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Abstract—Steerable needles have the potential to improve
the effectiveness of needle-based clinical procedures such as
biopsy and drug delivery by improving targeting accuracy and
reaching previously inaccessible targets that are behind sensitive
or impenetrable anatomical regions. We present a new needle
steering system capable of automatically reaching targets in 3-D
environments while avoiding obstacles and compensating for real-
world uncertainties. Given a specification of anatomical obstacles
and a clinical target (e.g., from preoperative medical images),
our system plans and controls needle motion in a closed-loop
fashion under sensory feedback to optimize a clinical metric.
We unify planning and control using a new, fast algorithm that
continuously replans the needle motion. Our rapid replanning
approach is enabled by an efficient sampling-based rapidly
exploring random tree (RRT) planner that achieves orders-of-
magnitude reduction in computation time compared to prior 3-
D approaches by incorporating variable curvature kinematics
and a novel distance metric for planning. Our system uses an
electromagnetic tracking system to sense the state of the needle
tip during the procedure. We experimentally evaluate our needle
steering system using tissue phantoms and animal tissue ex vivo.
We demonstrate that our rapid replanning strategy successfully
guides the needle around obstacles to desired 3-D targets with
an average error of less than 3 mm.

Index Terms—needle steering, medical robotics.

I. INTRODUCTION

NEEDLE-based procedures are widely used in minimally
invasive clinical procedures for diagnosis and treatment,

including biopsy, drug delivery, and radioactive seed im-
plantation for cancer treatment. Performing these procedures
using traditional, stiff needles is limited to straight line paths
between the needle entry location and target region, which
makes it difficult or impossible in some cases to reach clinical
targets without puncturing sensitive tissues or colliding with
anatomical obstacles. Moreover, the use of stiff needles can
result in large targeting errors due to the displacement of
the needle from its intended path because of factors such as
needle/tissue deformation, uncertain needle/tissue interaction,
actuation errors, and noisy sensory feedback [1].

As an alternative to stiff needles, a new class of highly
flexible, bevel-tip needles are being developed that enable the
needle to move along curved trajectories within tissue when
a forward pushing force is applied [8], [40]. These steerable
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Fig. 1. Closed-loop needle steering via rapid replanning. Given the
current needle tip state, target region, a specification of the anatomy, and
characterization of the steerable needle’s properties, our approach uses a fast,
randomized motion planner to compute in the available time many feasible
motion plans across homotopy classes (top). The method selects the best plan
based on a metric such as minimizing path length or maximizing clearance
from obstacles (middle). We execute the first control input of the plan and
measure the state of the needle tip (bottom). The actual state of the needle tip
deviates from the model predicted state because of uncertainty. We repeat the
planning process, hence replanning, starting from the actual needle tip state.
This approach is made possible by a new, fast planner capable of computing
hundreds of feasible plans per second.

needles offer improved maneuverability within tissue during
insertion and greater targeting accuracy. They also facilitate
access to previously inaccessible clinical targets while avoid-
ing obstacles such as sensitive anatomical tissues (e.g., vital
organs and vessels) and impenetrable structures (e.g., bones).
However, guiding a steerable needle around obstacles under
image guidance by manipulating the needle at its base requires
reasoning in 6D pose space and is not intuitive for a human.

We present a new approach to automatic needle steering
to reach targets in 3-D environments while avoiding obstacles
and compensating for real-world uncertainties. Our approach
uses rapid replanning, a new technique for 3-D needle steering
in which a fast motion planner is repeatedly re-executed as
the needle is inserted to perform closed-loop planning and
control under sensory feedback. In contrast to the standard
practice of planning a feasible trajectory and then using a
feedback controller for correcting uncertain perturbations, our
motion planner is fast enough to correct for perturbations in
needle, obstacle, or target motion as they occur. This enables
the system to automatically steer the needle along paths that
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avoid obstacles of known location, which is a useful capability
to have in a steerable needle system.

We integrate our rapid replanning approach into a system
that consists of a bevel-tip steerable needle, a needle steering
robot, and an electromagnetic tracker for estimating the needle
tip pose in tissue. Given preoperative medical images, the
clinician can specify the insertion location and target region as
well as sensitive structures such as glands or blood vessels and
other obstacles such as bones (Fig. 1). Our rapid replanner then
automatically guides the needle around anatomical obstacles
to the target region with high accuracy.

Our new rapid replanning approach uses a customized,
sampling-based motion planner that speeds up needle steering
motion planning to the point that it can be done in real time
with typical needle insertion velocities. To enable efficient
planning, we leverage several observations and algorithmic ad-
vances. First, in contrast to prior motion planning approaches
for needle steering, we relax the constant curvature path as-
sumption by planning variable curvature paths and using duty-
cycled spinning during insertion [13], [23] to adjust the nee-
dle’s net curvature. Second, we propose a new distance metric
for incremental expansion of the rapidly-exploring search tree
to significantly improve planner performance. These help us
achieve orders-of-magnitude reduction in computation time
compared to prior sampling-based planners [41] and make the
planner suitable for closed-loop needle steering.

In this work, in addition to providing a refined, archival
version of our results in [29], we present several important
extensions. First, we extend the fast motion planner to create
a rapid replanning framework that enables a needle steering
system to correct for real-world uncertainties as they occur.
Second, we provide experimental results using a new nee-
dle steering system that includes preoperative imaging and
electromagnetic tracking, demonstrating that the algorithm can
work in a practical clinical scenario. In our experiments, the
system guided the needle tip in 3-D to targets in phantom and
animal tissues ex vivo with errors averaging below 3 mm; for
comparison, experienced physicians achieved targeting errors
averaging 5.5–6.5 mm when performing procedures using stiff
needles [5], [32]. Our experiments demonstrate that our system
can achieve targeting accuracy that exceeds current clinical
practice while simultaneously enabling avoidance of obstacles.

II. RELATED WORK

Several needle steering techniques have been developed that
allow clinicians to adjust the needle path within tissue to
improve targeting accuracy. These include bevel-tip flexible
needles [40], symmetric-tip needles that can be steered by
applying forces at the base [11], [15], curved stylet tips [26],
programmable bevel-tip needles [19], and pre-bent concentric
tubes [39]. Our emphasis is on bevel-tip flexible needles, but
our approach is also applicable to planning and control of
needles with stylets and programmable bevel-tip needles.

Significant advancements have been made in modeling
bevel-tip steerable needles [8]. A kinematic model generaliz-
ing a unicycle was proposed and experimentally validated by
Webster et al. [40]. Minhas et al. showed that the curvature of

the needle path can be controlled through duty-cycled spinning
of the needle during insertion [23]. Swaney et al. [35] proposed
a new flexure-based needle tip design that provides enhanced
steerability of bevel-tip needles during duty-cycled spinning of
the needle, while simultaneously minimizing tissue damage.
The mechanics and characteristics of steerable needles have
been modeled for tissue ex vivo [24] and in vivo [22].

Motion planning algorithms can be used to compute paths
in a robot’s configuration space from a start state to a goal
[6], [21]. Motion planning and control for steerable needles in
a plane (2-D) has been extensively studied [2]–[4], [17], [30].
Motion planners have been developed for needle steering in
3-D environments with obstacles. Duindam et al. proposed a
planner based on inverse kinematics [12], which is fast but of-
fers no completeness guarantees. Sampling-based motion plan-
ning algorithms such as rapidly-exploring random tree (RRT)
planners, which iteratively explore the robot’s configuration
space using a randomized approach, have been effective for a
broad range of robotics problems from autonomous vehicles
[20] to protein folding [6], [21]. Xu et al. created a variant
of RRT for needle steering [41], but the specific approach
was too slow for closed-loop implementation. Park et al.
proposed a path-of-probability algorithm based on diffusion-
based error propagation [27] which considers uncertainty, but
this work does not take into account obstacles or noisy sensing.
Prior work has also considered controlling steerable needles
in 3-D environments to compensate for perturbations during
insertion. Hauser et al. [16] proposed a real-time controller
which plans helical paths for 3-D needle steering. Seiler
et al. [33] proposed a fast trajectory correction method to
compensate for uncertainty during insertion. These controllers
either do not consider obstacle avoidance or do not provide
any guarantees on performance in the presence of obstacles.
Van den Berg et al. [37] proposed a framework for planning
and LQG-based feedback control of a steerable needle under
motion and sensing uncertainty. This framework was extended
by Patil et al. [28] for deformable workspaces. Prior LQG-
based methods may fail due to control saturation, which is a
practical concern for needle steering, and cannot respond in
real-time to significant perturbations not in the a priori model.

III. OBJECTIVE

To enable automatic needle steering, our system requires as
input a specification of the anatomy. Given registered preop-
erative volumetric medical images that are standard in clinical
care (e.g., CT scans or MRI), the clinician can specify the
initial state of the needle tip X0 ∈ SE(3), a target Pgoal ⊂ R3,
and obstacles oi ∈ O that include sensitive structures such
as glands or blood vessels and other obstacles such as bones.
Obstacles are represented as segmented volumes in the images.

Our system also requires characterization of the steerable
needle. Although rapid replanning could be applied to a
variety of steerable needles, we focus on bevel-tip steerable
needles [8], which move along an approximately circular arc
of constant curvature κ0 in the direction of the bevel when
inserted into a tissue medium. The needle is controlled by two
control inputs: insertion speed v used to insert the needle and
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Fig. 2. Overview of our rapid replanning paradigm which relies on a fast
sampling-based motion planner for closed-loop steering of the needle to the
desired target while avoiding anatomical obstacles. We present details of the
individual components of our approach in Sec. V.

twist speed ω applied at the needle base used to reorient the
bevel-tip. Our method requires as input the natural maximum
curvature of the needle κ0 and the empirical relationship
α = h[κ], 0 ≤ κ ≤ κ0 that relates the needle’s curvature
to the duty cycling factor α (defined in Sec. IV).

The objective is to automatically steer the needle around
clinician-specified anatomical obstacles while optimizing a
clinician-specified criteria. The criteria can include metrics
such as minimizing insertion length (i.e., minimizing tissue
damage) or maximizing clearance from obstacles (i.e., max-
imizing safety). Our approach, shown in Fig. 2, uses rapid
replanning. Given the inputs specified above, the fast planner
computes a large number of randomized plans, each defined
as a sequence of discrete controls that will steer the needle
tip to the target while avoiding anatomical obstacles. From
the computed set of plans, the planner selects the best plan
based on the clinical criteria. To compensate for uncertain
perturbations that occur during needle steering in tissues, the
planning process is repeated at frequent intervals in a closed-
loop fashion using feedback from the electromagnetic tracking
system to sense the needle tip pose at the beginning of each
interval and replan a control sequence to reach the target.

At the core of our rapid replanning approach is a fast motion
planner for needle steering based on a customized rapidly
exploring random tree (RRT) planner described in Sec. V
and based on a variable-curvature needle kinematic model
described in Sec. IV. The rapid replanning loop in Fig. 2
continues until the target is reached or until the z-coordinate
of the needle tip (where the z-axis is the axis along which the
needle is inserted prior to entering tissue) is greater than the
z-coordinate of the target.

IV. VARIABLE-CURVATURE NEEDLE KINEMATIC MODEL

Our planner uses a variable-curvature kinematic model of
the motion of the steerable needle’s tip trajectory as the needle
is inserted in tissue. The kinematic model is deterministic and
does not explicitly consider errors arising from factors such as
tissue deformations, actuation errors, and noisy sensing. Our
rapid replanning approach will allow us to correct for these
errors as they occur during the procedure.

We assume that the needle is flexurally flexible and tor-
sionally stiff, i.e., the shaft exactly follows the needle tip,
and the insertions and twists applied to the needle base are
directly transmitted to the tip. The motion of the needle is
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Fig. 3. Local coordinate frame Xt attached to the needle tip and a point in
R3 : [x, y, z]T defined in the local coordinate frame. The needle is inserted
along the z-axis, and the needle rotates around a line parallel to the x-axis
and passing through the point [0,−r, 0]T . The variable curvature circular arc
followed by the needle (shown in orange) is parameterized as a triplet [l, φ, r].

then fully determined by the motion of the needle tip. The
state of the entire needle is then described by the needle tip
pose, represented as a 4 × 4 matrix X =

[
R p
0 1

]
∈ SE(3),

where p ∈ R3 is the position of the needle tip and R ∈ SO(3)
is the rotation matrix that encodes the needle tip orientation
relative to a world coordinate frame.

We extend the constant curvature unicycle kinematic model
of the needle tip proposed by Webster et al. [40] to consider
the curvature κ (0 ≤ κ ≤ κ0) to be an additional control
input parameter. Let v be the insertion speed and ω̂ be the
twist speed of the needle. Physically realizing the variable-
curvature kinematic model requires that the curvature κ be
realizable in terms of insertion speed v and twist speed ω,
which are the only two physical control inputs to the system.
We later show how the twist speed ω̂ can be converted to
the physical twist speed ω using duty-cycled spinning of the
needle during insertion [23].

Given the control input vector u = [v, ω̂, κ]T ∈ R3, it is
convenient to describe the kinematics in terms of the instanta-
neous twist U ∈ se(3) expressed in the local coordinate frame
attached to the needle tip (Fig. 3), given by [37], [40]:

U =

[
[ω̂] v
0 0

]
, ω̂ =

[
vκ 0 ω̂

]T
, v =

[
0 0 v

]T
. (1)

where the notation [s] for a vector s ∈ R3 refers to the
3×3 skew-symmetric cross-product matrix. The discrete-time
kinematics evolves over time interval t as:

Xt+1 = f [Xt,u, t] = Xt exp(Ut). (2)

where exp(·) denotes the matrix exponential operator. Note
that for the special case of κ = κ0, ω̂ = ω and Eqn. (2)
reduces to the constant curvature kinematic model [40].

Prior work on motion planning for steerable needles in 3-
D [12], [27], [41] assumes κ is a constant, which severely
restricts the range of motion of the needle tip. This makes
it difficult for planners to compute a feasible motion plan in
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Fig. 4. The time duration ∆ is split into three intervals of duration δ each
for α = h[κ] = 1/3. Each interval is then composed of two intervals: (i)
a spin interval of duration δspin = (2kπ/ωspin), k ∈ Z in which the needle
is both inserted and rotated, and (ii) an insertion interval of duration δins in
which the needle is only inserted without any rotation.

3-D environments with obstacles, thus sacrificing optimality
or completeness. In contrast, our motion planning method
assumes a variable-curvature kinematic model that allows us
to compute trajectories composed of circular arcs of bounded
curvature (0 ≤ κ ≤ κ0). This helps us to compute feasible
motion plans with sub-second computation time.

We use results from Minhas et al. [23], who demonstrated
that any curvature 0 ≤ κ ≤ κ0 can be approximated by duty
cycling the rotation of the needle, i.e., by alternating between
(i) insertion without rotation, in which the needle follows a
path of maximum curvature (κ = κ0), and (ii) insertion with
rotation, in which the needle moves straight (κ = 0) by
spinning at a constant rate and stopping the spinning such
that the tip is at the same axial angle every time. Duty cycling
of steerable needles was successfully demonstrated in cadaver
brains for neurosurgical procedures [13].

Let the control input u = [v, ω̂, κ]T be applied over a time
duration ∆. Let δ be the duration of each duty cycling interval,
which is composed of an insertion interval of duration δins and
a spin interval of duration δspin, as illustrated in Fig. 4. Let
α (0 ≤ α ≤ 1) be the proportion of the time spent in spin
intervals i.e., α = δspin/δ, where δ = δins +δspin. The empirical
relationship between κ and α is expressed as:

α = h[κ], 0 ≤ κ ≤ κ0, (3)

where h[κ] is dependent on the mechanical properties of the
needle and tissue and is determined by fitting a polynomial
function to the empirical data gathered during preoperative
characterization experiments (Sec. VI-C).

Duty cycling is implemented for needle steering by moving
a fixed distance each cycle and spinning with a fixed twist
speed ωspin. Given κ, we use Eqn. (3) to determine α.
Since the needle tip arrives at the same axial angle at the
end of each spin interval, the duration of the spin interval
δspin = (2kπ/ωspin), k ∈ Z. We then compute the quantities
δ = (δspin/α) and δins = (δ − δspin). The low level control
inputs during a duty cycle interval are given by:

v(t) = v, 0 ≤ t ≤ ∆/δ (4)

ω(t) =

{
ω̂ + ωspin if jδ < t ≤ jδ + δspin
ω̂ if jδ + δspin < t ≤ (j + 1)δ

, (5)

where j ∈ {0, 1, . . . ,∆/δ} and ∆/δ is the total number of
duty cycle intervals required to span the duration ∆. Because
the needle is axially translating as it rotates, stiction between
the needle and tissue is eliminated, which reduces the impact
of torsional windup during steering [31].

The needle/tissue parameters, e.g., κ0 and h, need to be
specified before a needle procedure begins. In a clinical
setting, we anticipate building a library of needle curvatures
indexed by needle type and tissue type that is collected in
fresh cadavers or highly similar animal tissues [22]. When
performing a procedure on a patient, the library could then be
used to select the parameters.

V. RAPID REPLANNING APPROACH

In this section, we present details of the individual com-
ponents involved in our rapid replanning approach (Fig. 2)
for closed-loop needle steering in 3-D environments with
obstacles.

The rapid replanning approach requires as input the es-
timates of the kinematic model parameters and requires a
mechanism for unbiased sensing of needle tip pose. While the
rapid replanning approach can compensate for perturbations in
needle motion during execution, it cannot by itself fully correct
for non-zero mean errors that might arise due to factors such
as incorrect kinematic model parameters or systemic biases in
tip position sensing.

A. Motion Planning

To enable motion planning for a rapid replanning approach,
we create a fast motion planner for the steerable needle.
We based our planner on a sampling-based rapidly exploring
random tree (RRT) [21], which is well suited for the under-
actuated, nonholonomic systems like the steerable needle.

The input to the planner is an initial state X0, a target
region Pgoal, and the computation time available for planning
Γ. Our algorithm is based on the classic RRT, which proceeds
as follows. The planner incrementally builds a tree T over the
state space, while satisfying nonholonomic motion constraints
of the system and avoiding obstacles in the environment. To
expand the tree T , a random state Xrand is sampled from the
state space. The algorithm identifies a node in the tree Xnear,
that is closest to the sample Xrand, as defined by a specified
distance metric ρ[·]. The algorithm attempts to expand T
towards Xrand based upon the best control input u and the
resulting state Xnew is added to the tree. This process is
repeated until either the tree T connects X0 and Pgoal or
the available computation time is exceeded, in which case the
algorithm reports that a solution cannot be found. A feasible
plan Ψ is extracted from the tree by traversing it backwards
from the goal node to the root.

For a nonholonomic system like the steerable needle, finding
the best control input to a sampled state requires solving a
difficult two-point boundary value problem of connecting two
states in SE(3). Prior RRT-based needle steering planners [41]
avoid this by performing deterministic or uniform random
sampling of control inputs to determine the best control input
[v, ω]T ∈ R2 that leads the needle tip to a new state Xnew
closest to Xrand. Since these methods also assume the constant
curvature kinematic model, the limited range of motion of the
needle tip requires a large number of control samples to make
progress towards the sampled state. This results in wasted
computational effort and is a major computational bottleneck.
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To enable efficient planning, we customize the classic RRT
algorithm for steerable needles by leveraging several obser-
vations and algorithmic improvements. We consider variable-
curvature kinematics (Sec. IV) and introduce a new distance
metric ρ[·]. We present each step of the algorithm (outlined
in Alg. 1) in detail below. In the available computation time,
we compute many feasible bounded-curvature (0 ≤ κ ≤ κ0)
trajectories through 3-D environments with obstacles. The
individual function definitions in Algorithm 1 are as follows:
random_point_in_R3(): To avoid solving the SE(3)

two-point boundary value problem or performing random sam-
pling of control inputs, we sample a random point prand ∈ R3

in the workspace as opposed to sampling a random state in
SE(3). The sampled point can then be connected to a given

state Xnear =

[
Rnear pnear
0 1

]
directly using a circular arc

parameterized by [l, φ, r]T , where l is the arc length, φ is
the change in orientation of the needle tip coordinate frame
Xnear around the znear-axis, and r is the arc radius (Fig. 3). Let
[x, y, z]T = RT

near(prand − pnear) be the coordinates of prand in
the local coordinate frame of Xnear. The parameters of the
circular arc are then given by:

r =
x2 + y2 + z2

2
√
x2 + y2

(6)

φ = arctan(x,−y) (7)

l = rθ = r · arctan 2(z, r −
√
x2 + y2). (8)

To accelerate motion planning for steerable needles, we
incorporate two forms of biasing that empirically result in
significant performance gains. First, we bias the growth of
the tree T towards the target region Pgoal by sampling from
Pgoal with a higher probability than the rest of the workspace.
If this bias is large, the planner behaves like greedy best-first
search [21]. Second, whenever a new node Xnew is added to
the tree, the planner attempts to connect Xnew to a randomly
sampled point in Pgoal.
control_inputs(·): Given a circular arc parameterized

as [l, φ, r] and a given time interval ∆, we derive the aug-
mented control input vector required to compute the new state
of the needle tip Xnew. First, we reorient the needle tip by φ
radians such that the circular arc is contained in the plane
defined by the y-z axes in the reoriented local coordinate
frame Xr

near, which is obtained by applying a rotation of φ
radians around the z-axis to the current state Xnear. We then
compute the augmented control input u = [v, ω̂, κ]T that steers
the needle tip along a circular arc of length l and radius r using
the relations: v = l/∆, ω̂ = 0, and κ = 1/r. We compute
Xnew by applying u to the reoriented frame Xr

near for a time
duration ∆ according to Eqns. (1) and (2).
nearest_neighbor(·): The efficiency with which the

RRT algorithm is able to explore the state space is highly
sensitive to the distance metric ρ[·] used to compute the nearest
node in the tree. In the presence of nonholonomic constraints,
widely used metrics like the Euclidean distance are a very
poor approximation of the true distance between points in the
constrained state space. The performance of the RRT planner
degrades as a result of repeated attempts at extending the same

Algorithm 1 Ψ← needle_RRT_planner(X0,Pgoal,Γ)

1: T ← initialize_tree(X0)
2: τ ← 0
3: while (T ∩ Pgoal = ∅ ∧ τ < Γ) do
4: prand ← random_point_in_R3()
5: Xnear ← nearest_neighbor(prand, T )
6: u← control_inputs(Xnear,prand,∆)
7: Xnew ← f [Xnear,u,∆]
8: if collision_free(Xnear, Xnew,u,∆) then
9: T ← add_vertex(Xnew)

10: T ← add_edge(Xnear, Xnew,u,∆)
11: end if
12: if pnew ∈ Pgoal then
13: Ψ← extract_plan(T , Xnew)
14: end if
15: τ ← update_time()
16: end while
17: return Ψ

nodes in the tree without making sufficient progress [34].
We introduce a new distance metric customized for steerable

needles that accounts for the needle’s nonholonomic constraint
as well as the buckling of the needle in soft tissue. Since
the needle has a maximum curvature κ0, not all sampled
points will be reachable from a given state because of the
nonholonomic constraints of the needle. The reachable set
from a state Xnear =

[
Rnear pnear
0 1

]
consists of all points that

can be connected to pnear by a circular arc that has a radius
r ≥ 1/κ0 and is tangent to the znear-axis of the local coordinate
frame. This definition of the reachable set also directly relates
to the distance metric ρ[·] that is used to select the tree node
that is nearest to the sampled point prand. Accordingly, we
define the distance metric ρ[Xnear,prand] as the length of such
a circular arc connecting prand and Xnear if prand is in the
reachable set of Xnear, and infinity otherwise i.e.,

ρ[Xnear,prand] =

{
l(≡ rθ) if r ≥ 1/κ0 ∧ θ ≥ 0
∞ otherwise

. (9)

This strategy restricts the search domain to only those nodes
that are within the reachable set of the nearest node Xnear, thus
increasing the likelihood of coverage of the state space [34].

It is important to prevent buckling of the needle shaft, which
may occur during insertion because of reaction forces from
the tissue. This implies that not all points in the reachable set
can be physically accessed by the steerable needle from some
poses. In our experiments, we have observed that the needle
starts to buckle roughly when the needle tip heading is greater
than π/2 radians from its initial orientation. We preclude such
points from being added to the tree by setting the distance to
these points to infinity.
collision_free(·): To enable obstacle avoidance, only

collision-free arcs are added to the tree. We check if the
circular arc connecting Xnear and prand is collision free by
approximating it as a sequence of line segments and checking
if all the segments are collision free. Since the obstacle
definitions are obtained from segmentation of 3-D scans, the
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obstacle meshes are likely to be non-manifold. We use the
SOLID library [38] for detecting collisions with arbitrary,
polyhedral obstacles at interactive rates.
extract_plan(·): When the position pnew of a newly

added state Xnew is found to lie in the target region Pgoal, the
RRT planner terminates. By traversing the tree T backwards
from the goal state to the root, we obtain a trajectory composed
of piecewise circular arcs of bounded curvature (0 ≤ κ ≤ κ0).
We extract a motion plan Ψ comprised of a discrete sequence
of control inputs, in terms of the insertion speed v(t) and
twist speed ω(t), that guide the needle to the target along the
computed trajectory.

For each circular arc parameterized by a triplet [l, φ, r] in
the trajectory, we first reorient the needle tip by φ radians by
applying a control input ω = ωspin for a duration of φ/ωspin.
We then compute the factor α based on the curvature κ = 1/r
using Eqn. (3). Given the control input u = [l/∆, 0, 1/r]T , we
compute the controls [v(t), ω(t)]T for traversing the circular
arc in a plane using Eqns. (4) and (5).

The RRT planning algorithm provides a theoretical proba-
bilistic completeness guarantee [21], i.e., if a solution exists,
the probability of finding it approaches one as time goes
to infinity. However, our rapid replanning method assumes
bounded computation time for each replanning interval. Hence,
like all RRT implementations on real robots, the planner
does not provide a completeness guarantee in practical usage.
However, as seen in the results in Sec. VII, our approach of
restarting the RRT planner while computing multiple plans in
each interval can be effective.

B. Clinical Metrics

When selecting a plan, we consider the following clinically
motivated criteria c[Ψ]:
• Minimizing the total needle insertion length (shortest

path), i.e., minimizing c[Ψ] =
∫ T

0
v(t)dt. This metric is

relevant to procedures in vital organs such as the brain
where limiting tissue damage is important [14]. Shortest
trajectories, however, often pass in close proximity to
obstacles, thereby increasing the likelihood of collisions.

• Maximizing the minimum clearance from obstacles
(maximum clearance), i.e., maximizing:

c[Ψ] = max
0<t≤T

min
∀oi∈O

d[pt, oi], (10)

where d[pt, oi] is the distance of the needle tip pt

from obstacle oi ∈ O. Trajectories that have a greater
minimum clearance from obstacles are safer because
they are less likely to collide with anatomical obstacles
when deviations occur. Such trajectories, however, tend
to be longer, thereby increasing the amount of tissue cut
during the procedure. This metric could be useful when
obstacle avoidance is critical but other tissue damage is
manageable, e.g., in liver or muscular tissue.

Since during execution it is important to avoid critical
structures, we allow the clinician to specify a safety buffer
ε, which requires the motion planner to only return plans that
pass at least ε distance away from each obstacle. Setting an

Fig. 5. Our needle steering system consists of a needle steering robot, a pre-
bent, bevel-tip steerable needle, and an electromagnetic tracking system. We
present details of the hardware system in Sec. VI. We performed experiments
using a tissue phantom (shown here) and porcine tissue ex vivo.

appropriate value of ε is particularly important when using
the shortest path metric. A good value for ε is the maximum
error in tip location that can occur in a single replanning
interval due to uncertainty, which would guarantee avoidance
of obstacles during execution. We enforce the safety buffer in
our RRT-based planner by artificially enlarging all obstacles
by a predefined safety buffer ε using Minkowski sums [38].

The correct choice of the clinical criterion will vary by
specific procedure, and we will assume that the clinician will
select c[Ψ] based on the requirements of the procedure. To
compute a plan that optimizes c[Ψ] as much as possible in
the allowable computation time, we use our fast, randomized
planning algorithm to compute hundreds of different feasible
motion plans in a second and then select the plan that performs
best under the selected criterion.

We note that any sampling-based motion planner, including
our method, cannot guarantee that a globally optimal solution
will be found in a finite time interval. Methods like RRT* [18]
can compute optimal motion plans as computation time is
allowed to increase, but cannot guarantee optimality in finite
time and will not be efficient for needle steering due to
their requirement of a solver for two-point boundary value
problems. Our method will explore the steerable needle’s state
space and repeatedly generate independent paths in search
of a higher quality solution, and the best found path will
progressively improve over the duration of the time interval.
A further advantage of our approach is that it is trivially
parallelizable, allowing for plan quality to improve as the
number of cores in modern multi-core architectures increases.

VI. EXPERIMENTAL SETUP

We describe our needle steering system, shown in Fig. 5,
and our experimental setup.

A. System Components

Bevel-tip steerable needle: We use needles fabricated from
nitinol. In our experiments, we used two needles with tube
outer diameters of 0.92 mm and 0.88 mm, henceforth referred
to as Needle 1 and Needle 2, respectively. To enable steering at
tight curvatures, the needles (1) incorporate a hand-machined
bevel tip, and (2) are pre-bent just behind the bevel tip [30].
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Fig. 6. (Left) Sim-Test tissue phantom. (Right) Porcine tissue ex vivo.

Needle steering robot: We use the needle steering robot
design proposed by Das et al. [9] to actuate the needle. The
needle is inserted through a hole in the front plate of the robot.
Buckling of the needle during insertion is prevented using an
external telescoping sheath [40]. Our planner, implemented in
C++, runs on a PC and sends the control inputs to the robot
controller via PCI bus.

Electromagnetic tracking system: Accurate needle steer-
ing requires sensing the state of the needle tip position and
orientation. Approaches for accurate state estimation include
using stereo cameras [30], [40] or fluoroscopic images [22],
but these approaches either cannot be used in opaque media
such as the human body or can result in high radiation
exposure to the patient for longer procedures.

We use an electromagnetic tracking system (Aurora R© v1,
Northern Digital Inc., Canada) [25] for tracking the needle
tip pose. Embedded within the tip of the tube is a 5-DOF
magnetic tracking coil, the position and orientation of which
(other than the roll about the needle axis) can be measured
by the system. In our setup we used the 5 DOF sensor
because its diameter is only 0.5 mm, enabling to fit inside
both steerable needles unlike the 6 DOF sensor which has a
0.8 mm diameter. We estimate the roll of the needle using
encoders on the servo motor that applies axial twists at the
needle base. Electromagnetic tracking is a cost effective and
non-invasive method for reliably sensing the state of the needle
tip in opaque tissue. The manufacturer specifications for the
standard deviation of the error in sensing the position along
any given axis is 0.7 mm and in sensing an angle is 0.2◦ [25].

B. Tissue Sample Materials

Tissue phantom: We first evaluate our approach using
a tissue phantom composed of an animal-protein-based gel
marketed as the Simulated Muscle Tissue Ballistic Test Media
(Sim-Test) from Corbin, Inc. [7], which was used in prior
needle steering experiments [40]. We cast the Sim-Test mate-
rial, diluted with water by a 5:1 ratio, into a cuboidal block
of approximate dimensions 11 cm × 7 cm × 15 cm for our
experiments (Fig. 6).

Porcine tissue: We also evaluate our approach in fresh
porcine tissue ex vivo. In our experiments we used porcine loin
tissue of approximate dimensions of 10 cm × 5 cm × 19 cm.
It was inhomogeneous and comprised of both muscular and
fatty tissue types (Fig. 6).

C. Needle Characterization

The approach presented in Sec. V requires that we character-
ize the maximum curvature of the needle κ0 and the empirical
relationship h[κ] between the curvature κ and the duty cycling

factor α. We empirically determined that h[κ] is dependent
on the mechanical properties of the needle and the tissue and
is not necessarily linear as demonstrated by prior work with
duty-cycled needle steering in a gelatinous phantom [23].

To construct the relationship h[κ], we varied the value of α
between 0 and 1 in increments of 0.1. We then computed the
duration of the duty cycling interval δ for a time interval ∆ =
1 sec (Sec. IV). Given a fixed insertion speed vins and twist
speed ωspin, we commanded the actuators during each duty
cycling interval with control inputs computed by substituting
v = vins in Eqn. (4) and ω̂ = 0 in Eqn. (5).

The application of these controls causes the needle tip to
traverse a circular arc of variable curvature κ in a plane. We
performed repeated insertions of both needles for up to 10 cm
in both the Sim-Test tissue phantom and porcine tissue ex
vivo. We computed a best-fit polynomial curve with a fixed
maximum degree (= 3) that minimized the sum of the squared
errors of the data points from the curve. This curve defines
the relationship α = h[κ]. An important point to note is that
the smaller the distance vinsδ traveled by the needle tip in
every duty cycling interval, the better the approximation of
κ. However, we empirically observed that for an insertion
distance per duty cycling interval of less than 0.5 cm, the effect
of inserting the needle without spinning was negligible i.e., the
effective curvature was close to 0. This is important because
it physically limited the interval lengths at which we could
replan during closed-loop steering to at least 0.5 cm.

To determine the effective curvature κ of the planar arc, we

recorded the state of the needle tip Xt =

[
Rt pt

0 1

]
after the

end of each duty cycling interval for N such intervals. We
observed that the needle tip deviated from the plane because
of initialization errors and other sources of uncertainty. To
robustly estimate κ, we fit a circle to the set of 3-D points
given by pt ∈ R3, t = 0, . . . , N . We first computed a best-
fit plane that minimized the sum of the squared orthogonal
distances from each point to the plane by performing principal
component analysis (PCA) on the set of points. We then
projected the points onto the first two principal components
that span the plane and then robustly fit a circle to the set of
projected 2-D points [36]. The curvature κ was obtained by
taking the reciprocal of the radius of this circle.

Fig. 7 shows the relationship α = h[κ] for Needle 1
and Needle 2 in Sim-Test tissue phantom and porcine tissue.
Needle 1 achieved a maximum curvature κ0 = 0.11 cm−1 in
Sim-Test (Fig. 7(a)). Needle 2 had a lesser outer diameter
(0.88 mm) and achieved a maximum curvature of κ0 =
0.15 cm−1 in Sim-Test and a maximum curvature of κ0 =
0.073 cm−1 in porcine tissue (Figs. 7(b) and 7(c)). Fig. 7 also
shows the best-fit curves for h[κ] for each of the needle-
tissue combinations considered. In particular, we found that
any value of α > 0.5 for duty-cycled insertion in porcine
tissue resulted in a 0 effective curvature, which explains the
lack of empirical data points in Fig. 7(c).

VII. EXPERIMENTAL EVALUATION

We evaluated our new needle steering system in tissue
phantoms and porcine tissue ex vivo to demonstrate the ability
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(a) Needle 1 in Sim-Test (b) Needle 2 in Sim-Test (c) Needle 2 in Porcine Tissue

Fig. 7. Characterization of the relationship α = h[κ] (Eqn. (3)) for Needle1 (0.92 mm diameter) and Needle 2 (0.88 mm diameter) in Sim-Test tissue
phantom and porcine tissue ex vivo.

(a) Tissue Phantom Scene #1 (b) Tissue Phantom Scene #2 (c) Tissue Phantom Scene #3 (d) Tissue Phantom Scene #4

Fig. 8. We perform experiments in a cuboidal shaped Sim-Test tissue phantom (see Fig. 6). We assume that the workspace contains obstacles (shown in
yellow) for planning purposes. We selected 10 randomly chosen targets (shown in red) in the workspace that are are located at insertion depths ranging from
9 cm to 11.5 cm from the face of the cuboidal block. The insertion location of the needle is marked in green and the needle is inserted into the face of the
cuboidal block pointing into the plane of the page.

to steer needles to targets with clinically acceptable accuracy
while avoiding obstacles. For all the experiments described
below, we considered a spherical target region of 1 mm and
measured the targeting accuracy of the needle tip by computing
the distance between the center of this spherical target region
and the final needle tip position after insertion. We executed
the motion planner on an Intel R© i7 3.33 Ghz PC. We set
the replanning interval ∆ to 1 sec and allocated 1 sec of
computation time per replanning step, which is a sufficiently
short time interval for clinical applications that require needle
insertion depths of ≈ 10–15 cm.

A. Evaluation in Tissue Phantoms

We first evaluated our needle steering system in the Sim-
Test tissue phantom described in Sec. VI-B. We chose 10
random target regions in the workspace at distances ranging
from 9 cm to 11.5 cm from the face of the cuboidal block
through which the needle is inserted as shown in Fig. 8. To
evaluate the accuracy of the proposed system, we performed
3 insertions for each of the 10 targets under closed-loop rapid
replanning using Needle 1 (0.92 mm diameter) and the shortest
path metric. We achieved a mean targeting error of 1.07 mm
(± 0.59 mm).

To assess the impact of uncertainty, we also performed an
open-loop execution for each target and achieved an average
error of 9.57 mm (± 2.95 mm). The open-loop execution
results show that, even for homogeneous tissue phantoms,
perturbations due to uncertainty can lead to large errors if
not corrected. Our rapid replanning approach significantly
improves the targeting accuracy by accounting for errors and
perturbations as they occur.

B. Evaluation in Tissue Phantoms with Obstacles

We next evaluated the needle steering system in the Sim-
Test tissue phantom with virtual (not physically embedded)
obstacles. We created four scenes, shown in Fig. 8, with virtual
obstacles. Scenes #1 and #2 contain spherical obstacles which
obstruct the path to some of the considered targets. Scene #3
contains two box-like obstacles that create a narrow passage
that the needle must go through before reaching the targets.
Scene #4 is the most challenging since the obstacles create
a narrow passage and force the needle to traverse two-bend
trajectories around the obstacles to reach the targets.

We first evaluated our approach using 3 insertions for
each of the 10 targets in each scene. We used Needle 1
(0.92 mm diameter) and the maximum clearance metric for
these insertions. The mean targeting error for each of the
scenes was 1.24 mm (± 0.71 mm), 1.29 mm (± 0.79 mm),
1.12 mm (± 0.9 mm), and 1.25 mm (± 0.84 mm), respectively.
Even with obstacles that restrict the navigable space in the
environment, our approach successfully steered the needle to
the target region without collisions in any of the insertions.

We also evaluated the impact of the selected metric (i.e.,
shortest path or maximum clearance) on target accuracy and
obstacle avoidance for each scene. We used Needle 2 (0.88 mm
diameter) and chose 3 out of the 10 target regions in the
workspace. For the shortest path criterion, we enlarged all
obstacles by a safety buffer of ε = 5 mm. We performed
3 insertions for each of the two criteria using our rapid
replanning approach. Fig. 9 shows the means and standard
deviations of the targeting error for each metric. The maximum
mean closed-loop rapid replanning targeting error was 1.7 mm
for the shortest path criterion and 1.66 mm for the clearance
criterion. To illustrate the impact of uncertainty, we also ran
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Fig. 9. We compare the targeting error using closed-loop steering and
open-loop execution for each of the two metrics. Our closed-loop replanning
approach significantly outperforms open-loop plan execution. Error bars
indicate one standard deviation of targeting error over repeated trials.

Fig. 10. Impact of planning time on path quality for the shortest path metric
(top) and maximum clearance metric (bottom) in the tissue phantom scenes.

the system using an open-loop plan for each target and scene.
For the open-loop insertions, the mean targeting errors were
as high as 10 mm for the shortest path criterion and 9.1 mm
for the clearance criterion. Our closed-loop, rapid replanning
approach reduces targeting errors compared to open-loop
execution for both criteria.

We also evaluate the impact on path quality of the planning
time in a replanning interval. In Fig. 10, we illustrate for
one target from each scene the impact of planning time on
path length when using the shortest path criteria, and the
impact of planning time on the minimum clearance from an
obstacle when using the maximum clearance criteria. As the
planning time increases, the method generates a larger number
of feasible motion plans, averaging over 500 plans at 1 second,
over which to select the best plan. The motion planner is able
to find plans that perform better under the chosen metric as
planning time rises, but the improvement in quality diminishes
as computation time approaches 1 second.

(a) Porcine Tissue Scene #1 (b) Porcine Tissue Scene #2

Fig. 11. We perform targeting experiments in a porcine tissue sample ex
vivo. We assume that the approximately cuboidal workspace contains virtual
obstacles (shown in yellow) for planning purposes. The insertion location of
the needle is marked in green and the needle is inserted into the face of the
tissue sample (pointing into the plane of the page). We selected 3 randomly
chosen targets (shown in red) in the workspace that are are located at insertion
depths ranging from 10 cm to 11 cm from the insertion face.

C. Evaluation in Porcine Tissue

We also evaluated our rapid replanning approach in porcine
tissue samples ex vivo as shown in Fig. 6. We created two
scenes with virtual obstacles (shown in Fig. 11). The two
scenes are similar to scenes constructed earlier (Fig. 8) and
are modified to take into account the different dimensions of
the workspace. We use two cylindrical obstacles in Scene #1
and two box-like obstacles in Scene #2, which create a narrow
passage and require the needle to traverse two-bend trajectories
around the obstacles to reach the target regions.

We used Needle 2 (0.88 mm diameter) for this set of
experiments and considered 3 randomly chosen targets in the
workspace shown in Fig. 11. We evaluated the system for both
the shortest path and maximum clearance criteria in each of
these scenes using 3 insertions per target for each criterion.
For the shortest path criterion, we enlarged all obstacles by a
safety buffer of 5 mm. As before, we also execute the system
using an open-loop motion plan for each target for comparison.

Fig. 12 shows the mean targeting error and standard devi-
ations of the targeting error for each of the two criteria for
steering using our closed-loop rapid replanner and using an
open-loop plan. The mean targeting error for the shortest path
criterion for both scenes was 3.6 mm (± 1.85 mm) for our
closed-loop rapid replanner and 10 mm (± 2.6 mm) for open-
loop steering. The targeting errors are larger than in Sim-Test
phantom tissue because of the anisotropic nature of interaction
between needle and tissue and heterogeneity of the tissue
sample. In spite of the slightly larger errors, the targeting errors
using our approach are within clinically acceptable thresholds
and are significantly smaller than open-loop steering. The
mean targeting error for the clearance criterion for both scenes
was 2.6 mm (± 1.2 mm) for our closed-loop rapid replanner
and 15.6 mm (± 3 mm) for open-loop steering. Two of the
open-loop insertions collided with the virtual obstacles. In
contrast, our rapid replanning approach steered the needle
safely to the target region. In terms of the metrics, we found
that the maximum clearance criterion worked better than the
shortest path criterion because of the narrow passage in the
environment, which is further constricted by imposing an
artificial safety buffer in case of the shortest path criterion.

We also evaluate the impact on path quality of the planning
time in a replanning interval for the porcine tissue scenes.
In Fig. 13, we illustrate for one target from each scene the
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Fig. 12. We compare the targeting error using closed-loop, rapid replanning
steering and open-loop execution for the two proposed metrics in porcine
tissue. Our approach significantly outperforms open-loop execution. Error bars
indicate one standard deviation of the targeting error.

Fig. 13. Impact of planning time on path quality for the shortest path metric
(top) and maximum clearance metric (bottom) in the porcine tissue scenes.

impact of planning time on path length when using the shortest
path criteria. We also illustrate the impact of planning time
on the minimum clearance from an obstacle when using the
maximum clearance criteria. As with the Sim-Test scenes,
the motion planner finds plans that perform better under the
chosen metric as planning time rises, but the improvement in
quality diminishes as computation time approaches 1 second.

D. Evaluation in Anthropomorphic Liver Phantom

We apply our approach to an example scenario motivated
by the task of ablating a tumor in the liver while avoiding the
hepatic veins. We built the anthropomorphic liver phantom that
models the hepatic veins based on the hepatic vein anatomical
model provided by Desser et al. [10]. In this experiment, the
obstacles are physically embedded in a tissue phantom. We
modeled the major hepatic veins (middle, left, and right) and
the inferior vena cava using hollow tubing (see Fig. 14) so that
the veins would be visible on preoperative CT images. We

constructed a tumor from plastic that was roughly spherical
and 5 mm in diameter. The tumor model was coated with
calcium sulfate to assure visibility in the CT images. We
placed the model veins, model tumor, and fiducial markers for
registration in a box which we filled with Sim-Test to create
the anthropomorphic tissue phantom.

After the phantom was constructed out of Sim-Test material,
diluted with water by a 5:1 ratio, we used a portable flat-panel
CT scanner to obtain preoperative images of the environment
(see Fig. 14(b)). We specified 5 insertion locations on the
surface of the box and specified 5 different target sites on
the tumor for ablation. We also segmented the major vessels
and the tumor from the CT scans to obtain obstacle meshes for
planning. We used Needle 2 (0.88 mm diameter) for this set
of experiments. For each pair of insertion location and target
region, we performed closed-loop steering using our rapid
replanning approach using the maximum clearance criterion.
We did not perform open-loop steering in this experiment to
avoid damaging the needle in case it collided with the model
veins during the procedure.

In each instance, our rapid replanning approach successfully
steered the needle to the target region on the tumor surface
while avoiding the hepatic veins, with an average error of
2.38 mm (± 1.02 mm) over up to 15.5 cm insertion length.

VIII. CONCLUSION

We presented a new approach to automatic needle steering
to reach targets in 3-D environments while avoiding obstacles
and compensating for real-world uncertainties. Our approach
relies on rapid replanning, a new technique for 3-D closed-loop
needle steering that is based on a fast RRT motion planner for
steerable needles that uses variable-curvature kinematics and
a novel distance measure for planning. This planner allows
us to compute many feasible motion plans per second, of
which the best plan is chosen for execution based on clinically
motivated metrics. Our approach eliminates the need for a
separate feedback controller by accounting for perturbations as
they occur while simultaneously enabling obstacle avoidance.

We experimentally evaluated our approach by performing
procedures in tissue phantoms and porcine tissue ex vivo.
Our experimental results demonstrate that our rapid replanning
approach successfully guides the needle to desired targets
while avoiding obstacles with an average error of less than
3 mm, which is within clinically acceptable thresholds and
better than the accuracy achieved by trained clinicians. The
method currently relies on a relatively simple variable curva-
ture kinematic model, which suggests that a simple kinematic
model coupled with rapid replanning may be sufficient for
many clinical applications.

In future work we plan to investigate options to further
improve accuracy. One avenue is to incorporate more detailed
models of the needle’s kinematic behavior, including needle
torsion models (e.g., extensions of [31]) while ensuring motion
planning is still sufficiently fast for rapid replanning. Another
avenue is to investigate methods for handling constant biases
that might arise due to incorrect sensor calibration (which
creates offsets in the estimated tip pose) or incorrect estimation
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(a) Hepatic veins model (b) Experimental setup (c) Plans computed at time step 1 (d) CT Reconstructed needle path

Fig. 14. We applied our needle steering system with rapid replanning to an example scenario motivated by the task of ablating a tumor in the liver while
avoiding the hepatic veins. (a) We constructed an anthropomorphic liver phantom that includes the major hepatic veins in the liver (right) based on an anatomical
model provided by Desser et al. (Fig. 1 in [10]). The model was built to scale to match human liver dimensions and is shown next to a geometrically correct
human liver model manufactured based on segmented CT images of a human patient. (b) We placed the model in a container that was filled with Sim-Test
material to create the liver phantom for experiments. We used a portable flat-panel CT scanner to obtain preoperative images of the environment while the
electromagnetic tracking system provided measurements of the position and orientation of the needle tip during the procedure. (c) We specified the insertion
location and target region and annotated segmented structures such as veins that needed to be avoided. We illustrate feasible motion plans (shown in green)
computed at time step 1. (d) Via rapid replanning, our planner successfully guided the needle (reconstructed from CT scans after the procedure) between the
middle and left hepatic veins to reach the target on the surface of the tumor.

of the needle curvature. The rapid replanning approach by
itself cannot fully correct for these types of systemic errors.
For problems in which systemic errors may occur, we will
investigate automatically learning uncertain system parameters
during execution using a Kalman filter or related framework.
For example, the system could estimate the needle curvature
online by fitting a curve to the most recent measurements of
the needle tip position and then use the latest estimated needle
curvature in each replanning interval.

In future work we also plan to evaluate the rapid replanning
approach for specific clinical applications. New procedures in
the brain or in the abdominal cavity may require specialized
designs of asymmetric-tip needles [13], [22], and the rapid
replanning approach should be applicable to these needle
designs since the underlying kinematic model is similar. For
these applications, our rapid replanning approach could enable
accurate targeting while automatically avoiding anatomical
obstacles such as sensitive or impenetrable structures.
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