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Abstract Robotic manipulators designed for home assistance and new surgical pro-
cedures often have significant uncertainty in their actuation due to compliance re-
quirements, cost constraints, and size limits. We introduce a new integrated motion
planning and control algorithm for robotic manipulators that makes safety a priority
by explicitly considering the probability of unwanted collisions. We first present a
fast method for estimating the probability of collision of a motion plan for a robotic
manipulator under the assumptions of Gaussian motion and sensing uncertainty.
Our approach quickly computes distances to obstacles in the workspace and appro-
priately transforms this information into the configuration space using a Newton
method to estimate the most relevant collision points in configuration space. We
then present a sampling-based motion planner based on executing multiple inde-
pendent rapidly exploring random trees that returns a plan that, under reasonable
assumptions, asymptotically converges to a plan that minimizes the estimated colli-
sion probability. We demonstrate the speed and safety of our plans in simulation for
(1) a 3-D manipulator with 6 DOF, and (2) a concentric tube robot, a tentacle-like
robot designed for surgical applications.

1 Introduction

As robotic manipulators enter emerging domains such as home assistance and en-
able new minimally-invasive surgeries, their designs are increasingly diverging from
the designs of traditional manufacturing robots. Home assistance robotic manipula-
tors must feature compliant joints for safety and must be lower cost to spur adoption,
which results in decreased precision of sensors and actuators. Medical robots, such
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as tentacle-like and snake-like robots (e.g., [32, 9, 23, 7]), are becoming smaller and
also are gaining larger numbers of degrees of freedom. These features are necessary
to enable new, less invasive surgical procedures that require maneuvering around
sensitive or impenetrable anatomical obstacles. These trends in robotic manipulator
design and applications have an inevitable consequence: uncertainty in robot motion
and state estimation. For robotic manipulators to operate with some level of auton-
omy in people’s homes and inside people’s bodies, uncertainty should explicitly be
considered when planning motions to ensure both safety and task success.

In this paper, we introduce a new integrated motion planning and control algo-
rithm for manipulators with uncertainty in actuation and sensing. Our objective is to
compute plans and corresponding closed-loop controllers that a priori minimize the
probability that any link of the robot will collide with an obstacle. To accomplish this
objective, our algorithm incorporates two primary contributions. First, we introduce
a fast and accurate method for assessing the quality of a manipulator motion plan by
efficiently estimating the a priori probability of collision using fast numerical com-
putations that do not require sampling in configuration space. Second, we introduce
a sampling-based motion planner that, under reasonable assumptions, guarantees
that the probability of finding a plan that minimizes the estimated probability of
collision approaches 100% as computation time is allowed to increase. We note that
current planners such as RRT* [12] cannot guarantee asymptotic optimality for our
problem since the optimal substructure property does not hold, i.e., the optimal plan
from a particular state is not independent of the robot’s prior history. Our approach
is applicable to robotic manipulators for which uncertainty in actuation and sensing
can be modeled using Gaussian distributions, a Kalman filter is used for state es-
timation, and an optimal linear controller (i.e., LQG control) is used to follow the
plan. To the best of our knowledge, this is the first approach for computing a plan
that minimizes the a priori probability of collision for general robotic manipulators.

For robots with motion and sensing uncertainty, collision detection during mo-
tion planning must be done in a probabilistic sense by considering the possibility of
collision with respect to all possible states of the robot. Extensive prior work has in-
vestigated integrated motion planning and control under uncertainty for robots that
can be approximated as points in the workspace (e.g., [26, 25, 19, 4]), but robotic
manipulators raise new challenges. Whereas for point robots analytically estimat-
ing probability of collisions is facilitated by the fact that the robot’s configuration
space and workspace share parameters, for manipulators the configuration space
and workspace are disjoint. Furthermore, manipulators (especially tentacle-like and
snake-like medical robots) can have large numbers of degrees of freedom.

In our first contribution, we introduce a method to efficiently estimate the a priori
probability of collision for a given plan for a robotic manipulator. Given the robot’s
uncertainty represented as a distribution in configuration space, efficiently estimat-
ing the probability of collision is challenging because the shapes of the obstacles are
defined in the workspace and cannot be directly computed in configuration space in
closed form [6]. The key insight of our method is that an appropriate minimization
of distance from the robot to an obstacle in C-space corresponds to a minimum dis-
tance in the workspace. Hence, we propose a fast method using Newton’s method
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to estimate the closest point in configuration space that will cause a collision, and
use this information to estimate the probability of collision. We extend this formula-
tion to multiple obstacles and then propagate these estimates over time (in a manner
that considers dependencies across time steps) to estimate the a priori probability of
collision for a plan.

In our second contribution, we present an asymptotically optimal motion plan-
ner that minimizes the estimated a priori probability of collision for a manipulator.
Our motion planner is based on a simple idea: it generates a large number of plans,
computes an optimal linear controller for each plan, then estimates the probability
of collision for each plan using our approach above, and selects the best plan. By
evaluating cost over entire plans, we properly handle the fact that the probability
of collision from a configuration onwards depends on prior history. We show that,
under reasonable assumptions, the computed plan will converge to a minimum esti-
mated collision probability plan as computation time is allowed to increase.

We evaluate our method using simulated scenarios involving a 6-DOF manipu-
lator and a tentacle-like robot designed for medical applications such as skull base
surgery. Our results show that we can quickly estimate the a priori probability of col-
lision of motion plans across highly distinct robotic manipulators and select plans
that safely and robustly guide the robot’s end effector to desired goals.

2 Related Work

Since uncertainty is inherent in many robotics applications, approaches for manag-
ing uncertainty have been investigated for a variety of settings. Our focus in this
paper is on robots with uncertainty in their motion and state estimation; we do not
consider uncertainty in sensing of obstacle locations (e.g., [11]) or grasping (e.g.,
[20]). Extensive prior work has investigated motion planning under uncertainty for
mobile robots that can be approximated as points or spheres in the workspace, e.g.,
[26, 17, 18, 27, 2, 21, 19, 4, 8]. For point or spherical robots, computing an estimate
of the probability of collision with obstacles can be done in the workspace since the
geometry of the C-obstacles is low dimensional and can be directly computed. It is
not trivial to directly extend these methods to robotic manipulators, which are typ-
ically articulated and are composed of more complex shapes. Our approach avoids
complexity in the configuration space by computing distance only in the workspace,
as has been done in other contexts [3]. Another approach to estimate the probability
of collision is using Monte Carlo simulation in the space of uncertain parameters,
but the computation time needed to run a sufficient number of simulations to achieve
a desired accuracy can be prohibitive in some applications.

Our approach computes a plan and controller simultaneously to minimize proba-
bility of collision. Approaches that blend planning and control by defining a global
control policy over the entire environment have been developed using Markov deci-
sion processes (MDPs) [2] and partially-observable MDPs (POMDPs) [14]. These
approaches are difficult to scale, and computational costs may prohibit their ap-
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plication to robots with higher dimensional configuration spaces. Another class of
approaches rely on sampling-based methods to compute a path and then compute
an LQG feedback controller to follow that path [26, 4, 21, 1]. Other approaches
compute a locally-optimal trajectory and an associated control policy [19, 30, 25].
Recent work has begun to investigate computing plans for manipulators that are
robust to uncertainty using local optimization [15], but place restrictions on robot
geometry and do not accurately estimate probability of collision.

For some applications, uncertainty in robot motion and sensing necessitates that
the robot perform maneuvers purely to gain information. The general POMDP for-
mulation enables such information gathering. However, this typically comes at the
cost of additional computational complexity [14] or the ability to only compute lo-
cally optimal rather than globally optimal plans [25]. Although in this paper we
address a broad class of problems, the use of sampling-based motion planning in
our approach does place restrictions, e.g., the optimal plan must be goal-oriented
(i.e., optimality is not guaranteed for problems that require returning to previously
explored regions of the state space for information gathering). Because of these re-
strictions, our method does not address the general POMDP problem.

Sampling-based methods such as RRT* provide asymptotic optimality [12], but
they are not suitable for finding the optimal plan for the cost metric of minimizing
probability of collision because the required optimal substructure property does not
hold. We show that our motion planner, under reasonable assumptions, is asymptot-
ically optimal for goal-oriented problems when minimizing probability of collision.

3 Problem Definition and Overview

We consider an articulated robotic manipulator with l links operating in an envi-
ronment with obstacles. Let C be the configuration space of the robot. Let q ∈ C
denote a configuration of the robot, which consists of the parameters over which the
robot has control (e.g., joint angles). We assume we are given a description of the
geometry X(q) of the robot in the workspace for any given configuration q ∈ C and
a description of the geometry of the obstacles O in the workspace. The continuous
time τ is discretized into periods with equal time duration ∆ , and we define q(τ)
as the configuration at time τ . For simplicity, we define qt = q(t∆) for time step
t ∈ N. Let u ∈ U denote the robot’s control inputs, which are provided at discrete
time steps. At time step t, the dynamics of the robot evolves as

qt+1 = f (qt ,ut ,mt), mt ∼N (0,M) (1)

where mt is the process noise with variance M. We assume noisy and partial obser-
vation zt can be obtained by the sensing model

zt = h(qt ,nt), nt ∼N (0,N), (2)

where nt is the sensing noise with variance N.



Safe Motion Planning for Robotic Manipulators with Uncertainty 5

Our objective is to enable the robotic manipulator to move from a start config-
uration q0 to a goal G ⊆ C in a manner that minimizes the probability of collision
with obstacles. We define a motion plan π as a sequence of nominal configurations
and corresponding control inputs, π = {q0,u0,q1,u1, . . . ,qT ,uT}, where qT ∈ G
and uT = 0. When executing a plan, we assume the robot uses an optimal linear
controller (a linear quadratic Gaussian (LQG) feedback controller) in combination
with a Kalman Filter for state estimation to guide the robot along the nominal plan.

In Sec. 4, we introduce a method to efficiently estimate the a priori probability of
collision for a given plan. In Sec. 5 we introduce an asymptotically optimal motion
planner that computes a plan that reaches a goal and asymptotically minimizes the
a priori probability of collision.

4 Estimating Probability of Collision

In this section, we present our approach to estimating the probability of collision for
a robotic manipulator moving along a planned trajectory. The approach works for
complex workspace geometry and configuration spaces of arbitrary dimension and
shape (including high-DOF manipulators).

We begin by considering the probability of collision when the robot is at a partic-
ular configuration with a given uncertainty distribution. We assume we have access
to a collision-checker (e.g., [28]) that can compute the (signed) distance d(q) in the
workspace between the geometry of the robot X(q) configured at q and the geome-
try of the obstaclesO (the distance is negative if the robot collides with an obstacle,
in which case the penetration depth is returned). The goal is to approximate the
probability that the robot is in collision, i.e., p(X(q)∩O 6= /0), given a Gaussian
distribution of the configuration q ∈ C of the robot;

q∼N (q̂,Σ), (3)

with mean q̂ and variance Σ .

4.1 Approach
Our approach is as follows. Let us assume that the geometry of the configuration
space obstacles is (locally) convex in the neighborhood of q̂ (we will alleviate this
assumption below). Then, we can approximate the free part of the configuration
space by a single linear inequality constraint (aT q < b) that is tangent to the config-
uration space obstacles at the point on the C-space obstacles “closest” to q̂. Given
a linear inequality constraint, there is a closed-form expression for the probability
that the constraint is violated if q has a Gaussian distribution [26], which serves
as a (conservative) approximation of the probability that the robot is in collision.
The challenge is to find a “closest” point on the boundary of the C-space obstacles,
since we only have access to the geometry of the obstacles in the workspace. In
our approach, we make use of one key relation between workspace geometry and
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configuration space geometry that holds in general: configuration q ∈ C lies on the
boundary of a configuration space obstacle if and only if the workspace distance
d(q) between the robot X(q) configured at q and the workspace obstaclesO is zero
(i.e. the robot touches an obstacle).

In order to define “closest”, we use the distance metric
√
(q− q̂)T Σ−1(q− q̂).

This ensures that the constraint includes as much probability mass as possible.
Hence, decomposing Σ = LLT and defining a transformed configuration space C′ =
L−1C allows us to use the standard Euclidean distance metric

√
(q′− q̂′)T (q′− q̂′),

where q̂′ = L−1q̂ is the mean of the distribution in the transformed configuration
space C′. Also, let us define a workspace distance function that takes in configura-
tions q′ ∈ C′ from the transformed configuration space:

d′(q′) = d(Lq′). (4)

We are looking for a transformed configuration q′ for which d′(q′) = 0 (i.e., a con-
figuration q′ on the boundary of the transformed C-space obstacles) that is closest
to the transformed mean q̂′. For this, we use a variant of Newton’s root finding
method with q̂′ as the initial “guess.” Newton’s method (with line search) finds a
root close to the given initial “guess,” but does not guarantee to find the actual clos-
est root. (We note that computing the true minimum distance point requires solving
an optimization problem subject to a constraint that the solution is on the surface of
a C-obstacle, which cannot be efficiently computed). Newton’s method iteratively
performs the following update:

q′i+1 = q′i−d′(q′i)
∂d′

∂q′
[q′i]/

(
∂d′

∂q′
[q′i]

T ∂d′

∂q′
[q′i]
)
, (5)

with q′0 = q̂′. Here, ∂d′
∂q′ [q

′
i] is the gradient vector of d′ at configuration q′i. The gra-

dient points in the direction of steepest ascent of d′ and has a magnitude equal to
the slope of d′ in that direction. Hence, if the function d′ would be linear along the
gradient, the above equation gives a configuration q′i+1 for which d′ is zero. Since
this is in general not the case, the equation is iterated, which lets it approach a root
q′? of d′ with a second-order convergence rate [16]. In our implementation, we use
line search in Newton’s method to ensure that the (absolute value) of the distance
strictly decreases with each iteration, i.e. |d′(q′i+1)| < |d′(q′i)|. The gradient vector
∂d′
∂q′ [q

′
i] can be computed using numerical differentiation (recall that d′(q′) can be

evaluated for any q′ ∈ C′ using Eq. (4) and the collision checker).
Fig. 1 shows an example workspace and configuration space of a 2-D manipu-

lator with mean q̂′ and the approximately closest point q′? on the boundary of the
C-obstacles as found by Newton’s method. As can be seen, the q′? is indeed close to
the mean, but is not the exact closest point. To construct the linear constraint tangent
to the transformed C-obstacles at q′?, we need the vector n′ normal to the surface of
the transformed C-obstacle at q′?. For this, we use n′ = sign(d′(q′?−1))(q

′
?−q′?−1),

where q′?−1 is the before-last iterate of Newton’s method. Given n′, the linear con-
straint (aT q < b) in the original configuration space C is given by:

aT = n′T L−1, b = n′T q′?. (6)
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θ1θ2

x
↑→ y
(a) Workspace of 2D

manipulator at q̂

q̂

θ2
↑→ θ1

(b) C-space with
uncertainty ellipse
(zoomed near q̂)

q̂′

(c) Transformed C-space
w/ constraint tangents

(zoomed near q̂′)

(d) Workspace config. at
nearest collision w/

orange obstacle

Fig. 1 Example of our method for estimating the closest collision point. The 2-D manipulator at
configuration q̂ with 2 obstacles in the workspace (a). The configuration space of the manipulator
defined by (θ1,θ2) zoomed in to the area around q̂ (b). The uncertainty ellipse is shown with greater
uncertainty in θ2 than in θ1. We transform the C-space such that the ellipse is circular, enabling
us to compute distances using a collision checker (c). Using Newton’s method, we compute the
closest point (q′?) and corresponding constraint tangent for each link that collides with an obstacle.
We illustrate in the workspace the q′? that collides with the orange obstacle (d). Using the tangents
in (c), we truncate the uncertainty distribution and propagate to next time steps, enabling us to
estimate probability of collision along a trajectory.

This equation, as well as the ones above, suggest that we need to decompose
Σ into LLT and compute the inverse of L, which are potentially costly operations
and require Σ to be non-singular. However, this is not necessary. It can be shown
that the configurations qi = Lq′i in the untransformed configuration space evolve in
Newton’s method as:

qi+1 = qi−d(qi)Σ
∂d
∂q

[qi]/

(
∂d
∂q

[qi]
T

Σ
∂d
∂q

[qi]

)
, (7)

with q0 = q̂. The constraint (aT q < b) upon convergence is then given by:

a =−|d(q?−1)|
∂d
∂q

[q?−1], b = aT q?, (8)

where the distance and gradient are available from the last step of Newton’s method.
From Eq. 7 we can see that in each iteration our method needs O(n) distance queries
and O(n2) operations, where n is the dimension of the configuration space.

4.2 Multiple Constraints
Above we made the assumption that the geometry of the configuration space obsta-
cles is (locally) convex. This is in general not an accurate assumption, in particular if
the geometry of the workspace and of the robot is highly non-convex (as is the case
with a manipulator). Therefore, we take the following approach to create multiple
constraints: we assume that the geometry of the workspace obstacles O is decom-
posed into n convex sets O1, . . . ,On such that

⋃
iOi = O and, similarly, that the

workspace geometry X(q) of the robot for a configuration q is decomposed into m
convex sets X1(q), . . . ,Xm(q) such that

⋃
i Xi(q) = X(q). For a manipulator robot for

instance, one can imagine that each link of the manipulator forms a convex set.
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We then apply the above approach for each pair of workspace obstacle Oi and
robot subset X j(q), giving a set of nm approximately locally-closest configurations
on the geometry of the C-space obstacles and their associated constraints. To avoid
having unuseful constraints, we take the following pruning approach: we consider
the locally-closest configurations in order of increasing distance from the mean q̂,
and remove the configuration from the list if it does not obey one of the constraints
associated with configurations that came before it in the list. The intersection of the
remaining constraints form an approximate local convexification of the free config-
uration space around the distribution of the configuration of the robot. We note that
this approach relies on an implicit assumption that for a convex (piece of the) robot
and a convex obstacle, the corresponding C-space obstacle is (locally) convex. This
is not the case in general, but it is reasonable to assume that the surfaces of such C-
obstacles are “well-behaved” and that the constraint as found by Newton’s method
gives a reasonable local approximation. This is the case for the example in Fig. 1.

Given the set of constraints {aT
i q < bi} thus computed, we can approximate the

probability that any of the constraints is violated given the Gaussian distribution of
q (see [18, 30]). In addition, we can truncate the Gaussian distribution to approx-
imate the conditional distribution that the robot is collision free. This conditional
distribution can then be propagated along a given motion plan for the robot (e.g.,
using LQG-MP [26]). Since arriving at a particular time step along a plan is condi-
tioned on the previous time steps being collision free, we account for dependencies
between successive time steps by repeating the above procedure for each time step
along the plan to approximate the probability that the entire path of the robot is
collision free (see, e.g., [18]).

5 Computing Motion Plans that Minimize Collision Probability

We next present a motion planner that guarantees that, as computation time is al-
lowed to increase, the computed plan will approach a plan that minimizes proba-
bility of collision estimated using the method in Sec. 4. Guaranteeing asymptotic
optimality for motion planning under uncertainty is challenging because it is nec-
essary to not only explore the configuration space but also to consider the a priori
uncertainty distribution at each configuration. The uncertainty distribution at a con-
figuration is history dependent, i.e. it depends on the trajectory used to reach the
configuration. This breaks the optimal substructure assumption required by prior
asymptotically optimal motion planners such as RRT* [12] since the cost of any
subpath is dependent on what succeeds and precedes it.

5.1 Multiple Independent RRTs (MIRRT)
Our motion planning method, Multiple Independent RRTs (MIRRT), builds upon
the rapidly-exploring random tree (RRT) [6], a well-established sampling-based mo-
tion planner for finding feasible plans in configuration space. Our method begins by
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building an RRT and terminating as soon as a plan is found. For the computed plan,
we compute the corresponding LQG controller and estimate the probability of col-
lision of the plan as described in Sec. 4. We then launch a completely new RRT to
compute another plan. We continue executing independent RRTs until a maximum
time threshold is reached or the user stops the planner. (We note that this planning
approach is trivially parallelizable.) As the plans are generated, we save the plan
with minimum estimated probability of collision.

A single RRT for general cost functions will not converge to an optimal plan [12].
We show in Sec. 5.2 that, with some reasonable assumptions, MIRRT is asymptoti-
cally optimal for minimizing the probability of collision estimated using Sec. 4.

5.2 Analysis of Asymptotic Optimality
We analyze MIRRT for holonomic robotic manipulators for goal-oriented problems,
i.e. we require the optimal plan π∗ to have the property that state q∗t along the plan
π∗ is closer (based on the Euclidean distance in configuration space) to the state q∗t−1
than to any state q∗t ′ where t ′< t−1. For any goal-oriented problem, the manipulator
will never return to a previous configuration to gain information. We show that for a
goal-oriented problem in which a plan is represented by control inputs over a finite
number of time steps, the plan returned by MIRRT asymptotically approaches the
optimal plan π∗ with probability 1.

For purposes of motion planning, we define cost function c(π,q0) as the esti-
mated probability of collision when plan π is executed starting at configuration q0.
Given q0 and two feasible plans π1 and π2, we define the distance between π1 and
π2 as ‖π1−π2‖= maxζ∈[0,1] ‖q(ζ T1∆ ,π1)−q(ζ T2∆ ,π2)‖, where Ti is the number
of time steps of πi and q(τ,π) represents the configuration at time τ while executing
the plan π . For our cost function, similar plans have similar cost. The cost function
c(π,q0) is Lipschitz continuous, i.e., there exists some constant K such that starting
from q0, for any two feasible plans π1 and π2, ‖c(π1,q0)−c(π2,q0)‖≤K‖π1−π2‖.

To expand an RRT in the direction of a sampled configuration qsample, the algo-
rithm uses the function Steer : (q,qsample) 7→ qnew, which is defined as in [12]. Steer
returns a configuration qnew that moves linearly from q toward qsample up to a prede-
fined distance η ∈ R+. For the optimal plan π∗, we define d∗ = max0≤i≤T−1 ‖q∗i −
q∗i+1‖. We assume η is sufficiently large that ∃β ∈ R+, d∗+β = η .

Because we consider uncertainty, we leverage the assumption that an optimal
plan π∗ is α-collision free, i.e., the nominal plan avoids obstacles by a clearance
distance of at least α for some α ∈R+. This assumption is reasonable since moving
adjacent to an obstacle would almost surely cause collision.

Motivated by [13], we build “balls” along the optimal plan π∗. Given any ε ∈
(0,min(β

2 ,α)), for any q∗t , we define (ε, t)-ball Bq∗t as all q such that ‖q∗t −q‖ ≤ ε .
Because of the choice of ε , at time step t, if the robot is at a state q within Bq∗t , and
a sample qsample ends up within Bq∗t+1

, the function Steer(q,qsample) can connect q
and qsample by a straight line in C. The straight line is also collision free. For any
feasible plan π that has the same number of time steps as π∗, we call π an ε-close
path if and only if for any time step t along π , qt ∈ Bq∗t .
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Theorem 1. (MIRRT is asymptotically optimal) Let πi denote the best plan found
after i RRTs have returned solutions. Given the assumptions above and assuming
the problem is goal-oriented and admits a feasible solution, as the number of in-
dependent RRT plans generated in MIRRT increases, the best plan almost surely
approaches the optimal plan π∗, i.e., P(limi→∞ ‖c(πi,q0)− c(π∗,q0)‖= 0) = 1.

Proof. For any ε (without loss of generality, we assume ε ∈ (0,min(α, β

2 ))), we
build (ε, t)-balls along π∗. Consider a sequence of events that can generate an ε-
close path. In one RRT, we start from the initial state q0 (we assume q0 = q∗0). The
first sample q1 ends in Bq∗1 with nonzero probability. The steering function connects
q∗0 and q1. The second sample qt ends in Bq∗2 with nonzero probability. Based on
the goal-oriented assumption, qt is closer to q1 and hence the steering function
connects q1 and q2. We repeat until the last sample qT ends in Bq∗T with nonzero
probability and the steering function connects qT−1 and qT . Thus, the probability of
generating an ε-close path by one execution of RRT is nonzero, which we express
as Pε ∈ R+. Hence we have P(‖πi−π∗‖ > ε) = (1−Pε)

i = P̄i
ε . Thus,

∑
i P(‖πi−

π∗‖ > ε) =
∑

i P̄i
ε ≤ 1

1−P̄ε
is finite. Based on a Borel-Cantelli argument [10], we

have P(limi→∞ ‖πi−π∗‖= 0) = 1. Since the cost function of estimating probability
of collisions is Lipschitz continuous, P(limi→∞ ‖c(πi,q0)− c(π∗,q0)‖= 0) = 1. �

We have shown that when the above assumptions hold and the number of feasible
plans approaches infinity, the plan returned by MIRRT will almost surely approach
a solution that minimizes the estimated probability of collision c.

6 Experiments

We evaluated our methods on two simulated scenarios: (1) a 6-DOF manipulator in
a 3-D environment with narrow passages, and (2) a concentric tube robot that has
applications to surgical procedures. In both scenarios, the robots have substantial
actuation uncertainty and limited sensing feedback. We evaluated our C++ imple-
mentation on a 3.33 GHz Intel i7 PC.

For both scenarios, we first evaluated our method for estimating probability of
collision by comparing the estimated collision probability with the ground truth
probability. We computed ground truth by running at least 5,000 Monte Carlo simu-
lations of the given motion plan and reporting the percentage of collision free simu-
lations. Each simulation was executed in a closed-loop fashion using the given linear
feedback controller and a Kalman filter, and with artificially generated motion and
sensing noise. We also demonstrated the ability of MIRRT to compute plans that
approach optimality as computation time is allowed to increase.

6.1 6-DOF Manipulator Scenario
We first applied our method to a holonomic 6-DOF articulated robotic manipulator
in a 3-D environment as shown in Fig. 2(a). The robotic manipulator must move
from its initial configuration to a configuration in which its end-effector is inside
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θ1θ1

θ2θ2

θ3θ3
θ4θ4θ5θ5θ6θ6

y
x z

(a) Initial robot configuration (b) Example plan (c) Optimal plan

(d) Method comparison for example plan (e) Convergence of MIRRT

Fig. 2 The 6-DOF manipulator with an encoder only at its base joint must move from its initial
configuration shown in (a) to a goal configuration in which its end-effector reaches the red ball
while avoiding the cyan obstacles. An example feasible plan (b), where the trajectory of the robot
over time is shown by its yellow, magenta, and blue links. Our method estimates the probability
of collision of this plan at 39.39% and ground truth is 40.68%. We compare our probability of
collision estimation method and Monte Carlo simulation for the example plan (d). For Monte Carlo
simulation to achieve similar accuracy to our method, 700 simulations are needed, which requires
over 26 seconds rather than 234 ms for our method. The optimal plan computed by MIRRT run for
20 seconds passes through the upper passage (c). The estimated probability of collision is 4.19%
while the ground truth is 3.12%. The performance of the MIRRT converges as the computation
time is allowed to increase (e).

the pre-defined goal region (red ball) while avoiding the cyan obstacles. To reach
the goal, the manipulator must pass through one of two narrow passages; the left
narrow passage is wider than the upper narrow passage. Although our geometric
representation resembles an industrial manipulator, we model the robot as a low-
cost, compliant manipulator with uncertainty in actuation and with an encoder only
at the base joint, resulting in limited state feedback.

We define the configuration of the robot as q = (θ1,θ2,θ3,θ4,θ5,θ6), the
manipulator’s joint angles. The control inputs are the angular velocities of
the joints, w = (w1,w2,w3,w4,w5,w6), each corrupted by a process noise
m = (w̃1, w̃2, w̃3, w̃4, w̃5, w̃6) ∼ N (0,M) where M = σ2

1 I with σ1 = 0.03 rad/s.
We define the robot’s discrete dynamics model as

qt+1 = qt +∆(w+m) (9)

where ∆ is the time step size. We assume the robot has an encoder only at its base
joint and hence define the sensing model as
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h(q,n) = θ1 +n (10)

where the observation is corrupted by noise n ∼ N (0,σ2
2 ) with σ2 = 0.03 rad/s.

This is indeed a formally unobservable sensing model.
We first evaluate the ability of our method to accurately estimate the probability

of collision for a particular plan. For the example feasible plan shown in Fig. 2(b)
that was computed by an RRT, we compare our method to the alternative of using
Monte Carlo simulations for estimating probability of collision. Our method re-
quired 234 ms of computation time. Fig. 2(d) shows the deviation in the probability
estimates computed using Monte Carlo simulations with varying number of sam-
ples (averaged over 100 trials). As expected, the variance decreases as the number
of Monte Carlo simulations increases. It takes over 700 Monte Carlo simulations,
each simulation requiring an average of 38 ms, to arrive within the accuracy bounds
of our method, which corresponds to over 26 seconds of computation time just to
estimate the collision probability. Hence, our method is over 100 times faster than
Monte Carlo simulation.

To assess the accuracy of our method across a broader range of plans, we also
randomly generated 100 feasible plans using independent RRTs. The average abso-
lute error between the ground truth probability of collision (computed using 10,000
Monte Carlo simulations) and the estimation by our method is 9.78%. The average
computational time of our method for each plan is 158 ms.

We also evaluate our MIRRT approach for computing motion plans with low
probability of collision. We executed MIRRT for varying computation times up to
20 seconds, which allows for computation of ∼100 plans. In Fig. 2(e), we show the
estimated probability of collision of the best plan computed by our method as well
as the ground truth probability of collision for that plan. Each bar is the average of
20 executions. As computation time is allowed to increase, the MIRRT approach
returns a plan that is almost guaranteed to avoid collisions, and its performance is
verified by the ground truth value. In the optimal plan (shown in Fig. 2(c)) the robot
pulls back and then passes through the upper narrow passage rather than through
the left passage, even though the left passage would allow a path that is both shorter
and has greater clearance from obstacles. The reason for selecting a path through
the upper narrow passage is because the robot has low uncertainty for θ1 due to its
ability to sense that joint’s orientation, and that decreases the chances of collision
when moving through the upper passageway because the robot’s kinematics for the
remaining joints will restrict uncertainty primarily along the z axis.

6.2 Concentric Tube Robot Scenario
We also apply our method to a concentric tube robot, a tentacle-like robot com-
posed of nested, pre-curved elastic tubes. These devices have the potential to enable
physicians to perform new minimally-invasive surgical procedures that require ma-
neuvering through narrow passages or around anatomical obstacles. Potential clin-
ical applications include surgeries of the pituitary gland or nearby structures in the
skull base [5] as well surgeries that require maneuvering inside the heart [29].
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(a) Example plan snapshots

(b) Method comparison for the example plan (c) Pituitary gland scenario

Fig. 3 The 3-tube concentric tube robot must reach the yellow goal sphere while avoiding the or-
ange obstacles and remaining inside the cyan cylender (a). We compare our method with Monte
Carlo simulation for the example plan (b). The average computation time per Monte Carlo simu-
lation is 98 ms (which is higher than for the 6-DOF manipulator due to the complex kinematics).
For Monte Carlo simulation to achieve a similar accuracy to our method, over 450 simulations are
needed, which requires over 44 seconds rather than 2.4 seconds total for our method. We also illus-
trate a clinically-motivated scenario in which a concentric tube robot enters the body via the nasal
cavity and reaches a rightward facing pose at the pituitary gland (green) for skull base surgery (c).

Each tube of a concentric tube robot is pre-curved and can be inserted and ax-
ially rotated independently of the other tubes. A device having n tubes thus has
2n degrees of freedom. Due to the elastic interaction of the tubes, the kinematics
of concentric tube robots is complex and must be computed numerically [31, 22].
Computing the kinematic model of the concentric tube robot requires over 50 times
more computation time than for the 6-DOF manipulator.

We consider a 3-tube robot for which the state q = (θ1,θ2,θ3,β1,β2,β3) consists
of an axial angle θi and insertion distance βi for each tube. We define the control in-
put as u= (w1,w2,w3,v1,v2,v3), where wi and vi represent the axial rotation angular
velocity and insertion speed, respectively, for the i’th tube. We assume the control
input is corrupted by a process noise m = (w̃1, w̃2, w̃3, ṽ1, ṽ2, ṽ3,) ∼ N (0,M). This
results in the dynamics model

qt+1 = qt +∆(u+m), (11)
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where ∆ is the time step size. We set M =
[

σ2
1 I 0
0 σ2

2 I

]
with σ1 = 0.02 rad/s and σ2 =

0.001 m/s. We assume the concentric tube robot’s tip position can be tracked in 3-D
using an electromagnetic tracker (e.g., the NDI Aurora Electromagnetic Tracking
System as in [5]). This gives the stochastic measurement model

h[qt ,n] =
[
xt yt zt

]T
+n, (12)

where n∼N (0,N). We set N = σ2
3 I with σ3 = 0.001 m.

For the concentric tube robot, we evaluate the ability of our method to accurately
estimate the probability of collision. As shown in Fig. 3, we consider a tubular en-
vironment with spherical obstacles similar to the environments used in prior work
[24]. For the example plan shown in Fig. 3(a), our method required 2.4 seconds
of computation time. Fig. 3(b) compares the probability of collision estimates com-
puted using Monte Carlo simulation with varying number of samples (averaged over
100 trials). As expected, the variance decreases as the number of Monte Carlo simu-
lations increases. It takes over 450 Monte Carlo simulations to achieve the accuracy
of our method, which corresponds to over 44 seconds of computation time just to
estimate the collision probability. Hence, our method is over 10 times faster than
Monte Carlo simulation for the concentric tube robot scenario.

To assess the accuracy of our method across a broader range of concentric tube
robot plans, we also randomly generated 100 feasible plans using independent
RRTs. The average absolute error between the ground truth probability of colli-
sion (computed using 10,000 Monte Carlo simulations) and the estimation by our
method is 4.36%. The optimal plan picked by MIRRT using our method has an
estimated probability of collision of 9.11 × 10−7% while ground truth is 0%.

To treat cancers of the pituitary gland, surgeons often must resect the tumor,
which requires inserting surgical instruments to reach the skull base. Enabling sur-
geons to access the pituitary gland (shown in green in Fig. 3(c)) via the nasal cavity
and by drilling through thin sinus bones would be far less invasive than current
surgical approaches, but requires controllable, curvilinear instruments for surgical
access [5]. For the concentric tube robot, we generated 100 plans for the anatomy in
Fig. 3(c), avoiding obstacles such as bone and blood vessels and requiring a right-
ward facing tip pose for the surgical task. MIRRT executed for 100 plans returns a
plan with an estimated probability of collision of 0.94%, while the ground truth is
0%. In Fig. 3(c), we illustrate the optimal plan found by our method.

7 Conclusion

We introduced a new integrated motion planning and control algorithm for robotic
manipulators that makes safety a priority by explicitly minimizing the probability
of unwanted collisions. Our approach quickly computes distances to obstacles in
the workspace and appropriately transforms this information into the configuration
space using a Newton method to estimate the most relevant collision points in con-
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figuration space. We then presented a sampling-based motion planner that executes
multiple independent RRTs and returns a plan that, under reasonable assumptions,
asymptotically converges to a plan that minimizes the estimated collision probabil-
ity. We applied our approach in simulation to a 6-DOF manipulator and a tentacle-
like surgical robot. Our results show orders of magnitude speedup over Monte Carlo
simulation for equivalent accuracy in estimating collision probability, and the ability
of our motion planner to return high quality plans with low probability of collision.

Our method assumes that the manipulator operates under the assumptions of
Gaussian motion and sensing uncertainty. Although the class of problems where
Gaussian distributions are appropriate is large (as shown by the widespread use of
the extended Kalman filter for state estimation), the approximation is not acceptable
for some applications. In future work we plan to extend our method to non-Gaussian
uncertainty and integrate with local optimization methods in belief space to quickly
refine plans. We also will apply the method to meso-scale, flexible surgical robots
to improve device safety, effectiveness, and clinical potential.
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