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Abstract— Many tasks in robot-assisted surgery, food handling,
manufacturing, and other applications require planning and
controlling the motions of manipulators or other devices that
must interact with highly deformable objects. We present a
unified approach for motion planning under uncertainty in
deformable environments that maximizes probability of success
by accounting for uncertainty in deformation models, noisy
sensing, and unpredictable actuation. Unlike prior planners that
assume deterministic deformations or treat deformations as a
type of small perturbation, our method explicitly considers the
uncertainty in large, time-dependent deformations. Our method
requires a simulator of deformable objects but places no signif-
icant restrictions on the simulator used. We use a sampling-
based motion planner in conjunction with the simulator to
generate a set of candidate plans based on expected deformations.
Our method then uses the simulator and optimal control to
numerically estimate time-dependent state distributions based on
uncertain parameters (e.g. deformable material properties or ac-
tuation errors). We then select the plan with the highest estimated
probability of successfully avoiding obstacles and reaching the
goal region. Using FEM-based simulation of deformable tissues,
we demonstrate the ability of our method to generate high quality
plans in two medical-inspired scenarios: (1) guiding bevel-tip
steerable needles through slices of deformable tissue around
obstacles for minimally invasive biopsies and drug-delivery, and
(2) manipulating planar tissues to align interior points at desired
coordinates for precision treatment.

I. INTRODUCTION

Many tasks in robot-assisted surgery, food handling, man-
ufacturing, and other applications require planning and con-
trolling the motions of manipulators or other devices that must
interact with highly deformable objects. Due to their difficulty,
tasks involving uncertainty and highly deformable objects are
still routinely completed manually rather than automatically or
semi-autonomously using robot assistance. Automating these
tasks could increase productivity and improve outcomes by
decreasing the time and costs associated with manual operation
while simultaneously increasing accuracy and precision.

Motion planning for tasks in highly deformable environ-
ments is challenging because it requires the robot to anticipate
deformations in its environment while simultaneously consid-
ering uncertainty in those deformations and in its sensing of
the system state. Prior work in motion planning has considered
the effect of predictable deformations with no uncertainty.
These methods often use a physically-based simulation of
deforming objects to generate feasible motion plans [17, 4, 11,
24, 10]. These planners assume that the simulator accurately
predicts deformations of the objects in the environment, which
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Fig. 1. We illustrate plans for guiding a mobile robot that moves on a
deformable plane and pushes the surface forward as it advances. (This model
is applicable to steering medical needles through soft tissue.) Current motion
planning solutions for deformable environments either assume deterministic
deformations (b), which may result in paths through narrow passageways
that are highly likely to result in obstacle collision, or compute plans in a
static world and consider deformations as a type of perturbation (c), which
neglects the large time-dependent motions of the obstacles and target. Our
unified framework (d), which accounts for uncertainty in deformation models,
noisy sensing, and unpredictable actuation, results in a significantly higher
probability of success (ps) in plan execution.

is seldom the case. Other prior work in motion planning has
focused on uncertainty and modeled deformations as a type of
uncertain perturbation, enabling the use of standard feedback
controllers [3, 31]. However, these approaches will not work
effectively for problems involving large, history-dependent
deformations that fall outside the realm of small perturbations.
For example, in robot-assisted surgery and food handling, the
robot must interact with tissues that deform significantly and
in a history-dependent manner, and these large deformations
cannot be predicted with high accuracy due to uncertainty in
the underlying tissue properties.

Our goal is to compute motion plans that maximize the
probability of success in challenging environments with un-
certain deformations. We present a unified approach that com-
bines motion planning with sensing and feedback control for



generation and execution of robust motion plans in deformable
environments. We consider uncertainty due to noise in actua-
tion and sensor measurements, as well as uncertainty in defor-
mations arising from erroneous material model assumptions
and inaccurate robot/environment interaction models. To the
best of our knowledge, our method is the first framework that
enables effective computation of motion plans in environments
with both large deformations and substantial uncertainty.

Our method requires a simulator of deformable objects.
We use the finite element method (FEM) for simulating
deformations in our examples, but our approach is generally
applicable to other simulation techniques as well. We use
a sampling-based motion planner in conjunction with the
simulator to generate a set of candidate motion plans that
assume expected deformations. Our method then uses the
simulator and optimal control to numerically estimate time-
dependent state distributions based on uncertain parameters
(e.g. deformable material properties or actuation errors). We
use this information to generate an optimal linear-quadratic
(LQG) feedback controller for each candidate plan to mitigate
any uncertainty in the expected deformations that occur during
the actual execution of the plan. Since computing an optimal
controller using the full deformable system state is computa-
tionally prohibitive, we observe that it is possible to formulate
the optimal control problem using a subset of the full state
space. We then use an extension of the LQG-MP framework
[31] to select the plan with the highest estimated probability of
successfully avoiding obstacles and reaching the goal region.

We demonstrate the ability of our method to generate high
quality plans in two challenging domains. In the first domain,
we compute optimal motion plans for a nonholonomic mobile
robot that traverses a deformable plane and pushes the surface
forward as it advances (as shown in Fig. 1). This model
is equivalent to the challenge of guiding bevel-tip steerable
needles through highly deformable tissue around obstacles
to clinical targets for biopsies and drug delivery under 2D
image guidance. In the second domain, the objective is for a
manipulator to automatically reposition targets in the interior
of a deformable object by applying forces at given points
on the object’s surface. This problem arises in manufacturing
as well as in alignment of clinical targets in soft tissue for
precision treatment. We demonstrate that our method signifi-
cantly improves the probability of success compared to prior
approaches based on standard feedback controllers or motion
planners that do not simultaneously consider deformations and
uncertainty.

II. PRIOR WORK

Modeling of deformable objects: Physically-based simulation
of deformable objects is a well-studied area in solid mechanics
and computer graphics [21]. Mass-spring systems, boundary
element methods, and finite element methods (FEM) are a few
of the popular simulation techniques available. The choice of
the simulation technique is application-specific and influences
the accuracy of the estimated deformations.
Motion planning for deformable objects: Prior work has

investigated motion planners for deformable robots in static
environments [17, 4, 11] and in deformable environments [2,
24, 10]. These methods assume deformations can be perfectly
predicted and do not take into account uncertainty due to
noisy actuation, noisy sensor measurements, or uncertainty in
deformation modeling.

Manipulation of internal target points inside a deformable
object by a robotic system is necessary in many medical and
industrial applications. Wada et al. [33] and Das et al. [8]
propose a robust control law for positioning the internal target
points by manipulating the boundary points using robotic
fingers. Mallapragada et al. [19] and Torabi et al. [30] propose
a system to displace an internal target to a needle’s trajectory
for image-guided biopsy procedures. These methods use a PD
feedback controller that requires mass-spring systems or linear
FEM as the deformation simulation technique. These methods
do not address motion planning in complex environments with
obstacles and large deformations.

A significant body of work exists on motion planning and
control for bevel-tip steerable needles. Tissue deformation
(without uncertainty) has been taken into account using 2D
FEM simulation of soft tissue [2]. Motion uncertainty has been
considered in 2D for cases with negligible deformations [3,
1]. Planners for static 3D environments with obstacles have
been proposed [9, 22]. Hauser et al. [13] use a fast feedback
controller for guiding steerable needles in deformable tissue
but do not address obstacle avoidance. Recently, Van den Berg
et al. [32] proposed an LQG feedback controller for addressing
motion and sensing uncertainty in steerable needle insertion,
but this work does not take into account displacement of the
target and obstacles due to tissue deformation and uncertainty
resulting from deformation. No prior work has successfully
computed motion plans in highly deformable environments
with uncertainty and obstacles.
Motion planning under uncertainty: Uncertainty in motion
planning typically originates from noisy actuation and sensing,
partial state observations, and uncertainty about the environ-
ment. Planners that specifically take into account motion un-
certainty include [3, 15]. Roy et al. [25] also consider sensing
uncertainty while planning in dynamic environments. Other
approaches blend planning and control by defining a global
control policy over the entire environment using Markov
decision processes (MDPs) [3] and partially-observable MDPs
(POMDPs) [16], but these suffer from issues of scalability.
Another class of planners focuses on uncertainty about the
environment and obstacles [5, 12]. Recently, several methods
have been proposed that take into account motion and sensing
uncertainty to optimize a user-specified planning objective [23,
28, 31]. These methods do not explicitly take into account
large, time-dependent deformations in the environment.

III. PROBLEM DEFINITION

We consider a robot interacting with a deformable environ-
ment. We assume that time is discretized into stages of equal
duration. At each time step t, the robot executes a control ut
from its control input space U = Rq . Our objective, formalized



below, is to compute a motion plan and associated feedback
controller to maximize the probability of success.

Our planner requires as input a simulator of the deformable
system that models the motions and deformations of the robot
and the surrounding environment. Given a model of objects in
the environment, a set of problem-specific simulation param-
eters s, and a control input ut for the robot, the simulator g
computes the expected motions and deformations of the robot
and environment. We define the state space of the deformable
system to be Y . A deformable system state yt ∈ Y at time
t encodes all necessary information to save the state of the
simulator and be able to restart it, including deformations,
dynamics parameters, friction states, the robot configuration,
etc. Formally, the simulator g evolves as:

yt+1 = g(yt,ut, s). (1)

The simulator g acts as a deterministic function, but the
deformations and motions of the robot and environment may
be highly uncertain. The material properties of deformable ob-
jects (e.g. Young’s modulus and Poisson’s ratio1), interaction
parameters such as friction, and deviation from commanded
actuation are all uncertain and can significantly affect the
motions and deformations of the robot and environment. Due
to this uncertainty, we assume s comes from some known
distribution S. For simplicity of notation, we assume that s is
defined such that its expected value is 0. Selecting different
values of s ∼ S allows us to use the deterministic simulator
to consider variations in outcome.

The dimension of the deformable system state space Y is
very high, possibly containing thousands of elements for large,
complex meshes of deformable objects. Computing optimal
control policies directly in this high-dimensional state space
would be computationally prohibitive. Furthermore, while the
initial geometry may be known, it is unlikely that it will
be possible to sense and track the entire deformation over
time when executing a plan. Instead of working with the
entire deformable state Y , we pose the control problem by
considering a reduced-dimensional space X ∈ Rp that only
contains the attributes that define the state of the robot and/or
points in the deformable environment that are necessary for
collision detection or goal detection. For instance, when ma-
nipulating deformable objects, the reduced state only includes
the robot configuration and select points, on the boundary of
the deformable objects, whose position can be sensed.

We assume that X ⊂ Y . Given a state x?t ∈ X at time t
and the applied control input u?t ∈ U , the expected state at
time t+ 1, x?t+1 ∈ X , evolves as:

x?t+1 = f(x?t ,u
?
t , s) (2)

where f is based on the simulation g (Eqn. 1). It is important
to note that during the actual execution of a given plan, the true

1The Young’s modulus characterizes the stiffness of elastic materials and
the Poisson’s ratio characterizes the compressibility of a deformable material
[21]. These quantities are used by simulators to sufficiently describe isotropic,
linearly elastic material properties, though additional physical quantities may
be needed to describe the behavior of nonlinear elastic and plastic materials.

Fig. 2. Schematic overview of our method. The deformable simulator is
used for motion planning, model linearization and for selecting a plan that
maximizes the probability of success.

state xt departs from the expected output of the deterministic
simulation because of uncertainty arising from noisy control
inputs and uncertainty in the deformation models.

During the actual plan execution, we also assume that
sensors provide us with partial and noisy information about
the state according to a given stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt) (3)

where zt is the measurement obtained at time t that relates to
the true state xt through function h, and nt is the measurement
noise that we assume is drawn from a zero-mean Gaussian
distribution with known variance Nt. It should be noted that
some regions of the environment may have better sensing than
others and our method automatically takes this into account.

The motion planning problem under uncertainty in de-
formable environments can be formally stated as follows:
Objective: Given a start state xstart ∈ X and a goal region
X goal ⊂ X , generate a motion plan and associated feedback
controller that maximizes the probability of successfully avoid-
ing obstacles and reaching the goal region.
Input: Deformable system simulator g, deformable system
model parameters s and their distribution S, sensor observation
model, start state xstart, and goal region X goal ⊂ X .
Output: A motion plan composed of a series of states and cor-
responding control inputs, π : (x?0,u

?
0, . . . ,x

?
` ,u

?
` ), 0 ≤ t < `

such that x?0 = xstart,x?` ∈ X goal, and the associated feedback
controller for handling uncertainty arising from simulation
errors, noisy sensing, and unpredictable actuation.

IV. APPROACH

We provide a schematic overview of our method in Fig. 2.
We use a simulation-based RRT motion planner [18] to gener-
ate a set of candidate plans. We then use the simulator and nu-
merical methods to linearize the model around each computed
plan to compute a linear-quadratic Gaussian (LQG) controller
[27]. We use an extension of the LQG-MP framework [31]
to select the plan with the highest estimated probability of
successfully avoiding obstacles and reaching the goal region.

A. Motion Planning

Given a start state xstart ∈ X and a goal region X goal ⊂
X , we use the RRT motion planner [18] to generate a set of
feasible motion plans Π that connect the start state and the
goal region and avoid obstacles in the environment. The plans
are generated assuming expected deformations (i.e. there is no
uncertainty in the deformations).
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u?t + ê2 · ε

x̄2
t+1

(c) Numerical estimation of matrix Bt

Fig. 3. Model linearization computed numerically using the simulator. (a) Nominal plan π : (. . . ,x?
t−1,u
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t−1,x

?
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?
t ,x

?
t+1,u

?
t+1, . . .) computed using the

motion planner. The Jacobian matrices At and Bt are estimated separately using the simulator. (b) We perform K = 2p independent simulation runs from
state x?

t−1 where control input u?
t−1 perturbed by Gaussian noise wk, k ∈ {1, 2, . . . ,K} and record the deviation from state x̄k

t = (xt − x?
t ) for each

run. We then apply the nominal control input u?
t to each of these perturbed states and record the deviation from the subsequent state x̄k

t+1. These deviations
are used to solve a over-determined linear system to solve for all elements of the At matrix. (c) We perform K = q independent simulation runs from the
nominal state x?

t by perturbing individual elements of the control input u?
t by êk · ε, k ∈ {1, 2, . . . ,K}, where êk : (. . . , 0, 0, 1k, 0, 0, . . . ) and record the

deviation from the subsequent state x̄k
t+1. These deviations are used to determine the individual columns of the matrix Bt.

The RRT algorithm incrementally builds a tree-like structure
over the state space X . Each node in the RRT tree stores the
state x as well as the full deformable system state y ∈ Y to
enable continuation of the simulation if the node is expanded.
At each iteration of the algorithm, we generate a random state
xsample ∈ X and use a nearest-neighbor algorithm to identify
the node in the tree closest to xsample. We then attempt to
expand the tree towards xsample by choosing the best known
control input u ∈ U obtained by sampling. For each node
expansion, we simulate the deformations in the environment
starting from the deformed system state stored at the node.

The RRT tree is grown until the maximum number of
permissible iterations is exceeded. A nominal plan composed
of a sequence of states and corresponding control inputs
π : (x?0,u

?
0, . . . ,x

?
` ,u

?
` ) can be extracted by traversing the

tree from a node in the goal region X goal to the root of
the tree containing the start state xstart. Multiple such plans
are extracted from the tree to generate a set of candidate
motion plans Π. It is important to note that the motion plan
selected for execution is selected from this set Π and may not
necessarily be globally optimal.

B. Model Linearization
Executing a plan computed in the previous section in an

open-loop manner is unlikely to reach the goal region in
practice because of uncertainty due to unpredictable actuation,
noisy sensor measurements, and uncertainty arising from the
deformable object simulation itself. We create a feedback
controller to mitigate these uncertainties.

In general, physically-based deformable object simulations
can be highly nonlinear, and system identification for nonlinear
control for such simulators can be difficult. However, since
the deformable system is controlled to stay close to the
computed plan, we approximate these nonlinear models by
locally linearizing the model around the plan π. In essence,
we consider uncertainty about the expected deformation rather
than taking the prior approach of considering the deformation
itself to be a type of uncertainty.

It is convenient to express the control problem in terms
of the deviation from the plan. By defining the deviation in

the state as x̄t = (xt − x?t ), deviation in control input as
ūt = (ut − u?t ), and deviation in measurement as z̄t =
(zt − h(x?t ,0)), the dynamics and observation models given
by Equations (2) and (3) can be linearized as:

x̄t+1 = Atx̄t +Btūt + mt, mt ∼ N (0,Mt), (4)
z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt)

where

At =
∂f

∂x
(x?t ,u

?
t ,0), Bt =

∂f

∂u
(x?t ,u

?
t ,0),

Ht =
∂h

∂x
(x?t ,0), Wt =

∂h

∂n
(x?t ,0)

are the Jacobian matrices of f and h along a given plan π.
If the dynamics model f is known, then the Jacobian ma-

trices can be computed analytically. In the case of physically-
based simulators for deformable objects, it is typically difficult
or impossible to compute these Jacobian matrices analytically
because the simulations in general cannot be written using
closed-form formulas and are not directly differentiable. Given
a nominal plan π : (. . . ,x?t−1,u

?
t−1,x

?
t ,u

?
t ,x

?
t+1,u

?
t+1, . . .),

we numerically estimate the Jacobian matrices At and Bt at
each time-step along the plan.

The Jacobian matrices of the given observation model h,
Ht and Wt, are computed analytically. The stochastic noise
term mt models the uncertainty due to simulation parameters
s ∼ S and is assumed to be drawn from a zero-mean Gaussian
distribution with variance Mt, which is also numerically
estimated as described below.
Numerical estimation of matrix At: In the absence of any
deviation from the nominal control input u?t , the Jacobian
matrix At ∈ Rp×p describes how the deviation in state evolves
from x̄t to x̄t+1 when the corresponding nominal control
input u?t is applied to the perturbed state xt = (x?t + x̄t).
This is given by the relation x̄t+1 = Atx̄t. By performing
K = p independent simulation runs from states (x?t +x̄kt ), k ∈
{1, 2, . . . ,K} to states (x?t+1 + x̄kt+1), we can appropriately
assemble the deviations in the consecutive states into matrices
X̄t and X̄t+1 and estimate the matrix At numerically as
At = X̄t+1X̄

−1
t .



It is not possible to perturb the nominal state x?t to (x?t +x̄t)
within a physically-based deformable simulator. For instance,
in the case of a needle procedure, this would correspond
to the displacement and re-orientation of the tip, which is
not possible without affecting the entire needle trajectory and
adjusting needle/tissue interaction parameters. So instead we
perform K independent simulation runs from the previous
state x?t−1, where each run k ∈ {1, 2, . . . ,K} involves the
application of control input u?t−1 perturbed by noise wk,
where we assume that wk is drawn from a user-specified zero-
mean Gaussian with variance W . This generates a set of states
(x?t + x̄kt ), k ∈ {1, 2, . . . ,K} within the simulator, as shown
in Fig. 3(b). We then perform K independent simulation runs
from the set of states (x?t+x̄kt ) by applying the nominal control
input u?t to the robot to generate a set of states (x?t+1 + x̄kt+1).
We then assemble the deviations from the nominal state x̄kt+1

into a matrix X̄t+1. The matrix At can then be estimated as
described above. In practice, we found that performing K(>
p) simulation runs and solving the resultant over-determined
least-squares problem AtX̄t = X̄t+1 by taking the Moore-
Penrose pseudo-inverse of matrix X̄t yielded better results at
the expense of computational overhead. We used K = 2p
simulation runs for all our experiments.
Numerical estimation of matrix Bt: In the absence of any
deviation from the nominal state x?t , the matrix Bt ∈ Rp×q
describes the relationship between deviations in control input
ūt and the deviation in the subsequent state x̄t+1. This is
given by the relation x̄t+1 = Btūt. We perform K = q
independent simulation runs from the nominal state x?t by
perturbing individual elements of the control input u?t by
êk · ε, k ∈ {1, 2, . . . ,K}, where êk is a unit vector given
by (. . . , 0, 0, 1k, 0, 0, . . . ) and ε is a user-defined perturbation
constant. This generates a set of states (x?t+1+x̄kt+1), as shown
in Fig. 3(c). The deviations x̄kt+1 scaled by the perturbation
constant ε comprise the individual columns of the matrix Bt.
Numerical estimation of matrix Mt: The stochastic noise
term mt models uncertainty in the simulation parameters
s ∼ S. It is reasonable to assume that the uncertainty
arising from a large number of sources can be modeled as
a Gaussian distribution. Here, mt is assumed to be drawn
from a zero-mean Gaussian distribution with variance Mt.
Since the uncertainty distributions modeling the noise in
control inputs and variance in simulation parameters S are
supplied by the user, the variance Mt can be estimated a
priori by performing simulations by perturbing the simulation
parameters s independently and estimating the parameters of
the Gaussian distribution that models the resulting uncertainty.

C. LQG Control

Given linear(ized) dynamics and observation models and a
quadratic cost function, the optimal approach for executing
a plan is to use a linear-quadratic regulator (LQR) feedback
controller in combination with a Kalman filter for state estima-
tion. This ensemble is called linear-quadratic Gaussian (LQG)
control [27] and is provably optimal for state estimation and
control for linear systems.

We use an extended Kalman filter (EKF) [26] for optimal
state estimation during actual execution of the plan. The
Kalman filter keeps track of the estimate x̃t and variance of
the deviation in true state x̄t during control. It continually
performs two steps; a process update to propagate the applied
control input, and a measurement update to incorporate the
obtained measurement.

We compensate for uncertainty during plan execution by
using an LQR feedback controller that aims to keep the true
state close to the corresponding nominal state in the plan. The
LQR formulation seeks the optimal control inputs by mini-
mizing a quadratic cost function that seeks to simultaneously
minimize deviations from the plan and deviations from the
control input. Solving the cost function gives the control policy
ūt = Ltx̃t, for feedback matrices Lt that are pre-computed
using a standard recursive procedure. We refer the reader to
[27, 31] for additional details.

D. Selecting a High Quality Plan

We use an extension of the LQG-MP framework [31]
to select a plan with the highest estimated probability of
successfully avoiding obstacles and reaching the goal region.
Given the LQG controller for a plan π, we compute the
a priori distributions of the deviation in the true state x̄t
and the estimated deviation x̃t. These distributions are used
to approximately compute the probability of collisions with
obstacles during actual plan execution. We also estimate the
probability of reaching the goal region by sampling the a priori
distribution at the final time-step and determining how many
of those samples lie within the goal region. It is important to
take into account the deformed configurations of the goal and
obstacles in the environment at each time-step along the plan.
The cumulative probability of success is then computed as the
product of the two estimated probabilities. We refer the reader
to Van den Berg et al. [31] for additional details.

V. EXAMPLE APPLICATIONS AND RESULTS

We present results for two scenarios with different planning
objectives: (1) guiding a nonholonomic mobile robot (such as a
bevel-tip steerable needle) through a deformable environment
with obstacles to reach a desired goal, and (2) externally
manipulating a planar deformable object to reposition internal
points to desired coordinates. We implemented the planner in
C++ and tested it on a 3.33 Ghz Intel R© i7TM PC.

A. Nonholonomic Robot

We apply our method to a simple car model without
reverse [18] that traverses a planar deformable environment
and pushes the surface forward as it advances. This model
is equivalent to a simplified model of the bevel-tip steerable
needle moving through a planar slice of deformable tissue [20].
These needles bend when inserted into soft tissue and can be
steered within tissue by re-orienting the bevel tip. Inserting
needles into tissues also causes the surrounding tissue to
deform, thereby introducing a challenging planning problem.



Fig. 4. Actuation noise, in the absence of feedback, causes the nonholonomic
robot to veer away from the goal region in the deformable environment (left).
Our feedback controller compensates for this noise to guide the robot to the
goal in the deformable environment (right).

We model the deformable environment as a unit square that
is fixed at the four corners, as shown in Fig. 1(a). The state
of the robot xt = (xt, yt, θt) is a vector consisting of its
position (xt, yt) and its orientation θt at time t. We do not
include any points from the deformable environment in the
definition of the state xt. The control input ut = (vt, φt)
consists of the speed of the robot vt ∈ [0, vmax] and the steering
angle φt ∈ [−φmax, φmax]. For a bevel-tip steerable needle, the
continuous steering angle can be transformed into duty-cycling
parameters for actuation at the needle base [20]. The state of
the robot then evolves as:

xt+1 =

 xt + τvtcosθt
yt + τvtsinθt

θ + vttan(φt)/(rmintan(φmax))


where τ is the duration of a time-step and rmin is the minimum
turning radius of the nonholonomic robot. In our experiments,
we used vmax = 0.5, φmax = π/3, τ = 0.1, and rmin = 0.25
where all quantities are expressed in appropriate units.

Inspired by needle steering, the motion of the robot exerts
an interaction force of magnitude f int = 1 in the direction of
its movement, thus deforming the environment. We model the
environment as an isotropic, linearly elastic material and use
a linear FEM simulator to compute the deformations in the
environment as a result of the applied forces.

We also assume that the robot only receives feedback on
its position and not its orientation, i.e. h(xt) =

[ x
y

]
. This

is a reasonable assumption since current medical imaging
technologies such as ultrasound do not allow for measuring
the full state of the needle tip (as the imaging resolution
is often too low to infer its orientation). The noise in the
sensor measurement is modeled as nt ∼ N (0, Nt), where
the variance in sensing noise Nt is known.

Given the initial state xstart of the robot and the goal region
X goal, the planning objective for the robot is to move to the
goal region without colliding with any obstacles (Fig. 1(a)).
We used the RRT algorithm as described in Sec. IV-A to
generate a set of 100 candidate motion plans, which took
81 seconds. Fig. 1(b) shows one such plan. We executed the
remainder of our method to select a high quality plan, as shown
in Fig. 1(d). This process took 57 seconds. The output of our
method is the selected motion plan and the corresponding LQG
controller.

To demonstrate the effectiveness of the controller computed

Fig. 5. A much stiffer than expected material composing the deformable
environment causes the robot to miss the goal region in the absence of
feedback (left). Our controller guides the robot back to the goal region even
with high variance in material parameters (right).

by our method, we show actual plan executions under actu-
ation noise (Fig. 4) and varying material properties (Fig. 5).
The controller computed by our method is successfully able to
correct for uncertainty in actuation and deformation modeling.

To evaluate our method, we simulate 1000 executions of
the planner solution to evaluate the percentage of successful
plan executions. Execution of a plan is considered successful
if the goal region is reached and obstacles are avoided. It is
important to note that each simulated plan execution assumes
no knowledge of the internal deformable model being used.
We considered the following scenarios to model uncertainty
in actuation, sensing, and deformation modeling:

1) Material properties (low variance): We model the en-
vironment to have Young’s modulus E ∼ N (50.0, 5.0)
and Poisson’s ratio ν ∼ N (0.4, 1e−04).

2) Material properties (high variance): We model the en-
vironment to have Young’s modulus E ∼ N (50.0, 75.0)
and Poisson’s ratio ν ∼ N (0.4, 4e−04).

3) Actuation noise: The control inputs
[ vt
φt

]
are perturbed

by noise drawn from a zero-mean Gaussian distribution
∼ N (0,

[
0.005 0.0
0.0 0.025

]
).

4) Number of mesh elements: The number of elements in
the discretized mesh of the environment is uniformly
distributed between 50 and 1000 elements, where the
expected mesh contains 175 elements.

5) Interaction force: We model the interaction force f int to
be uniformly distributed between 0 (no deformations)
and 2 units.

We compared the results of our method to two existing
approaches. First, we consider RRT with deformations in
which we use a RRT plan as computed in section IV-A but do
not explicitly consider uncertainty (i.e. no feedback control).
Second, we consider LQG-MP only in which a plan is selected
by LQG-MP [31] from a set of candidate plans computed in
a static environment, which treats deformation as a source of
uncertainty. For each approach, we simulate plan execution
1000 times using the scenarios above.

As shown in Fig. 6, our method consistently yields a sig-
nificantly higher probability of success compared to existing
approaches that plan in deterministic deformable environments
without uncertainty or consider deformation as a type of
uncertain perturbation. The poor rate of success of the RRT
with deformations plan is due to the lack of any feedback
control to compensate for uncertainty due to actuation noise



Fig. 6. Percentage of successful plan executions. The plan chosen by our
method consistently outperforms plans that do not simultaneously account for
both uncertainty and deformations.

and deformation modeling errors. On the other hand, the LQG-
MP plan has a poor rate of success because it fails to account
for large time-dependent motions of the goal and obstacles
due to deformations.

We also evaluated the impact of the LQG-MP plan selection
step of our method. Averaging across all the scenarios consid-
ered above, our method without the LQG-MP step performed
34% better than RRT with deformations and 17% worse than
our complete method. The feedback controller significantly
improves the rate of success by mitigating uncertainty encoun-
tered during execution of the plan. The use of the LQG-MP
step further improves the rate of success at the expense of
additional computation.

B. Internal Point Manipulation

We also apply our method to external manipulation of planar
deformable objects to reposition internal points to desired
coordinates. This is an important step in many manufacturing
processes such as creating seamless garments and mating
flexible parts [33, 8]. It could also be useful in aligning clinical
targets in soft tissue for precision radiation cancer treatment
[7] or to expose targets for access via minimally invasive
needle insertion procedures [19, 30]. Automatic repositioning
of internal targets via external forces could result in greater
accuracy and faster recovery times.

We model the deformable object as shown in Fig. 7(a).
The state x =

[
pinternal

Pboundary

]
includes the position of the internal

target point pinternal and position of points located on the
environment boundary Pboundary (included for sensing and
collision detection). The control input ut = f ext includes
external forces being applied by the three manipulators (Fig.
7(a)). We use a geometrically nonlinear FEM simulator to
accurately simulate the large deformations of the object.

We assume that only the positions of points on the bound-
ary can be sensed using imaging modalities, i.e. h(xt) =[
Pboundary

]
. The position of the internal point is estimated using

the Kalman filter during plan execution. The noise in the
sensor measurements is modeled as nt ∼ N (0, Nt), where
the variance in sensing noise Nt is known.

Given the initial state xstart and the goal region X goal, the
planning objective is to move the internal point to the goal

(a) Initial model (b) Our method

(c) RRT applied to stiffer
material

(d) Our method applied to
stiffer material

(e) RRT applied to differing
mesh

(f) Our method applied to
differing mesh

Fig. 7. External manipulation of deformable tissue to reposition an internal
target point. (a) Three external manipulators (red dots) manipulate the tissue
by applying external forces. Only the position of points on the boundary (black
dots) can be sensed. The objective is to reposition the target point (blue dot) to
the goal region (green) while avoiding the static obstacle (gray). The bottom
right of the tissue is fixed. (b) Expected outcome of the plan computed by
our method. The trace of the manipulator positions over time is shown in
red. (c) Variation in material parameters causes collisions in the absence of
feedback. (d) Our controller successfully guides the internal point to the goal
region while avoiding collisions with the obstacle. (e) Failure of the planning
objective when the number of mesh elements is increased. (f) Modeling errors
due to the mesh discretization are mitigated by the controller.

region such that the deformable object does not collide with
any obstacles. We used the RRT algorithm to generate a set
of 100 candidate motion plans, which took 438 seconds. We
executed the remainder of our method to select a high quality
plan, as shown in Fig. 7(b). This process took 386 seconds.

Figures 7(c) and 7(d) show actual execution of the selected
plan without and with feedback when there is variation in ma-
terial parameters. Figures 7(e) and 7(f) show actual execution
of the selected plan without and with feedback when simula-
tion errors are introduced due to a differing discretization of
the environment geometry. For both these experiments, we use
the same plan and corresponding controller as computed by
our method. In both cases, our method successfully achieves
the task subject to uncertainty in deformation modeling.



VI. CONCLUSION AND FUTURE WORK

We have introduced a new, unified framework for motion
planning under uncertainty in highly deformable environments
that maximizes the probability of success by accounting for
uncertainty in deformation models, noisy sensing, and unpre-
dictable actuation. Unlike prior planners that assume deter-
ministic deformations or treat deformations as a disturbance,
our method explicitly considers uncertainty in large, time-
dependent deformations. Although the method requires a sim-
ulator of the deformable environment, we place no significant
restrictions on the simulator used. We have shown that our
approach can generate high quality plans for guiding bevel-tip
steerable needles through highly deformable tissue slices and
for repositioning targets in the interior of a deformable object.

In future work, we plan to investigate improvements to
each component in Fig. 2. Replacing the standard LQR
control framework with approaches such as iterative LQR
[29] or differential dynamic programming (DDP) [14] may
improve controller performance. Similarly, replacing the stan-
dard Kalman filter with variants such as the unscented Kalman
filter or a particle filter [26] may improve the quality of state
estimation during plan execution. We will also investigate
parallelizing the model linearization, which involves multiple,
independent simulation runs, in order to reduce computation
times. Finally, we plan to extend our method to 3D deformable
environments [11, 6] and physically validate our results by
conducting experiments on bevel-tip steerable needle guidance
and internal target manipulation in tissue phantoms.
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