advancements based on geodesic
active contours are enabling shape estimation of portions of
continuum robots in 3D ultrasound [13], although errors are
still substantially greater than when using projection images
for 3D reconstruction. Another option is integrating into
the continuum robot a Fiber Bragg Grating (FBG) sensor,
which uses an optical technique to estimate the shape of a
flexible device. To overcome the large errors that arise in
practice when using FBG sensors, a filtering method was
developed for articulated snake robots [14], but the method
is not easily transferrable to other continuum robots. Another
sensing modality is to use a magnetic tracker at the tip of the
continuum robot [15], although this approach does not scale
well to reconstructing the full shape of a continuum robot.

When computing a 3D reconstruction of an object using
projection images, the placement, and hence the view, of the
camera or X-ray sensor for each image has a large impact on
shape reconstruction accuracy. Methods have been developed
to optimize sensor placement and camera parameter settings
in order to minimize ambiguity in object recognition [16],
minimize uncertainty in object tracking [17], [18], minimize
pose estimation uncertainty of mobile robots [19], and esti-
mate an object’s configuration [20]. We focus on maximizing
the quality of the 3D reconstruction of a continuum robot.

Recent research has begun investigating 3D reconstruc-
tions of moving objects. Paladini et al. and Xiao et al.
[21], [22] used linear shape models to represent nonrigid 3D
structures. This representation has been successfully applied
to reconstructing facial and body motion, but it requires an
orthographic camera and cannot handle missing information.
Park et al. [23] reconstructed the 3D trajectory of a moving
point by describing the motion as a linear combination of
trajectory bases. With the bases known a priori, the problem
is transformed into obtaining the coefficients of the bases,
which significantly reduces the complexity and uncertainty.
This method can also handle missing data. In our method,
we represent the motion of the continuum robot in a similar
manner, as a linear combination of bases.

III. PROBLEM STATEMENT

Our objective is to accurately and continuously estimate
the shape of a continuum robot during a procedure by
integrating information from kinematics modeling and a
small finite number of X-ray images. We assume that we are
given a kinematic model of the robot, but due to modeling
errors and unexpected forces from the environment, the
actual robot shape will differ from the model’s prediction. We
also assume that we have an X-ray imaging sensor that can



acquire perspective projection images from viewpoints that
we select, as shown in Fig. 1. To limit radiation exposure to
the patient to clinically acceptable doses, we cap the number
of images taken to 10, with fewer images being better.

We define the shape of the continuum robot as a curve
over time:

γt(s) = [γt,1(s) , γt,2(s) , γt,3(s)]
> (1)

where γt : [0, S(t)] → R3, s ∈ [0, S(t)] parameterizes the
curve spatially at a given time t ∈ [0, T ], S(t) is the length
of the curve, T is the duration of the procedure, and γt,j :
[0, S(t)]→ R for j ∈ {1, 2, 3} are the corresponding x, y, z
components of the curve.

Due to uncertainty, the actual shape of the robot may
not match the kinematic model. We represent the real-world
shape as a perturbation from the kinematic model, namely,

γt(s) = γKt (s) + γPt (s), (2)

where γKt is the kinematic model and γPt is the perturbation
of the actual shape relative to the kinematic model.

We assume that the imaging sensor can make observations
(i.e., acquire images) of the continuum robot from various
configurations. The configuration of the imaging sensor at
time t is defined by the variable Ct := (Rt, dt), where Rt =
[Rt,1 , Rt,2 , Rt,3]> and dt = [dt,1 , dt,2 , dt,3]> are the
rotation and translation that define the position of the sensor.
For a point on the curvilinear device, its 3D coordinates X
and 2D projection ht(X) satisfy

ht(X) = f ·

[
R>t,1X + dt,1

R>t,3X + dt,3
,
R>t,2X + dt,2

R>t,3X + dt,3

]>
, (3)

where f is the focal length for the perspective projection.
Over the duration of the procedure, we assume that NI
images are taken: {Ctn | tn = (n − 0.5)T/NI , n =
1, · · · , NI}.

X-ray images are inherently noisy. To quantify the uncer-
tainty in our observations, we define our observation at time
tn, ρtn : [0, 1]→ R2, as:

ρtn(s) = htn(γtn(s)) + ηtn(s), (4)

where ηtn(s) models the noise in the image as a 2-
dimensional vector composed of i.i.d. random variables with
distribution N(0, σ2

o).
Our objective is to estimate the shape γt of the deforming

continuum robot. To maximize the quality of this estimate,
our variables are the sensor configurations, Ctn , i.e. the
locations from which we will acquire X-ray images. We
define the following objective function at any given time t:

Ft(γ̃t) = E
[
||γt − γ̃t||2 | (ρtn , Ctn) for 0 < tn ≤ t

]
, (5)

where γ̃t is our estimate of the robot’s shape at time t.
This objective function quantifies the expected error at time
t given the current and prior observations. The output of
our method is a sequence of sensor viewpoints Ctn and the
resulting shape estimate γ̃t for the robot as a function of
time.

IV. METHOD

We represent the trajectory of a curvilinear device over
time as a surface γ in 4D (space and time), as shown in
Fig. 2. Under the assumption that perturbations to this surface
can be captured by a linear combination of known basis
functions (see Sec. IV-A), then estimating the shape of a per-
turbed surface is equivalent to finding the coefficients of the
corresponding bases (see Sec. IV-B). Furthermore, reducing
the uncertainty on these coefficients by selecting appropriate
sensor configurations translates into higher precision in shape
estimation (see Sec. IV-C).

First, we focus on the case where markers are present
in the continuum robot. We assume Nm(t) markers are
present at discrete values {sk}Nm(t)

k=1 in Eqn. 1. Then, we
turn to the markerless case by introducing a simple method
to automatically find correspondences between points on a
3D model and its 2D projections (see Sec. IV-D).

A. Surface Representation

Park et al. [23] present a linear representation for the 3D
trajectory of a moving point. Based on this representation,
they provide a linear solution to reconstruct the 3D trajectory
of a moving point from a series of 2D projections.

Inspired by their work, we represent γPt as:

γPt (s) =

Nb∑
i

biψi(s, t), (6)

where {ψi} are the space and time basis functions, Nb is the
number of bases, and b is the vector of coefficients for each
basis function. Each bi is assumed to come from a normal
distribution N(0, σ2

b,i).
The first step of our method is to identify appropriate

basis functions {ψi} and corresponding variance
{
σ2
b,i

}
.

One approach is to use a standard set of basis functions, such
as two-dimensional sine and cosine basis functions, and tune
the variance parameters. Alternatively, the basis functions
can be learned through the use of functional data analysis
[24]. In particular, if we are given several realizations of
the shape of a curvilinear robot over time, we can estimate
the basis functions by computing the covariance of the 3D
coordinates of sample points on the curve. The eigenvectors
of this matrix provide an estimate to the basis functions, and
the eigenvalues are estimates to σ2

b,i. Hereafter, we assume
that the bases are known, which simplifies the complexity

Fig. 2. Shape of the curvilinear device over time can be represented as
a surface. The horizontal axis denotes time and the vertical axis denotes
shape of the device in space.



of the shape recovery problem to the estimation of the
coefficients b.

Before discussing our algorithm in detail, we summarize
the inputs and outputs at a given time t ∈ [0, T ]:

Input
• Duration of task: T
• Number of images: NI

• Times of image acquisitions: tn = (n − 0.5)T/NI for
n = 1, . . . , NI

• Number of markers visible at time t: Nm(t)
• Kinematic model: γKt for t ∈ [0, T ]
• Prior sensor configurations Ctn for 0 < tn ≤ t
• Prior observations: ρtn for 0 < tn ≤ t
• Variance of observation noise: σ2

o
• Number of perturbation bases: Nb

• Perturbation basis: {ψi}Nb
1

• Variance of perturbation bases: {σ2
b,i}

Nb
i=1

Output
• Estimated shape: γ̂t
• Next sensor configuration: Ctn′ , n

′ = min{n | tn > t}

B. Coefficient Estimation

Based on Eqns. 2 and 6, ||γt − γ̃t||2 = (b − b̃)>Mt(b −
b̃) where Mt,ij :=

∫ 1

0
ψi(s, t)

>ψj(s, t) ds. Hence, we can
rewrite Eqn. 5 as:

Ft(b̃) =

∫
(b− b̃)>Mt(b− b̃) ft(b | ρtn , Ctn) db, (7)

where ft(b | ρtn , Ctn) is the conditional probability distri-
bution of having b as the correct coefficients given all the
observations and sensor configurations up to time t.

In this section, we find an estimator that minimizes the
objective function above. That is, we are after

b̂t = arg min
b̃
Ft(b̃). (8)

Our derivation resembles in spirit to that of the Extended
Kalman Filter [25].

The optimal value b̂t must satisfy ∇F (b̂t) = 0, which
implies that

b̂t =

∫
b ft(b | ρtn , Ctn) db∫
ft(b | ρtn , Ctn) db

. (9)

By Bayes’ rule, ft(b | ρtn , Ctn) · ft(ρtn | Ctn) =
ft(ρtn | b, Ctn) · ft(b | Ctn). Furthermore, since b is
independent of the sensor configurations then ft(b | Ct′) =
f(b). These observations imply that

b̂t =

∫
b ft(ρtn | b, Ctn) · f(b) db∫
ft(ρtn | b, Ctn) · f(b) db

. (10)

Note that by definition of our model,

ft(ρtn | b, Ctn) · f(b) ∝ exp
(
− 1

2

(∑Nb

i=1
b2i
σ2
b,i

+ · · ·∑n′−1
n=1

∑Nm(tn)
k=1

||ρtn (sk)−htn (γtn (sk))||2
σ2
o

))
,

(11)
where n′ = min{n | tn > t}. Since this is a complicated
function to evaluate, we assume that σ2

b,i is small and

linearize htn(γtn(s)) around b = 0. That is, htn(γtn(s)) ≈
htn(γKtn(s)) +∇htn

(
γKtn(s)

)∑
i ψi(s, tn)bi, where

∇ht(X) =

 f
(R>t,3X+dt,3)

R>t,1 −
f(R>t,1X+dt,1)

(R>t,3X+dt,3)2
R>t,3

f
(R>t,3X+dt,3)

R>t,2 −
f(R>t,2X+dt,2)

(R>t,3X+dt,3)2
R>t,3

 .
Hence, we have that

ρtn(s)− htn(γtn(s)) ≈ ctn(s)−Atn(s)b (12)

where Atn(s) := ∇htn
(
γKtn(s)

)
[ψ1(s, tn), · · · , ψNb

(s, tn)]
and ctn(s) := ρtn(s) − htn(γKtn(s)). Furthermore, if we
let ctn := [ctn(s1)>, · · · , ctn(sNm(tn))

>]> and Atn :=
[Atn(s1)>, · · · , Atn(sNm(tn))

>]>, then∑
n

∑
k ||ρtn(sk)− htn(γtn(sk))||2
≈
∑
n(ctn −Atnb)>(ctn −Atnb).

(13)

If we let D := diag(σ−2
b,1 , · · · , σ

−2
b,Nb

) then

1
σ2
o

∑
n

∑
k ||ρtn(sk)− htn(γtn(sk))||2 +

∑
i
b2i
σ2
bi

≈ 1
σ2
o

∑
n(ctn −Atnb)>(ctn −Atnb) + b>Db

= (b− v)>Λt(b− v) + 1
σ2
o

∑
n c
>
tnctn − v

>Λtv

where v := Λ−1
t

(
1
σ2
o

∑n′−1
n=1 A>tnctn

)
and Λt := D +

1
σ2
o

∑n′−1
n=1 A>tnAtn .

Therefore, by replacing the previous approximations into
Equation 10, we come up with the following estimate:

b̂t ≈
∫
b exp

(
− 1

2 (b− v)>Λt(b− v)
)
db∫

exp
(
− 1

2 (b− v)>Λt(b− v)
)
db

, (14)

which yield

b̂t ≈

D +
1

σ2
o

n′−1∑
n=1

A>tnAtn

−1 1

σ2
o

n′−1∑
n=1

A>tnctn

 .

(15)

C. Optimal View Selection

In order to determine an optimal sensor configuration, we
define the following cost function:

G(Ct) = E
[
||γt − γ̂t||2 | (ρtn , Ctn) for 0 < tn ≤ t, Ct

]
.

(16)
This cost measures the expected estimation error before the
image is acquired given that a configuration Ct is chosen.

Note that:

G(Ct) =

∫ ∫
||γt − γ̂t||2ftn′−1

(ρt, b|ρtn , Ctn , Ct) dρt db,

and

ftn′−1
(ρt, b|ρtn , Ctn , Ct)
= ftn′−1

(ρt|b, ρtn , Ctn , Ct)ftn′−1
(b|ρtn , Ctn , Ct)

= f(ρt|b, Ct)ftn′−1
(b|ρtn , Ctn).

The last equality follows from the fact: (1) the observation
ρt is independent of previous observations ρtn given the
coefficients b, and (2) b is independent of the configuration
Ct if no image ρt is provided.



Hence, we have

G(Ct) =
∫ ∫
||γt − γ̂t||2f(ρt|b, Ct) dρt · · ·

ftn′−1
(b|ρtn , Ctn) db.

(17)

Let us define

G1(Ct, b) =
∫
||γ̄t − γ̂t||2f(ρt|b, Ct) dρt

=
∫

(α0 − Γηt)
>Mt(α0 − Γηt)f(ηt) dηt

(18)
where ηt is the stacked vector of noise, Γ :=

Λ−1
t

σ2
o
A>t , and

α0 := b− Λ−1
t

σ2
o

(∑n′−2
n=1 A>tnctn +A>t

(
ht(γt)− ht(γKt )

))
.

Hence,

G1(Ct, b) = α>0 Mtα0 +
∫
η>t Γ>MtΓηtf(ηt) dηt

= α>0 Mtα0 + trace(
∫
ηtη
>
t f(ηt) dηt Γ>MtΓ)

= α>0 Mtα0 + σ2
o trace(Γ>MtΓ).

We are left with the task to compute

G(Ct) =
∫
G1(Ct, b)ftn′−1

(b|ρtn , Ctn) db

= σ2
o trace(Γ>MtΓ) + · · ·∫
α>0 Mtα0ftn′−1

(b|ρtn , Ctn) db.
(19)

We proceed, as before, by performing some approxima-
tions. Then, α0 ≈ b − Λ−1

t

σ2
o

(∑n′−2
n=1 A>tnctn +A>t Atb

)
=

H(b − b̂tn′−2
) + h, where h :=

(
I − Λ−1

t

σ2
o
A>t At

)
b̂tn′−2

−
Λ−1

t

σ2
o

(∑n′−2
n=1 A>tnctn

)
and H :=

(
I − Λ−1

t

σ2
o
A>t At

)
. Hence,∫

α>0 Mtα0ftn′−1
(b|ρtn , Ctn) db · · ·

≈ h>Mth+
∫

(b− b̂tn′−1
)>H>Mt · · ·

H(b− b̂tn′−1
)ftn′−1

(b|ρtn , Ctn) db

= h>Mth+ trace(
∫

(b− b̂tn′−1
) · · ·

(b− b̂tn′−1
)>ftn′−1

(b|σtn , Ctn) db H>MtH)

≈ h>Mth+ trace
(

Λ−1
tn′−1

H>MtH
)
.

(20)

Finally, we have that

G(Ct) ≈ σ2
o trace(Γ>MtΓ) + h>Mth+ · · ·

trace(Λ−1
tn′−1

H>MtH).
(21)

We select optimal sensor placement by minimizing G(Ct)
via a sampling based search over the configuration space.
The shape of the device is then estimated by using the
methodology presented in Sec. IV-B.

D. Markerless Scenarios

In the previous subsections, we assumed that there are
Nm(t) markers along the 3D model at time t and we
are provided with observations of these markers. That is,
correspondence between observations and the 3D model is
known, which is required for Eqns. 15 and 21. For the
more general case, we place Nm(t) virtual markers on our
3D kinematic model and find the correspondence to each
observed image.

As Eqn 2 suggests, the actual model is a perturbation
around the kinematic model. Since the basis functions ψi and
the distribution of b are known a priori, we try to generate
an estimation of the 3D model γ̃t based on Eqn 2. γ̃t is then

projected into 2D space via Eqn 4. Let us call the projected
curve ρ̃t.

By defining the distance between a point x and ρt as
d(x, ρ̃t′) = minx′∈ρ̃t′ ||x − x

′||. Then, we quantify the re-
projection error as

∫
s
d(ρ̃t′(s), ρt′)ds. We generate multiple

(∼ 100) models of γ̃t by generating random coefficients
b. The one that minimizes the reprojection errors will be
selected, and its projection in 2D space will be considered
as the projections of virtual markers.

V. RESULTS

We apply our online shape estimation method to contin-
uum robots in simulation. We focus on concentric tube robots
[2], [3], a class of continuum robots composed of several
nested, pre-curved tubes that can each be axially translated
and rotated at the robot’s base. As each tube is translated and
rotated, the tubes elastically interact, enabling the robot to
achieve a wide variety of curvilinear shapes. Concentric tube
robots have the potential to enable new minimally invasive
surgical procedures for cases in which straight instruments
cannot reach the clinical target, including procedures in the
brain [26], [27], lung [28], and heart [29].

A. Evaluation Scenarios

We assume a C-arm rotates a projection image sensor (e.g.
X-ray imager or optical camera) around the continuum robot
in a circle (see Fig. 1). The sensor’s configuration space
is parameterized by an angle Ct ∈ [0◦, 360◦] at time t.
As is typical with clinical C-arms, the radius of the circle
is 40 cm. We set the focal length of the sensor to 1 cm
so projections of the model into the image domain are in
the range of [−Mp,Mp] where Mp = 0.0375 cm is the
projection magnitude.

For our kinematic model of concentric tube robots we
use a mechanically accurate model that considers both the
elastic and torsional interactions of the component tubes [30].
To model uncertainty in the actual robot shape relative to
the kinematic model, we note that much of the error in
kinematic modeling is likely due to the modeling assumption
that inner tubes and outer tubes share the same tangent vector
at the point where the inner tube protrudes from the outer
tube [31]. Hence, we represent modeling noise as a random
deviation in the tangent vector of each tube’s protrusion from
its enclosing tube. We used a Gaussian distribution with a
standard deviation of 0.08 radians, which resulted in average
tip errors between the kinematic model and actual shape
of between 0.25 cm and 0.5 cm, which is consistent with
physical experiments [31].

We consider two scenarios shown in Fig. 3 in which a
concentric tube robot is used to reach a specific location
within a lung. The final configuration in each scenario is
approximately 7.5 cm in length. The model had Nm(T ) =
138 for scenario 1 and Nm(T ) = 108 for scenario 2 and
present results for the markerless approach.

We compare three methods for estimating robot shape
over the course of a procedure: (1) the kinematic model,



t = 1st image, Ct = 157◦ t = 2nd image, Ct = 175◦ t = 3rd image, Ct = 258◦ Scenario 1, t = T

(a) Scenario 1

t = 1st image, Ct = 166◦ t = 2nd image, Ct = 249◦ t = 3rd image, Ct = 314◦ Scenario 2, t = T

(b) Scenario 2

Fig. 3. Scenarios 1 and 2 involve maneuvering a concentric tube robot, which is deployed via a bronchoscope (cyan), through bronchial tubes in a human
lung to clinical targets in simulation. We show the actual concentric tube robot shape (green), the kinematic model (blue), and the 3D reconstructed shape
using our optimal method (red dots) after each image acquisition and at the final time T . Inlayed are the simulated camera views from the viewpoint
selected by our approach. The camera views include the actual concentric tube robot shape (green), simulated noisy segmented points along the image of
the actual concentric tube robot that are used for the reconstruction (black dots), and the kinematic model for reference purposes (blue).

(2) the shape estimate obtained via our method using ran-
dom sensor placements in which images are captured by
selecting random sensor configurations Ct from a uniform
distribution between 0◦ and 360◦, and (3) the shape estimate
obtained using our method with optimal sensor placements.
We also vary NI (the number of images taken during the
procedure) between 1 and 10, and we assume images are
taken at equal time intervals. We compute the error between
a shape estimate M ∈ {kinematic, random, optimal} and
the continuum robot’s actual shape at time t as

EM (t) =

√√√√Nm(t)∑
k=1

3∑
j=1

(γt,j(sk)− γMt,j(sk))2

Nm(t)
. (22)

B. Learned Basis Functions

We used the learning approach in Sec. IV-A to define
the basis functions. This approach used 200 simulated runs
with the noise models described above. Fig. 4 illustrates a
set of basis functions learned for our first scenario. As a
representative set, we show the first 3 learned basis functions
for the y-coordinate of the continuum robot, which explain
over 99% of the total variance in the data. We note that due
to the variable length of the device over time, the bases are
not defined over a square domain. Furthermore, these bases

are not smooth. Ridges are present at locations associated
with the junction between concentric tubes.

C. Shape Estimation Results

For each scenario and online shape estimation method, we
ran 200 trials with the actual robot shape being determined
by the kinematic model with random noise as discussed
above. For each trial we computed the error as a function
of time using equation 22. We illustrate the error for the
case of NI = 3 for scenarios 1 and 2 in Fig. 5. When using
the kinematic model (top), the error grows as the procedure
progresses. For shape estimates obtained using our method,
at every time point where an image is obtained (shown by the
red bar) the error in reconstruction declines. As the amount
of time increases since the last acquired image, the error
slowly rises as imaging data gradually becomes obsolete and
the estimation becomes more dependent on the kinematic
model. After 2 images, the error drops as more images are
acquired until sub-millimeter error is achieved.

We also evaluated the error of the tip location of the device
at the end of the procedure. Using the kinematic model, the
tip error averaged 2.9 mm for scenario 1 and 3.7 mm for
scenario 2. For scenario 1, using our approach the tip error
was reduced to 1.1 mm with NI = 5 images and less than 1
mm with NI = 8 images. For scenario 2, using our approach



Fig. 4. Basis functions for the y-coordinate of the continuum robot.

the tip error was reduced to 1 mm with NI = 5 images
and less than 0.8 mm with NI = 8 images. Our method
accurately estimates the entire shape of the continuum robot,
including the tip location.

We also evaluated 3D shape estimation accuracy as a
function of the number of X-ray images NI taken during
the procedure. For each trial, we compute the average error:

ĒM =

∫ T

t=0

EM (t)

T
dt. (23)

In Fig. 6, we display the mean of the average error over
the 200 trials for each scenario for the three methods for
estimating robot shape. In both scenarios, our estimation
approach with optimal viewpoint selection performs better
than our approach with random sampling of viewpoints
and substantially better than the kinematic model alone for
any given positive number of images chosen. As expected,
accuracy improves as the number of images increases, but
the improvement levels off quickly. The results indicate that,
when using our approach with optimal viewpoint selection,
only a small number of X-ray images is required to ac-
curately and continuously estimate continuum robot shape
during a task.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new method for continuously estimating
the shape of a continuum robot over the duration of a medical
procedure while using a small number of X-ray projection
images (e.g., radiographs or fluoroscopy images). Our new

(a) Scenario 1

(b) Scenario 2

Fig. 5. Mean error EM (t) as a function of time for scenarios 1 and 2
for three shape estimation approaches: the kinematic model, our estimation
approach with random sampling of viewpoints, and our estimation approach
with optimal viewpoint selection. We set NI = 3 and acquire images at the
times of the red bars. The shaded envelope shows the range of the middle
50% of the data.

method represents the shape of the continuum robot over
time as a deformable surface which can be described as a
linear combination of time and space bases. We estimate the
bases by effectively combining the robot’s shape estimate
from its kinematics model with data extracted from X-
ray projection images as they are taken. We optimize the
viewpoint of the X-ray sensor for each image to maximize
the quality of the shape estimate.

We evaluated our method using simulated concentric tube
robot procedures. We demonstrated that, using only 3 to 10
projection images, we can estimate continuum robot shape
continuously over time with significantly higher accuracy
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Fig. 6. Mean average error ĒM as a function of the number NI of
images acquired for scenarios 1 and 2 for three shape estimation approaches:
the kinematic model, our estimation approach with random sampling of
viewpoints, and our estimation approach with optimal viewpoint selection.
With only a small number of X-ray images, our method can accurately
estimate continuum robot shape.

than kinematics modeling alone. In future work, we plan
to investigate methods to further improve accuracy and
to evaluate our approach in new scenarios and for other
continuum robots.
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