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Abstract— We present a fast, analytical method for estimating
the probability of collision of a motion plan for a mobile
robot operating under the assumptions of Gaussian motion
and sensing uncertainty. Estimating the probability of collision
is an integral step in many algorithms for motion planning
under uncertainty and is crucial for characterizing the safety
of motion plans. Our method is computationally fast, enabling
its use in online motion planning, and provides conservative
estimates to promote safety. To improve accuracy, we use a
novel method to truncate estimated a priori state distributions to
account for the fact that the probability of collision at each stage
along a plan is conditioned on the previous stages being collision
free. Our method can be directly applied within a variety of
existing motion planners to improve their performance and the
quality of computed plans. We apply our method to a car-like
mobile robot with second order dynamics and to a steerable
medical needle in 3D and demonstrate that our method for
estimating the probability of collision is orders of magnitude
faster than naı̈ve Monte Carlo sampling methods and reduces
estimation error by more than 25% compared to prior methods.

I. INTRODUCTION

For many applications ranging from autonomous vehicles
to steerable medical needles operating in the human body
[3], the motion plan chosen for execution should be as safe
as possible such that there is minimal risk that the robot
will collide with obstacles in the environment. Real-world
uncertainties arise because the motion of the robot may
deviate unpredictably from the assumed dynamics model and
because sensors might provide imperfect information about
the robot state due to noisy and incomplete measurements.
Estimating the probability of collision of a motion plan
before actual execution is a critical step in many motion
planning algorithms that consider and compensate for the
impact of uncertainty on task performance.

In this work, we present a fast, analytical method to
estimate the probability of collision for a mobile robot
executing a given motion plan under Gaussian models of
motion and sensing uncertainty. The speed of our algorithm
(requiring only milliseconds of computation time) enables its
use in applications that require real-time performance. Our
algorithm also computes an estimate that is conservative; our
goal is to not underestimate the probability of collision in
order to ensure that safety requirements are satisfied.
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Fig. 1. We estimate the probability of collision for a motion plan based
on a priori probability distributions of the robot state. The probability of
collision at each stage of the plan is conditioned on the previous stages being
collision free. We compute truncated a priori distributions that discount plan
executions (black dots) that collide with obstacles. Propagating the truncated
distributions (black ellipses) accounts for only the collision free samples (red
dots), resulting in accurate estimation of the probability of collision. Prior
methods that use the unconditional distributions (gray ellipses) to estimate
the collision probability result in an overly conservative estimate.

Prior work on motion planning under uncertainty has used
both sampling-based and analytical approaches to estimating
probability of collision. Naı̈ve Monte Carlo sampling strate-
gies can estimate the probability of collision by computing
the ratio of the number of simulated executions that are
collision free. This approach requires a large number of
simulations to obtain a reliable estimate, which requires more
computation time than analytical approaches. Monte Carlo
sampling also offers no guarantee that it will not underes-
timate the probability of collision, resulting in violation of
safety requirements. Under the assumption of Gaussian mo-
tion and sensing uncertainty, probability of collision can be
estimated quickly based on a priori probability distributions
of the robot state [20], [2], [22]. However, prior methods
typically “approximate” the collision probability of a plan
by assuming the probabilities of collision at stages along
the plan are independent. Formally speaking, let xt ∈ X
denote the state of the robot at stage t along the plan,
and XF ⊂ X denote the feasible space not occupied by
obstacles. Prior methods assume that the probability that
a plan consisting of ` stages is collision free is given by
p(
∧`

t=0 xt ∈ XF) ≈
∏`

t=0 p(xt ∈ XF). This yields an overly
conservative estimate of the probability of collision (see Fig.
1), which might result in overly conservative motion plans
and, depending on the safety required by the motion planner,
may result in failure to find a feasible plan even if one exists.

We propose an analytic approach to estimating the prob-
ability of collision that accounts for the fact that the dis-
tribution of the state at each stage along the plan is con-



ditioned on the previous stages being collision free, i.e.,
the probability that a plan is collision free is given by
p(
∧`

t=0 xt ∈ XF) =
∏`

t=0 p(xt ∈ XF |
∧t−1

i=0 xi ∈ XF). This
amounts to propagating the a priori distributions forward in
time in such a way that instances that collide with obstacles
are discounted from the propagation (Fig. 1). For this we
propose a novel method to truncate the a priori distributions
with respect to obstacles, approximate the truncated distribu-
tions by Gaussians, and propagate the truncated distributions
forward in time. This results in an accurate estimate of the
conditional distributions, and consequently, enables accurate
estimation of the collision probability.

Our method can be used to quantify the safety of a plan
[20], [13], to improve quality of estimation of collision
chance constraints [2], [22], or to elegantly account for hard
state constraints imposed by obstacles in optimization based
[5] or inference based [19] planning methods. Our truncation
approach is also directly applicable to the important problem
of optimal state estimation with hard state constraints [16].

We present simulation-based results for two scenarios with
with stochastic dynamics and partial, noisy state feedback:
(1) a car-like robot with second-order dynamics, and (2)
a nonholonomic bevel-tip flexible needle. Our method was
orders of magnitude faster than naı̈ve sampling based meth-
ods and computed a significantly more accurate estimate of
collision probability compared to prior analytical methods.

II. PREVIOUS WORK

Motion planners that consider uncertainty have been devel-
oped for a variety of applications [1], [9], [7], [15], [14], [20],
[13], [2], [22]. A key step of many motion planning methods
that consider uncertainty is to estimate the probability of
collision of a motion plan. Monte Carlo sampling strategies
have been used to accurately estimate this probability [10],
[4]. Other methods characterize the uncertainty by estimating
the a priori probability distributions of the robot state along
a given plan. One approach is to check for collisions between
these distributions and obstacles is to compute an upper
bound for the collision probability for use as a metric to
evaluate plan safety [20], [13]. Another approach is to use
these distributions to compute a conservative probability
bound using Boole’s inequality [22], [2]. However, these
methods incorrectly assume that the probabilities of collision
are independent, which results in overly conservative plans.

The use of truncated Gaussian distributions [8] has been
previously explored in the context of optimal state es-
timation with state constraints [16], but this work does
not consider motion uncertainty. Greytak [6] provides an
analytical method to compute the probability of collision
using truncated Gaussians but does not consider sensing
uncertainty. Toussaint [19] uses truncated Gaussians in an
expectation-propagation framework for Bayesian inference,
but the truncation result is dependent on the order in which
constraints are processed, which leads to problems with
convergence of the algorithm [18]. In contrast, we propose
a novel order-independent algorithm for truncating Gaussian
distributions with respect to hard state constraints.

III. ESTIMATING PROBABILITY OF COLLISION

A. Problem Statement

We consider a robot operating in an environment that
may contain obstacles. The stochastic dynamics of the robot
follow the given discrete-time model:

xt = f[xt−1,ut−1,mt ], mt ∼N [0,Mt ] (1)

where xt ∈ X ⊂ Rnx is the state of the robot at stage t,
ut ∈ Rnu is the applied control input, and mt is zero-mean
Gaussian noise with variance Mt that models the motion
uncertainty. During execution of a plan, partial and noisy
sensor measurements of the robot state are obtained:

zt = h[xt ,nt ], nt ∼N [0,Nt ] (2)

where zt ∈ Rnz is the measurement obtained at time t and
nt is the zero-mean Gaussian noise with variance Nt that
models the sensing uncertainty.

Since our method serves as an evaluation metric, we as-
sume the existence of a nominal plan computed by a motion
planner. The nominal plan is defined by [x?0,u

?
0, . . . ,x

?
` ,u

?
` ]

where x?t = f[x?t−1,u
?
t−1,0] for 0 < t ≤ `, where ` is the

number of discrete stages in the plan.
During actual execution of the plan, the robot will likely

deviate from the nominal plan due to motion uncertainty
and inaccurate estimation of the robot state due to sensing
uncertainty. To compensate for uncertainty, we assume the
robot executes the plan in a closed-loop fashion using a
feedback controller and state estimator framework [17]. We
assume the existence of a linear feedback control law that
operates on the estimate of the robot state and aims to
keep the robot close to the nominal plan. We also assume
that a Kalman filter is used for state estimation during
execution. The objective of our method is to then estimate
the probability of collision of a given plan.

B. A Priori State Distributions

Since the robot will be controlled to stay close to the
nominal plan during execution, we linearize the nonlinear
dynamics and measurement models around the plan and
express them in terms of deviation from the true state x̄t =
(xt−x?t ), control input deviation ūt =(ut−u?

t ), and deviation
from the actual measurement z̄t = (zt −h[x?t ,0]), as:

x̄t = At x̄t−1 +Bt ūt−1 +Vtmt , mt ∼N [0,Mt ] (3)
z̄t = Ht x̄t +Wtnt , nt ∼N [0,Nt ]. (4)

where the Jacobians matrices of f and h are given by:

At =
∂ f
∂x

[x?t−1,u
?
t−1,0], Bt =

∂ f
∂u

[x?t−1,u
?
t−1,0], (5)

Vt =
∂ f

∂m
[x?t−1,u

?
t−1,0], Ht =

∂h
∂x

[x?t ,0], Wt =
∂h
∂n

[x?t ,0].

The true state xt , and hence the true state deviation x̄t , is
not available during actual execution. We use a Kalman filter
to keep track of an estimate of the state deviation x̂t = E[x̄t ].
The estimate of the state deviation evolves according to:

x̂t = Kt z̄t +(I−KtHt)(At x̂t−1 +Bt ūt−1), (6)



yit|t−1 = ãT
i yt|t−1

ãT
i yt|t−1 = b̃i

yit|t−1 ∼ N [ãT
i ŷt|t−1, ãT

i Rt|t−1ãi]

yit|t−1 = b̃i

N [ŷt|t−1, Rt|t−1]

yit|t ∼ N [µi, σ
2
i ]

N [ŷt|t−1 −∆yi
t|t, Rt|t−1 −∆Ri

t|t]

Fig. 2. The joint conditional distribution yt|t−1 ∼N [ŷt|t−1,Rt|t−1] (left), is truncated with respect to the ith constraint ãT
i yt|t−1 ≤ b̃i, in R2nx . Applying

an affine transformation, yi
t|t−1 = ãT

i yt|t−1, transforms the distribution to a 1D Gaussian yi
t|t−1 ∼N [ãT

i ŷt|t−1, ãT
i Rt|t−1ãi] (middle). The area under the 1D

Gaussian that lies beyond the constraint yi
t|t−1 = b̃i (shaded in black), gives the probability of collision of the robot with the ith constraint. We estimate the

truncated distribution in R2nx by conditioning on the truncated 1D Gaussian yi
t|t ∼N [µi,σ

2
i ] (right). The mean (ŷt|t−1−∆yi

t|t), and variance (Rt|t−1−∆Ri
t|t),

of the distribution yt|t after truncation are obtained by accumulating the effects of truncation with respect to all constraints (order independent).

where Kt is the Kalman gain matrix [16]. To compensate for
the uncertainty, we assume that the robot is controlled using
a linear feedback policy related to the estimate of the state
deviation as:

ūt = Lt+1x̂t , (7)

where Lt is the control gain matrix determined by the choice
of feedback controller [17].

Under the given assumptions, the probability distributions
of the robot state can be characterized a priori, i.e. before
execution. Combining Eqns. (3), (4), (6), and (7), the true
state deviation x̄t , and the estimate x̂t , jointly evolve as [20]:[

x̄t
x̂t

]
=

[
At BtLt

KtHtAt At +BtLt −KtHtAt

][
x̄t−1
x̂t−1

]
+ (8)[

Vt 0
KtHtVt KtWt

][
mt
nt

]
,

[
mt
nt

]
∼N [0,

[
Mt 0
0 Nt

]
].

We can write this equation in shorthand (for appropriate
definitions of yt , qt , Ft , Gt , and Qt ) as:

yt = Ftyt−1 +Gtqt , qt ∼N [0,Qt ]. (9)

The mean ŷt ∈ R2nx and associated variance Rt = Var[yt ],
propagate according to:

ŷt = Ft ŷt−1, ŷ0 = 0, (10)

Rt = FtRt−1FT
t +GtQtGT

t , R0 =

[
Var[x̄0] 0

0 0

]
. (11)

The unconditional a priori distribution of the state xt at stage
t is then given by the marginal xt ∼N [(x?t +Λŷt),ΛRtΛ

T ],
where Λ = [I 0].

To accurately estimate the probability of collision, we need
to estimate the a priori state distributions at each stage along
the plan that are conditioned on the previous stages being
collision free, i.e. the distributions (xt |

∧t−1
i=0 xi ∈ XF). To

this end, we pursue a recursive approach similar as above to
propagate the conditional distributions.

Let yt|s denote the joint distribution of the true state
deviation and its estimate at time t conditioned on the state
being collision free for all stages 0, . . . ,s:

yt|s = (

[
x̄t
x̂t

]
|

s∧
i=0

xi ∈ XF). (12)

We then repeatedly, for each stage t of the plan, carry out the
following steps. Assume we are given the joint conditional
distribution yt|t−1 as approximated by a Gaussian distribu-
tion N [ŷt|t−1,Rt|t−1]. We then approximate the distribution
yt|t ∼ N [ŷt|t ,Rt|t ] of all collision-free states at stage t by
truncating the distribution yt|t−1 against the obstacles in the
environment. Truncating the distribution effectively discounts
all colliding states from the distribution (Fig. 1), and results
in a shift of the mean and variance by ∆yt and ∆Rt (as
detailed in Sec. III-C), respectively:

ŷt|t = ŷt|t−1−∆yt (13)

Rt|t = Rt|t−1−∆Rt (14)

Using Eqns. (10) and (11), the conditional mean and variance
are then propagated according to:

ŷt+1|t = Ft+1ŷt|t , (15)

Rt+1|t = Ft+1Rt|tF
T

t+1 +Gt+1Qt+1GT
t+1. (16)

The recursion then continues. The initial conditions are set
by defining ŷ0|−1 = ŷ0 = 0 and R0|−1 = R0 =

[
Var[x̄0] 0

0 0

]
.

At each stage of the recursion, the marginal xt|t−1 ∼
N [(x?t +Λŷt|t−1),ΛRt|t−1ΛT ] of the joint distribution yt|t−1
gives the a priori distribution of the robot state xt given that
all the previous states [x0, . . . ,xt−1] are collision free.

C. Truncating A Priori Distributions

At each stage t of the plan, we approximate the distribu-
tion of the feasible robot states with a truncated Gaussian
distribution [8]. For the sake of brevity, we assume that the
feasible region containing the state at each stage t is convex
and is described by the conjunction of k linear inequality
constraints as

⋂k
i=0 aixt ≤ bi. We later extend this analysis

in Sec. IV to non-convex regions by constructing a locally
convex feasible region around the robot state.

Since the true state deviation and its estimate are correlated
(Eqn. 8), it is important to truncate the joint conditional
distribution N [ŷt|t−1,Rt|t−1] in R2nx , with respect to the k
constraints. The ith linear constraint is then represented in
R2nx as ãT

i yt|t−1 ≤ b̃i, where ãi =
[ ai

0
]
, and b̃i = (bi−aT

i x?t ).



We truncate the joint conditional distribution with respect
to each constraint in a sequential manner and then accu-
mulate the effect of truncation over all the constraints. In
contrast to prior methods that use truncated distributions
[16], [18], we propose a novel truncation method that
does not depend on the order in which the constraints are
processed. Given the ith constraint ãT

i yt|t−1 ≤ b̃i, we apply
an affine transformation yi

t|t−1 = ãT
i yt|t−1 to transform the

conditional distribution N [ŷt|t−1,Rt|t−1], to a 1D Gaussian
N [ãT

i ŷt|t−1, ãT
i Rt|t−1ãi] along an axis normal to the constraint

(as shown in Fig. 2). The problem now simplifies to truncat-
ing the 1D Gaussian distribution at a specified upper bound
given by yi

t|t−1 = b̃i, which is well-known from standard
statistical literature [8]. The mean, µi and variance, σ2

i of
the truncated 1D Gaussian yi

t|t is given by:

µi = ãT
i ŷt|t−1 +λ (αi)

√
ãT

i Rt|t−1ãi, (17)

σ
2
i = ãT

i Rt|t−1ãi(1−λ (αi)
2 +αiλ (αi)), (18)

where

αi =
(b̃i− ãT

i ŷt|t−1)√
ãT

i Rt|t−1ãi

, λ (αi) =
pdf(αi)

cdf(αi)
. (19)

Here, λ (αi) is the ratio of the standard Gaussian (mean 0 and
variance 1) probability distribution function and the standard
Gaussian cumulative distribution function evaluated at αi.
Note that (1− cdf(αi)) is the area under the Gaussian that
lies beyond the constraint (shaded in black in Fig. 2), and
is the probability that the robot lies in the infeasible region
corresponding to the ith constraint.

The mean and variance of the truncated distribution yt|t are
found by conditioning the joint distribution (yt|t−1,yi

t|t−1), on
the truncated 1D distribution yi

t|t : yt|t = (yt|t−1|yi
t|t−1 = yi

t|t)
(see appendix). The shift in the mean due to truncation with
respect to the ith constraint is given by:

∆yi
t =

Rt|t−1ãi

ãT
i Rt|t−1ãi

(ãT
i ŷt|t−1−µi), (20)

and the shift in variance is given by:

∆Ri
t =

Rt|t−1ãi

ãT
i Rt|t−1ãi

(ãT
i Rt|t−1ãi−σ

2
i )

ãT
i Rt|t−1

ãT
i Rt|t−1ãi

. (21)

Given k constraints, the cumulative shift in the mean due
to truncation is then given by ∆yt =

∑k
i=0 ∆yi

t , and the cumu-
lative change in variance is given by ∆Rt =

∑k
i=0 ∆Ri

t . The
mean and variance of the truncated conditional distributions
are then propagated recursively using Eqs. (15) and (16).

D. Estimating the Probability of Collision

We use the truncated conditional distributions to estimate
the overall probability of collision of the given plan, based on
the conditional probabilities of collisions at each stage along
the plan. Given the joint conditional distribution at stage t,
N [ŷt|t−1,Rt|t−1], and the set of k linear constraints that define
the locally convex region of free space containing the robot,

C2

C3

C1

U−1
t

Fig. 3. We transform the environment such that the distribution of the robot
position (left) is converted to a unit sphere (right). We then sequentially
process the obstacle geometry in increasing order of distance from the
origin. The linear constraints that define a locally convex region of the
free space are determined by the normal to the vector of closest approach
(shown in red). The locally convex region constructed using our approach
for this example is defined by three constraints determined in order of their
indices: C1, C2, and C3.

we compute a lower bound for the probability of the robot
being collision free using Boole’s inequality, as [22]:

p(xt|t−1 ∈ XF)≥ 1− p
( k∨

i=0

ãT
i ŷt|t−1 > b̃i

)
≥ 1−

k∑
i=0

(1− cdf(αi)). (22)

The overall probability that the robot does not collide with
any obstacle for the duration ` of the plan, is given by:

p(
∧̀
t=0

xt ∈ XF) =
∏̀
t=0

p(xt|t−1 ∈ XF), (23)

and the overall probability of collision is provided by the
complement (1− p(

∧`
t=0 xt ∈ XF)).

IV. LOCAL CONVEXIFICATION OF FREE SPACE

We extend our analysis to non-convex regions by trun-
cating the joint conditional distributions with respect to
linear constraints that define a locally convex region of
free space containing the robot. For the sake of simplicity,
we assume that only the robot position is relevant for
collision detection. At each stage t, we compute the marginal
distribution N [p̂t|t−1,Σt|t−1] of the conditional distribution
N [ŷt|t−1+

[ x?t
x?t

]
,Rt|t−1] over the dimensions of the robot state

that describe the robot position p̂t|t−1. We outline a greedy
method that computes a locally convex region of free space
such that the probability that the distribution N [p̂t|t−1,Σt|t−1]
lies beyond the convex region is minimal.

Adopting the approach suggested in [20], we linearly
transform the environment geometry by applying the trans-
form U−1

t , where Σt|t−1 =UtUT
t is the Cholesky decomposi-

tion. This transforms the uncertainty distribution of the robot
position to a Gaussian distribution with zero mean and unit
variance, which is a unit sphere in Euclidean space centered
at the origin. The spherical symmetry simplifies the task of
constructing a nonconservative convex region of free space
around the distribution of the position of the robot (Fig. 3).

We construct the convex region using a sequential process.
We consider the closest point on the obstacle geometry from
the origin. The linear truncation constraint aT

i pt|t−1 ≤ bi, is
defined by the normal to the vector of closest approach to
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Fig. 4. Car-like robot with second order dynamics: (a) The conditional distributions (black ellipses corresponding to 3 standard deviations) computed using
our method provide an accurate estimate of the distribution of collision free robot states along the plan (red dots), while the unconditional distributions
(solid gray ellipses) are overly conservative. The probability of collision estimated by our method is 68.9%, while the ground truth probability determined
by Monte Carlo simulations is 67.3%. (b) Zoomed in view of the conditional distributions in the narrow corridor. The mean of the conditional distribution
(magenta) deviates from the nominal plan due to the truncation of the distributions against obstacles. (c) Comparison of our method to Monte Carlo
simulations in terms of computation time and accuracy of the estimated probability of collision. (d) Conditional and unconditional distributions computed
along a second plan. The probability of collision estimated by our method for this example is 44.8%, while the ground truth probability is 42.3%.

the obstacle. We then prune away all geometry that lies in
the infeasible half space aT

i pt|t−1 > bi of the constraint, and
continue the process by considering the closest point on the
remaining obstacle geometry to the origin. This procedure
is repeated until all geometry has been pruned away. It is
important to note that our convexification method works in
a greedy fashion and is not guaranteed to find the least
conservative convex bounding region.

V. RESULTS

We present simulation results for two scenarios: (1) a car-
like robot with second order dynamics, and (2) a nonholo-
nomic bevel-tip flexible needle, with stochastic dynamics and
partial and noisy sensing feedback. In each case, we initialize
our method with a nominal plan computed using an RRT
planner [11]. We tested our C++ implementation on a 3.33
GHz Intel R© i7TM PC.

We validate our method by comparing the estimated colli-
sion probability with the ground truth probability computed
using a million Monte Carlo simulations (considered as
ground truth) of the given motion plan and counting the ratio
of collision free simulations. Each execution is simulated in a
closed-loop fashion using the given linear feedback controller
and a Kalman filter, and with artificially generated motion
and measurement noise.

A. Car-like Robot with Second Order Dynamics

We consider a nonholonomic car-like robot with second
order dynamics, navigating in a 2D environment with ob-
stacles (Fig. 4). The state of the robot, x = [x,y,θ ,v]T ∈
R4, consists of its position [x,y], its orientation θ , and
its speed v. The control input u = [a,φ ]T ∈ R2, consists
of the acceleration a, and steering angle φ , corrupted by
motion noise m= [ã, φ̃ ]T ∼N [0,M]. This gives the following
stochastic dynamics model:

f[x,u,m] =


x+ τvcosθ

y+ τvsinθ

θ + τv tan(φ + φ̃)/d
v+ τ(a+ ã)

 , (24)

where τ is the time step, and d is the length of the car.

The robot localizes itself using noisy signal measurements
from two beacons b1 and b2, placed in the environment
at locations [x̌1, y̌1] and [x̌2, y̌2] respectively. The strength
of the signal decays quadratically with the distance to the
beacon. The robot also measures its current speed using an
on-board speedometer. This gives us the following stochastic
measurement model:

h[x,n] =

1/((x− x̌1)
2 +(y− y̌1)

2 +1)
1/((x− x̌2)

2 +(y− y̌2)
2 +1)

v

+n. (25)

where the observation vector z∈R3, consists of two readings
of signal strengths from the beacons and a speed measure-
ment, corrupted by sensing noise n∼N [0,N].

Fig. 4(b) shows the discrepancy between the unconditional
and conditional distributions in the presence of obstacles. The
conditional distributions computed using our method provide
an accurate estimate of the distribution of the collision
free robot states along the plan, thus providing an accurate
estimate of the probability of collision. Fig. 4(d) shows how
the mean of the conditional distribution can deviate signif-
icantly in the close vicinity of obstacles. Interestingly, the
conditional and unconditional distributions become identical
towards the end of the plan in the absence of obstacles.

B. Nonholonomic Bevel-tip Flexible Needle

We also apply our method to a nonholonomic bevel-tip
flexible needle [3], navigating in a 3D environment with
obstacles (Fig. 5(a)). This class of needles offers improved
mobility, enabling access to previously inaccessible targets
while maneuvering around sensitive or impenetrable areas.

The state of the needle x, is described by the 4×4 matrix
X =

[R p
0 1

]
∈ SE(3), where p∈R3 is the position of the needle

tip and R ∈ SO(3) is the rotation matrix that encodes the
orientation of the needle tip relative to a world coordinate
frame. The needle naturally moves along constant curvature
paths when inserted into tissue, but the curvature of the
needle motion can be varied by duty cycled spinning of the
needle during insertion. Under these modeling assumptions
[21], the control input u = [v,w,κ]T ∈ R3, consists of the
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Fig. 5. Nonholonomic bevel-tip steerable needle: (a) Unconditional distributions (solid gray ellipsoids corresponding to 3 standard deviations) provide
an overly conservative approximation of the uncertainty. Our method computes conditional distributions (black wireframe ellipsoids), which provide an
accurate estimate of the probability distributions of the feasible robot states (shown in red). The collision probability estimated by our method is 54.5%,
while the ground truth probability is 52.4%. (b) Zoomed in view of the conditional distributions in the narrow corridor. (c) Comparison of our method to
Monte Carlo simulations. (d) The probability of collision estimated by our method for a second plan is 43.9%, while the ground truth probability is 42.2%.

insertion speed v, rotation speed applied at the base of the
needle w, and the curvature κ .

It is convenient to describe the dynamics of the needle tip
in terms of the instantaneous twist U ∈ se(3) expressed in a
local coordinate frame attached to the needle tip, given by:

U =

[
[w] v
0 0

]
, w =

[
vκ 0 w

]T
, v =

[
0 0 v

]T
, (26)

where the notation [s] for a vector s ∈ R3 refers to the
3× 3 skew-symmetric cross-product matrix. The instanta-
neous twist Ũ that encodes the additive motion noise m =
[ṽT w̃T ]T ∼N [0,M], can be similarly expressed.

Given a time step τ , the stochastic discrete-time dynamics
of the needle tip is given by the following model:

f[x,u,m] = X exp(τ(U +Ũ)). (27)

We also assume that we receive partial, noisy feedback
on only the position of the needle tip p, and not its orienta-
tion. This is a reasonable assumption since current medical
imaging technologies such as ultrasound do not allow for
measuring the full state of the needle tip (as the imaging
resolution is often too low to infer its orientation). The noise
in the sensor measurement is modeled as n∼N [0,N]. This
gives the following stochastic measurement model:

h[x,n] = p+n. (28)

We follow the approach in [21] to approximate the given
nonlinear dynamics and measurement models with local
linearizations around the nominal plan.

C. Analysis

Table I compares the probability of collision estimated by
our method against the ground truth probability computed
using Monte Carlo simulations for the scenarios considered
above. Our estimate lies within 5% of the ground truth value.
It is important to note that Monte Carlo simulations provide
an unbiased estimate of the probability of collision, and can
underestimate the probability if a sufficiently large number of
samples are not considered. In contrast, our method provides
a conservative estimate of the probability.

For the test case depicted in Fig. 4(a), each Monte
Carlo simulation takes 0.36 milliseconds, while our method
requires a total computation time of 0.94 milliseconds.

Fig. 4(c) shows the deviation in the probability estimates
computed using Monte Carlo simulations with much fewer
samples (computed over 100 trials). As expected, the vari-
ance decreases as the number of Monte Carlo simulations
increases. Even neglecting the fact that Monte Carlo simu-
lations underestimate the collision probability, it still takes
3000 simulations to arrive within the accuracy bounds of our
method. This corresponds to over a second of computation
time just to estimate the collision probability, which is
undesirable for real-time motion planning under uncertainty.

Similarly, for the test case considered in Fig. 5(a), each
Monte Carlo simulation takes 0.69 milliseconds while our
method takes 7.4 milliseconds. It takes 2000 simulations
to arrive within the accuracy bounds of our method (Fig.
5(c)), which corresponds to 1.4 seconds of computation time.
Our method provides accurate, yet conservative, estimates of
the collision probability while incurring negligible computa-
tional overhead. This makes it especially suitable for online
planning algorithms that explicitly consider uncertainty.

We compare our method to prior methods that rely on a
priori state distributions to estimate the collision probability.
We generated a set of 100 plans using the RRT planner using
randomly initialized start states. For each plan, we estimated
the collision probability using our method, applying Boole’s
inequality to the unconditional distributions [22], and LQG-
MP [20]. We use the mean error as a metric to compare
the probability estimates to the ground truth probability. As
summarized in Table I, the estimate computing using our
method reduces the estimation error by more than 25%
as compared to the collision quality metric provided by
LQG-MP [20] and the collision probability computed using
the unconditional distributions directly [22]. It is important
to note that all these estimation methods, including ours,
provide a conservative bound for the collision probability.

Robot Our method Unconditional [22] LQG-MP [20]
MAE Avg. Time MAE Avg. Time MAE Avg. Time
(%) (ms) (%) (ms) (%) (ms)

car 3.0 (± 2) 9 28.0 (± 15) 6 52.2 (± 15) 4
needle 5.0 (± 3) 14 20.7 (± 7) 12 61.7 (± 12) 10

TABLE I
COMPARISON OF OUR METHOD WITH PRIOR METHODS OVER 100 PLANS

IN TERMS OF MEAN ABSOLUTE ERROR (MAE) FROM GROUND TRUTH

PROBABILITY. STANDARD DEVIATIONS PROVIDED IN PARENTHESES.



VI. CONCLUSION AND FUTURE WORK

We have presented an analytical method to estimate a
priori the probability of collision for a mobile robot operating
under Gaussian motion and sensing uncertainty. We have
shown that it is necessary to consider the correlations be-
tween the a priori probability distributions of the robot state,
to accurately estimate the true distributions and consequently,
the probability of collision. We have also proposed a novel
method for approximating the distribution of feasible states
with truncated Gaussian distributions. Our method is compu-
tationally fast, enabling its use in online motion planning, and
computes conservative estimates of the collision probability.
Our method is directly applicable to a variety of motion
planning under uncertainty methods [20], [22], [2], [5], [19]
to improve the performance and safety of motion plans.

We assume that the robot operates under the assumptions
of Gaussian motion and sensing uncertainty, which might not
be an acceptable approximation in some applications where
multi-modal beliefs are expected to appear. However, the
class of problems where Gaussian distributions are applicable
is large, as is proven by the widespread use of the extended
Kalman filter for state estimation, for instance in mobile
robotics. In future work we plan to apply our method to
real-world problems that involve complex dynamics and that
would benefit from a fast planner that considers uncertainty,
including autonomous quadrotor flight, medical needle steer-
ing, and planning in deformable environments [13]. We also
plan to extend our method to handle non-point robots and
to incorporate other sources of uncertainty such as imprecise
sensing of obstacles in the environment [7].

REFERENCES

[1] R. Alterovitz, T. Simeon, and K. Goldberg, “The Stochastic Motion
Roadmap: A sampling framework for planning with Markov motion
uncertainty,” in Proc. Robotics: Science and Systems (RSS), 2007.

[2] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2011, pp. 723–730.

[3] N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Al-
terovitz, K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M.
Okamura, “Robotic needle steering: Design, modeling, planning, and
image guidance,” in Surgical Robotics: System Applications and
Visions, J. Rosen, B. Hannaford, and R. M. Satava, Eds. Springer,
2011, ch. 23, pp. 557–582.

[4] N. E. du Toit and J. W. Burdick, “Probabilistic collision checking
with chance constraints,” IEEE Trans. Robotics, vol. 27, pp. 809–815,
2011.

[5] T. Erez and W. D. Smart, “A scalable method for solving high-
dimensional continuous POMDPs using local approximation,” in Conf.
on Uncertainty in Artificial Intelligence, 2010, pp. 160–167.

[6] M. Greytak, “Integrated motion planning and model learning for
mobile robots with application to marine vehicles,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2009.

[7] L. Guibas, D. Hsu, H. Kurniawati, and E. Rehman, “Bounded un-
certainty roadmaps for path planning,” Algorithmic Foundation of
Robotics VIII, pp. 199–215, 2009.

[8] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate
distributions. John Wiley & Sons, 1994, vol. 1.

[9] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Proc. Robotics: Science and Systems (RSS), 2008.

[10] A. Lambert, D. Gruyer, and G. S. Pierre, “A fast Monte Carlo
algorithm for collision probability estimation,” in Int. Conf. on Control,
Automation, Robotics and Vision (ICARV), 2006, pp. 406–411.

[11] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, Available at http://planning.cs.uiuc.edu.

[12] J. R. Movellan, “Discrete Time Kalman Filters and Smoothers,” 2011,
MPLab Tutorials, Univ. California at San Diego.

[13] S. Patil, J. van den Berg, and R. Alterovitz, “Motion planning under
uncertainty in highly deformable environments,” in Proc. Robotics:
Science and Systems (RSS), 2011.

[14] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief
space planning assuming maximum likelihood observations,” in Proc.
Robotics: Science and Systems (RSS), 2010.

[15] S. Prentice and N. Roy, “The Belief Roadmap: Efficient planning in
belief space by factoring the covariance,” Int. Journal of Robotics
Research, vol. 28, no. 11–12, pp. 1448–1465, 2009.

[16] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlin-
ear Approaches. John Wiley & Sons, 2006.

[17] R. F. Stengel, Optimal Control and Estimation. Dover Publications,
1994.

[18] M. Toussaint, “Pros and cons of truncated Gaussian EP in the context
of approximate inference control.” in NIPS Workshop on Probabilistic
Approaches for Robotics and Control, 2009.

[19] ——, “Robot trajectory optimization using approximate inference,” in
Proc. Int. Conf. on Machine Learning, 2009, pp. 1049–1056.

[20] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” in Int. Journal of Robotics Research, vol. 30, no. 7, 2011,
pp. 895–913.

[21] J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg,
“LQG-based planning, sensing, and control of steerable needles,” in
Proc. Workshop Algorithmic Foundations of Robotics (WAFR), 2010,
pp. 373–389.

[22] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning
for linear, Gaussian systems,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2011, pp. 2152–2159.

APPENDIX
TRUNCATED GAUSSIAN DISTRIBUTIONS

Given a distribution Y ′ ∼N [µ ′Y ,Σ
′
Y ] and a joint Gaussian

distribution (X ,Y ):

(X ,Y )∼N
[[

µX
µY

]
,

[
ΣX ΣXY
ΣY X ΣY

]]
, (29)

the conditional distribution (X |Y =Y ′) can be derived using
the law of iterated expectations and the law of total variances,
and is given by [12]:

(X |Y =Y ′)∼N [µX−L(µY −µ
′
Y ),ΣX−L(ΣY −Σ

′
Y )L

T ] (30)

where L = ΣXY Σ
−1
Y .

We can construct the joint distribution of the conditional
distribution yt|t−1 ∼ N [ŷt|t−1,Rt|t−1], and the transformed
1D distribution yi

t|t−1 ∼N [ãT
i ŷt|t−1, ãT

i Rt|t−1ãi], according to
Eqn. (29) as:

(yt|t−1,y
i
t|t−1)∼N

[[
ŷt|t−1

ãT
i ŷt|t−1

]
,

[
Rt|t−1 Rt|t−1ãi

ãT
i Rt|t−1 ãT

i Rt|t−1ãi

]]
.

(31)
Using Eqn. (30), we reconstruct the truncated mean and

variance of the joint distribution by conditioning on the
truncated 1D distribution yi

t|t ∼ N [µi,σ
2
i ] (Eqn. 17, 18),

according to:

(yt|t−1|yi
t|t−1 = yi

t|t)∼
N [ŷt|t−1−L(ãT

i ŷt|t−1−µi),Rt|t−1−L(ãT
i Rt|t−1ãi−σ

2
i )L

T ],
(32)

where L =
Rt|t−1ãi

ãT
i Rt|t−1ãi

, which is exactly as in Eqns. (20, 21).


