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Abstract— Paramagnetic microparticles moving through flu-
ids have the potential to be used in many applications, in-
cluding microassembly, micromanipulation, and highly local-
ized delivery of therapeutic agents inside the human body.
Paramagnetic microparticles with diameters of approximately
100 µm can be wirelessly controlled by externally applying
magnetic field gradients using electromagnets. In this paper, we
introduce a motion planner to guide a spherical paramagnetic
microparticle to a target while avoiding obstacles. The motion
planner explicitly considers uncertainty in the microparticle’s
motion and maximizes the probability that the microparticle
avoids obstacle collisions and reaches the target. To enable
effective consideration of uncertainty, we use an Expectation
Maximization (EM) algorithm to learn a stochastic model of
the uncertainty in microparticle motion and state sensing from
experiments conducted in a 3D 8-electromagnet microparticle
testbed. We apply the motion planner in a simulated 3D
environment with static obstacles and demonstrate that the
computed plans are more likely to result in task success than
plans based on traditional metrics such as shortest path or
maximum clearance.

I. INTRODUCTION

Paramagnetic microparticles are small particles (e.g., di-
ameters around 100 µm) that can be controlled by externally
applying a magnetic field gradient [1]–[3]. This type of
micro-sized object is wirelessly actuated by electromagnets
that are located around the workspace. By controlling the
magnetic field gradient externally using electromagnets, the
need to carry an on-board power source is eliminated,
enabling the use of smaller particles like the one shown in
Fig. 1. Due to their small size, paramagnetic microparticles
have the potential to be used in a variety of applications,
including microassembly, micromanipulation, and highly lo-
calized delivery of therapeutic agents inside the human body.
[1], [3]–[5].

In this paper, we introduce a fast motion planner for
guiding the motion of a spherical paramagnetic microparticle
around obstacles to a target location in a static 3D fluid
environment. Motion planning for paramagnetic micropar-
ticles is challenging for several reasons. First, motion plans
must be feasible — the path should avoid obstacles and the
required control inputs must satisfy constraints on maximum
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Fig. 1. A paramagnetic microparticle in a fluid can be wirelessly moved
by controlling the surrounding magnetic field gradient using electromagnets.
We introduce a motion planner that computes a path and a corresponding
controller for the electromagnet currents to wirelessly guide the micropar-
ticle to a target location while avoiding obstacles.

microparticle velocity and maximum currents sent to the
electromagnets. Second, the motion plan should explicitly
consider the substantial uncertainty in the motion of the
microparticle and the sensing of system state. Sources of
uncertainty that may cause the microparticle to deviate from
its expected trajectory include noise in the electromagnet
currents, noise in the electromagnetic field, variable flow
rates, and noise in the image tracking.

Our motion planner computes a path and corresponding
control policy (i.e., electromagnet currents) to guide the
microparticle to a given target while avoiding collisions with
specified obstacles. Our motion planner uses a sampling-
based approach based on a Rapidly-Exploring Random Tree
(RRT) [6], which guarantees that, if a solution exists, the
solution will be found as computation time is allowed to
increase. The motion planner is highly parallelizable and is
sufficiently fast that we can generate hundreds of randomized
feasible motion plans in a second and select the best plan
based on a user-defined cost metric.

To address the challenge of uncertainty, we utilize cost
metrics that are based on the probability of avoiding obsta-
cles and reaching the target. In particular, we focus on two
cost metrics: (1) maximizing the probability of success and
(2) minimizing total path length subject to a chance con-
straint. These cost metrics require that we have a stochastic
dynamics model of microparticle motion and sensing in order
to a priori estimate the probability that the microparticle
will avoid obstacles and reach the target when the plan is
executed. We learn the parameters of the stochastic dynamics
model by analyzing data from traces of experiments using an
8-electronmagnet 3D microparticle system [7]. Our learning
method uses an Expectation-Maximization (EM) algorithm
to learn the covariances of the position and velocity with
respect to control inputs.



Our objective of explicitly considering uncertainty during
motion planning has a substantial impact on our choice
of the underlying motion planning algorithm. We build on
the ideas of LQG-MP [8] and compute a Linear Quadratic
Gaussian (LQG) controller for each RRT plan. Using the
learned stochastic dynamics model, for each motion plan
and corresponding LQG controller we use a fast, analytical
method to quickly estimate the a priori probability of success
of the microparticle motion plan. We can then select the best
plan among the set of computed motion plans.

To the best of our knowledge, we present the first motion
planner for microparticles that generates a collision-free
path and considers the inherent uncertainty in microparticle
motion and sensing. We apply the motion planner to a single
microparticle operating in a simulated 3D environment that
contains static obstacles. We evaluate the motion planner
using a microparticle motion model learned from data from
experiments using an 8-electromagnet microparticle system.

II. RELATED WORK

Prior work on microparticles has made significant ad-
vances in controlling microparticle motion along paths [1]–
[5]. For tasks in 2D settings, controllers have been intro-
duced to perform contact and noncontact manipulation [9],
to enable a single microparticle to follow given paths [3],
and to control a cluster of paramagnetic microparticles for
microassembly [10]. For tasks in 3D settings, controllers
have been developed for demonstrating position and pose
control of a mircorobot in an 8-electromagnet system [11],
independent control of multiple microrobots in the same
environment [12], and minimizing control effort for a single
microparticle following a path [7]. Our focus is comple-
mentary to prior work on control; this paper focuses on
computing plans that avoid obstacles.

Applying motion planning algorithms to microparticles
to enable automatic obstacle avoidance is a new research
challenge. Sampling-based motion planners such as RRT [6],
RRT* [13], and probabilistic roadmaps (PRM) [6] have been
successfully applied to different robots that have reliable
(e.g., deterministic) dynamics. However, when planning for
microparticles with uncertainty, optimal methods like RRT*
and PRM cannot guarantee that solutions will approach
optimality because the required optimal substructure property
does not hold, i.e., the optimal path from a particular state
is not independent of its prior history.

For motion planning under uncertainty, previous methods
(e.g., [14]–[16]) can compute locally optimal plans along
with associated control policies using frameworks based on
partially observable Markov Decision Processes (POMDPs).
Although these methods compute plans that avoid obstacles,
they do not explicitly estimate the probability of success
of a plan. Sampling-based methods (e.g., [17], [18]) have
considered collision probabilities, but they also cannot ac-
curately estimate the probability of success. In this paper,
we utilize ideas from LQG-MP [8], which generates a plan
and corresponding LQG controller for a robot and uses a
metric correlated with collision probability. We also extend
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Fig. 2. Schematic overview of our method, including the learning of the
stochastic model (Sec. IV) and the motion planning and control algorithms
(Sec. V). The model learning only needs to be done once per microparticle
and fluid, and then motion planning can be performed many times for
different targets and obstacle locations.

the method of [19] to use microparticle dynamics and quickly
and explicitly estimate the probability of success, which
includes both avoiding obstacles and reaching the goal.

III. PROBLEM DEFINITION

We consider motion planning for spherical paramagnetic
microparticles with radius rp on the order of 100 µm. The
microparticles are composed of paramagnetic materials that
have permanent magnetic moments, i.e, magnetic dipoles.
Let p= [x,y,z] be the position of a microparticle in 3D space.
We define the microparticle’s state as x = [x,y,z,vx,vy,vz]T ,
where vx, vy, and vz specify the microparticle’s velocity. We
assume p can be sensed (subject to noise), e.g., by a vision
system.

Microparticles move inside a fluid media under the in-
fluence of external magnetic field gradients. We assume n
air-core electromagnets are located around the workspace.
The magnetic force experienced by the microparticle is based
on the superposition of each electromagnet’s contribution.
We control the gradient of the magnetic field by setting the
current Ii applied to each electromagnet i, i= 1, . . . ,n. Hence,
the control input is u = [I1, . . . , In] ∈ U where U ⊆ Rn is the
set of feasible currents. We assume that continuous time τ is
discretized into periods of equal duration ∆ such that the t’th
period begins at time τ = t∆. We will select control inputs
ut to apply in each discrete period t.

The input to our motion planning approach is an estimate
of the initial system state x̂0 with corresponding variance Σ0,
the geometries of a set of obstacles O, and a goal region G
such that x∈G signifies success. The objective of the motion
planner is to compute a feasible path and corresponding
linear feedback controller that guides the microparticle to the
goal while avoiding obstacles. We focus on two uncertainty-
based optimization objectives: (1) maximizing the probability
of successfully reaching the goal without colliding with
obstacles, and (2) minimizing path length subject to a chance
constraint (e.g., a lower bound on the probability of success).



IV. STOCHASTIC MODEL OF MICROPARTICLE MOTION

For efficient motion planning, we need a discrete-time
stochastic model of microparticle motion and sensing. In this
section, we formulate this model and describe how we learn
the uncertainty parameters of the model from data traces
from a 3D 8-electromagnet system as outlined in Fig. 2.

A. Modeling Microparticle Dynamics

Microparticles move under the influence of a magnetic
force, a drag force, and a buoyancy force. We can control
the magnetic force by applying currents to the magnets
surrounding the microparticle’s workspace. We define the
magnetic force f(p) = [Fx,Fy,Fz]T ∈R3×1, where Fx,Fy,Fz

are the components of f(p) in the x, y, and z directions,
respectively. The magnetic force equals:

f(p) =
4

3µ0(1+Xm)
πr3

pXmuT (∇(B̃T (p)B̃(p)))u, (1)

where Xm is the magnetic susceptibility constant, µ0 is the
vacuum permeability, and B̃ ∈ R3×n is a matrix defining
the magnetic field that depends on the position where the
magnetic force is measured [11]. To compute currents for
any desired magnetic force, we utilize a current-force map
that allows us to invert equation 1 [7]. The gradient of
the magnetic field is almost a constant in the workspace.
Hence, we simply write the magnetic force as f. We require
f ∈ F , where F is the feasible set of control inputs. In our
implementation, we require |f| ≤ |f|max, where |f|max is the
maximum norm of a magnetic force which can be generated
by the system.

The drag force acting on the microparticle is fd =
[κvx,κvy,κvz]T ∈ R3×1, where κ = −6πηrp is a constant.
We define the net buoyancy force acting on the microparticle
as Fb = V (ρb−ρ f )g, where V, ρb, and ρ f are the volume
and density of the microparticle, and the density of fluid,
respectively. We also require |v| ≤ |v|max for some maximum
feasible microparticle velocity vmax. Given x(τ) and f(τ) at
time τ , we can define the continuous-time dynamics model
of a microparticle as follows:

ẋ(τ) =


vx(τ)
vy(τ)
vz(τ)

(Fx(τ)+κvx(τ))/m
(Fy(τ)+κvy(τ))/m

(Fz(τ)−Fb +κvz(τ))/m

 (2)

where m is the mass of the microparticle. We define matrix

A =

[
03×3 I3×3
03×3

κ

m I3×3

]
and matrix B =

[
03×3
1
m I3×3

]
. Hence, the

above continuous-time dynamics can be written as:

ẋ(τ) = Ax(τ)+Bf′(τ) (3)

where f′(τ) = f(τ)+Fb[0,0,−1]T .
For purposes of motion planning and microparticle simu-

lation, we need to derive the discrete-time dynamics based on
the above continuous-time dynamics. We first note that f′(τ)
can serve as a high level control input for motion planning.
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Fig. 3. Experimental testbed for learning the stochastic model. The system
includes 8 iron-core electromagnets (only the bottom 4 are shown) that
surround a 10× 10× 10 mm3 workspace. Inside the workspace we place
a reservoir of fluid in which the microparticle can move. The system also
includes 2 orthogonally placed microscopes for obtaining images of the
workspace for the purpose of localizing the microparticle.

At any time step t ∈ N of duration ∆, the high level control
input is defined as:

f′t = [Fx
t ,F

y
t ,F

z
t −Fb]

T , f′t ∈ {f′ | |f′−Fbn̂| ≤ |f|max}, (4)

where n̂ = [0,0,−1]T . When the high level control input f′t
is constant between two successive time steps t and t + 1,
the state xt+1 can be computed given xt by solving the
differential equation 3:

xt+1 = Fxt +Gf′t , (5)
with

F = exp(A∆), G =

∫
∆

0
exp(A(∆− τ))B dτ, (6)

where F and G can be evaluated analytically.
To model uncertainty, we assume that at any time step t,

the dynamics is corrupted by additive noise mt drawn from
a Gaussian distribution with mean µ ∈ R6×1 and variance
M ∈ R6×6:

xt+1 = Fxt +Gf′t +mt , mt ∼N (µ,M). (7)

The tracking system is able to sense the microparticle’s
3D position, and we assume the measurement is corrupted
by noise n ∈ R3 where n ∼ N (0,N) for some variance N.
This gives us the following sensing model:

zt = h(xt ,n) = Cxt +n, C = [I3×3,03×3]. (8)

The stochastic dynamics and the stochastic sensing model
will be used to a priori estimate the probability of success
of any feasible plan from the planner.

B. Learning the Uncertainty Parameters

In order to estimate the parameters µ , M, and N, we obtain
traces of microparticle motion from a system [7] shown in
Fig. 3. We recorded K = 4 independent trajectories. For each
trajectory j, we derived and recorded a sequence of pairs
{p j

t ,u
j
t } where 1 ≤ j ≤ K, 0 ≤ t ≤ Tj, p denotes the 3D

position identified by the vision system, and Tj is the number



of time steps in trajectory j (which was several hundred for
each trajectory). From u j

t we can derive the f′ jt using the
modeling in Sec. IV-A.

The actual states x of the microparticle are latent. Similar
to [20] except that we do not explicitly assume µ = 0, we use
the Expectation-Maximization (EM) algorithm to learn µ , M,
and N from the given data. We summarize the approach next.

a) E-Step: In the E-step, we assume µ , N, and M are
known. For each trajectory j, we use a Kalman smoother
to compute the posterior distributions of all latent states
x j

t for 0 ≤ t ≤ Tj. The Kalman smoother computes the
Gaussian distribution N (x̂ j

t|t ,Σ
j
t|t), which is the distribution

of x j
t conditioned on all observations (p j) up to and including

time step t. The Kalman smoother also computes a Gaussian
distributionN (x̂ j

t+1|t ,Σ
j
t+1|t), which is the distribution of x j

t+1
conditioned on all observations up to and including time
step t. Finally, the Kalman smoother returns the Gaussian
distribution N (x̂ j

t|Tj
,Σ j

t|Tj
), which is the posterior distribution

of x j
t conditioned on all observations in trajectory j.
b) M-Step: In the M-step, we assume the posterior

distributions of all latent states x j
t are available. We can

model the expected likelihood of the recorded traces as:

Q(µ,M,N) = Ex(log
K∏

j=1

Tj∏
t=0

P(p j
t |x

j
t )P(x

j
t+1|f

′ j
t ,x

j
t )), (9)

where
p j

t |x
j
t ∼ N (Cx j

t ,N), (10)

x j
t+1|f

′ j
t ,x

j
t ∼ N (Fx j

t +Gf′ jt +µ,M). (11)

The expectation is taken with respect to the posterior distri-
butions N (x̂ j

t|Tj
,Σ j

t|Tj
) for 0 ≤ t ≤ T j, 1 ≤ j ≤ K. We max-

imize the expected likelihood Q(µ,M,N) of the recorded
traces with respect to µ , M, and N. We derived closed form
update rules for updating µ , M, and N by extending the
approach of [20].

We start the E-step with an initial guess of µ , N, and M.
We keep iterating the E-step and M-step until convergence.
To properly model uncertainty of the microparticle system in
our motion planner and simulation results in Sec. VI, we use
the computed values for µ , N, and M in conjunction with
the discrete-time stochastic model in Sec. IV-A.

V. MOTION PLANNING FOR MICROPARTICLES

In this section, we present a motion planner for micropar-
ticles that utilizes the stochastic motion and sensing model
learned by the method in Sec. IV-B. As outlined in Fig.
2, we utilize RRT to generate a large set of feasible plans.
For each feasible plan we compute a corresponding linear
feedback controller (LQG) as in LQG-MP [8]. We then
extend the method in [19] to estimate the probability of
success of each plan for the microparticle. We select the
best plan based on the chosen cost metric (e.g., maximizing
probability of success or minimizing path length subject to a
chance constraint). Once a plan is selected, we can execute
the plan’s corresponding linear feedback controller (LQG) to
move the microparticle along the planned path.

A. Sampling-Based Motion Planning
For motion planning, we use a rapidly-exploring random

tree (RRT), a well-established sampling-based motion plan-
ner that has been successfully used in a wide variety of
applications [6]. The RRT is rooted at the microparticle’s
initial state x̂0. At each iteration of the RRT algorithm, we
sample a state xsample ∈Q, find its nearest neighbor xnear in
the tree, and compute a feasible control f′ that grows the tree
from xnear toward xsample using the RRT’s “extend” function,
i.e., (xnew, f′) = extend(xnear,xsample) where xnew requires no
more than ∆ time to reach from xnear [21]. The RRT’s extend
function uses the deterministic discrete-time dynamics model
(Eq. 7 with mt = µ). The output of the RRT is a nominal
motion plan π = [x◦0, f

′◦
0 ,x

◦
1, f
′◦
1 , . . . ,x

◦
T , f′◦T ], where T is the

number of time steps and x◦0 = x̂0. We refer readers to [21]
for details on RRT.

Instead of generating motion plans only from a single RRT
structure (which has poor performance for optimization), our
approach is to simultaneously execute a large number of
independent RRTs to generate a set of feasible plans and
then select the best plan based on the specified cost metric.

B. LQG Control for a Microparticle
The RRT planner provides a nominal plan π that satisfies

x◦t+1 = Fx◦t + Gf′◦t + µ , for 0 ≤ t ≤ T − 1. To control the
microparticle along the nominal plan π , we use the LQG
controller since it provides optimal control for linear Gaus-
sian motion and sensor models with a quadratic cost function
penalizing deviation from the path. The LQG controller uses
a Kalman filter for state estimation in conjunction with an
LQR control policy [22].

Instead of directly controlling the state itself, we model
deviation of the state with respect to the plan π . This is
reasonable since our goal is to stay close to π . For 0≤ t ≤ T ,
we define x̄t = xt−x◦t , f̄′t = f′t−f′◦t , and z̄t = zt−h(x◦t ). Hence,
the dynamics model and sensing model for deviations can be
modeled as:

x̄t+1 = Fx̄t +Gf̄′t + m̄t , m̄t ∼N (0,M), (12)
and

z̄t = Cx̄t +nt , nt ∼N (0,N). (13)

In order to penalize deviations from π , we define the cost
function as:

E

(
T∑

t=0

x̄T
t Cx̄t + f̄′Tt Df̄′t

)
. (14)

These are the standard formulations of LQG control [22].
During execution, a Kalman filter is used to estimate the

true deviation x̄t at each time step. We define the estimation
of the state deviation at time step t as x̂t , which can be
obtained from the Kalman filter after sensing feedback is
received. We then use an LQR controller for which we
can compute the feedback matrix Lt for each time step. As
the true state is unknown, we use the estimate x̂t from the
Kalman filter to determine the next optimal control input.
The control policy is then:

f′t = f′◦t +Lt x̂t . (15)
The microparticle then will execute f′t at time step t.



C. Optimization Objectives Based on Probability of Success

Both cost metrics (1) maximizing probability of success
and (2) minimizing path length subject to a chance constraint
require a priori estimation of the probability of success of
a motion plan. With the stochastic dynamics and sensing
of the microparticle, we extend the method in [19] to a
priori estimate the probability of success of a feasible motion
plan. This method a priori estimates the probability of
collision of a motion plan assuming that a corresponding
LQG controller is used during execution. Given a nominal
plan π , [x0, f′0, . . . ,xT , f′T ], and an initial beliefN (x̂0, Σ̂0), we
compute a sequence of Gaussian distributions {N (x̃t , Σ̃t)},
for 0 ≤ t ≤ T . This sequence of Gaussian distributions
captures the distributions of deviations from π during the
execution of the plan with the LQG feedback controller.

To compute Pc, the estimated probability of collision, we
use the method in [19]. At time step t, let us assume the state
of the microparticle is xt ∼N (x̃t , Σ̃t). Before propagating to
the time step t + 1, we truncate this Gaussian distribution
against obstacles to remove the parts of the distribution that
collide with obstacles. The truncated distribution captures
the possible states of the microparticle that are collision-
free at time step t. By propagating the truncated distribution
to time step t + 1, we only propagate to the next time step
states that are collision-free. Hence, we properly consider the
dependency of uncertainty on previous time steps. Namely,
the possible states of the microparticle at time step t + 1
should be conditioned on the fact that the microparticle is
collision-free at time step k, where 0≤ k ≤ t.

We also need to estimate the probability that the mi-
croparticle reaches the goal region at the last time step.
Given the belief of the microparticle at the last time step
xT ∼N (x̃T , Σ̃T ), we can compute the probability of reaching
the goal region as:

Pg =

∫
p∈G

exp(− 1
2 (p−Λx̃T )

T (ΛΣ̃T ΛT )−1(p−Λx̃T ))√
(2π)3|ΛΣ̃T ΛT |

dp,

(16)
where G is the goal region and Λ = [I3×3,03×3]. In our
implementation, we numerically estimate Eq. 16.

The probability of success can be computed as Ps =
(1−Pc)Pg. Using the computations described above, we can
evaluate the probability of success for each feasible plan and
select the best plan based on the chosen cost metric.

VI. EVALUATION

We apply our motion planner in simulation to a micropar-
ticle moving in a 3D environment which contains multiple
obstacles and a goal region. We evaluate our method for
two cost metrics: (1) maximizing probability of success, and
(2) minimizing path length subject to a chance constraint.
We define a chance constraint as Ps ≥ Ps, where 0≤ Ps ≤ 1
is specified by the user. The chance constraint imposes a
lower bound on the probability of success (i.e., avoiding
obstacles and reaching the goal region). We tested our C++
implementation on a PC with a 3.7 GHz Intel Core i7
processor.

Parameter Value Parameter Value

rp 50×10−6 m µ0 4π×10−7 T.m /A

η 1 mPa.s Xm 0.17±0.007

m 7.33×10−10kg ∆ 0.5 second

|v|max 0.3 mm/s |f|max 3.0 nN

TABLE I
EXPERIMENTAL PARAMETERS [3], [23], WHERE rp AND m ARE THE

RADIUS AND MASS OF THE MICROPARTICLE, RESPECTIVELY. WE DEFINE

|v|max AND |f|max AS THE MAXIMUM VELOCITY OF THE MICROPARTICLE

AND THE MAXIMUM MAGNITUDE OF THE MAGNETIC FORCE.

(a) Environment side view (b) Environment front view

Fig. 4. The environment workspace is 5cm×5cm×5cm. The objective is
to move the microparticle from its initial position (red dot) to the goal region
(cyan sphere) while avoiding obstacles (yellow). There are two narrow
passages through the center obstacle; the passages are of equal length but
the horizontal passage is 20% wider than the vertical passage. The width
of the horizontal passage is 0.6 mm while the width of the vertical passage
is 0.5 mm.

We use the method introduced in Section V-C to estimate
the probability of success of a plan within our motion
planner. To evaluate the true probability of success of a plan,
we executed 1,000 Monte Carlo simulations in which we
execute the plan’s LQG controller in the environment with
noise simulated using the learned noise models of Sec. IV-
B. (We note the Monte Carlo simulations take substantially
longer, and we do this to accurately assess our motion
planner’s performance.)

Although our experiments are conducted in simulation,
we use the parameters from a physical magnetic prototype
system [3], [23] and use the stochastic model learned in Sec.
IV-B to simulate microparticle motion in the environment.
Table I shows parameters for modeling the magnetic pro-
totype system. Note that |v|max and |f|max are used as the
constraints on the velocity and the control inputs in the RRT.

A. Maximizing Probability of Success

We first evaluate our motion planner with the cost metric
of maximizing the probability of success for the environment
in Fig. 4. Note that the horizontal narrow passage is 20%
wider than the vertical narrow passage.

For evaluation, we executed the algorithm for 10,000
RRTs, which requires around 500 seconds for generating
the RRTs and 50 total seconds to evaluate the probability
of success metric for all plans.



(a) Maximizing probability of
success

(b) LQG control of the plan with
highest probability of success

(c) Maximum Clearance (d) LQR control of the plan with
maximum clearance

Fig. 5. Our method computes a motion plan and corresponding con-
troller with the objective of maximizing probability of success. For this
environment, we show the computed nominal plan (green trajectory) (a).
The red ellipses show the Gaussian distributions that capture the deviations
of states along the nominal motion plan. We also show an example
successful execution of LQG control (blue trajectory) along the nominal
plan (b). The plan computed with the maximum clearance metric passes
through the horizontal passage, which is wider than the vertical passage
but not aligned with the microparticle’s uncertainty (c). When executing
a maximum clearance trajectory using the corresponding LQR controller,
the microparticle is more likely to collide with an obstacle (blue example
execution) (d) than when using the probability of success metric.

Fig. 5(a) shows the motion plan computed for maximizing
the probability of success. The plan is shown in green, and
the red ellipses show the estimated uncertainty distribution
in position (3 standard deviations) at several time steps along
the path. The estimated probability of success for the selected
plan (using the fast analytical methods in Sec. V-C) is 96.1%.
The true probability of success from Monte Carlo simulations
is 99.6%. In Fig. 5(b) we illustrate an example execution of
the LQG controller along the planned path while subject to
noise from the model learned in Sec. IV-B.

To maximize the probability of success, the microparticle
passes through the vertical passage. Although the horizontal
passage is wider, the uncertainty model learned in Sec. IV-B
has higher uncertainty in the Z direction, likely due to noise
in the buoyancy force. The impact of the extra uncertainty
can be seen in red ellipses in Fig. 5(a). Thus, it is safer to
pass through the narrower vertical passage.

We compare our motion planning results using the proba-
bility of success metric to using a classical cost metric that is
also related to safe motion planning: maximizing clearance
in conjunction with an LQR controller, which does not
require stochastic model learning (Sec. IV-B) or probability
of success estimation (Sec. V-C). Fig. 5(c) shows the motion

(a) Initial environment (b) Optimal plans for different
cost metrics

Fig. 6. We evaluate the motion planner for cost metrics related to shortest
paths in this environment (a) where the objective is to move the microparticle
from its initial position (red dot) to the goal region (cyan sphere) while
avoiding obstacles (yellow). We show (b) the computed plans for three cost
metrics: minimizing path length (black), minimizing path length subject
to C1 (red), minimizing path length subject to C2 (green) and maximizing
clearance (blue).

plan computed for maximizing clearance from obstacles. To
maximize clearance, the microparticle passes through the
horizontal passage since it is wider. However, the larger
uncertainties along the Z direction affect the probability of
success. As shown in Fig. 5 (c), the uncertainty ellipses col-
lide with the obstacles while passing through the horizontal
passage. In addition, the cost metric of maximizing clearance
aims for the goal region but does not explicitly consider the
likelihood that the microparticle will end up inside the goal
region due to uncertainty. The impact of these factors is that
the true probability of success of the maximum clearance
plan is 91%, substantially lower than the plan that explicitly
maximizes probability of success.

B. Shortest Path Subject to a Chance Constraint

We also evaluated our method on another cost metric:
minimizing path length subject to a chance constraint. We
consider two chance constraints: C1: Ps ≥ 0.99 and C2: Ps ≥
0.90. We compare to two classical cost metrics: minimizing
path length and maximizing clearance, which are both used
in conjunction with an LQR controller and do not require
the stochastic model learning (Sec. IV-B) or probability of
success estimation (Sec. V-C).

For evaluation, we executed the algorithm for 20,000
RRTs, which required around 200 seconds for generating
the RRTs and 160 total seconds to evaluate the probability
of success metric for all plans. As before, for shortest path
and maximizing clearance, the true probability of success is
evaluated using Monte Carlo simulations with LQR control.

Fig. 6 shows the results of using four different cost
metrics. The black plan from minimizing path length also
passes closest to an obstacle (the left cylinder in Fig. 6(b)).
The red plan is the plan that moves furthest from the
obstacle, such that it can satisfy C1 : Ps ≥ 0.99. The blue
plan for maximizing clearance passes through the middle of
the narrow passage to achieve the largest clearance.

Table II shows the statistics for the four different cost
metrics. As we can see, although the shortest path cost metric



Cost Metric Length (mm) Clearance (mm) Pest Ptrue

Shortest Path 5.66 0.02 / 37.9%

Max Clearance 6.70 0.53 / 86.9%

Shortest Path s.t C2 5.79 0.12 94.0% 95.9%

Shortest Path s.t C1 5.84 0.22 99.9% 99.8%

TABLE II
STATISTICS FOR FOUR COST METRICS. WE DENOTE Pest AS THE

ESTIMATED PROBABILITY OF SUCCESS AND Ptrue AS THE TRUE

PROBABILITY OF SUCCESS. LQR CONTROL IS APPLIED TO SHORTEST

PATH AND MAX CLEARANCE METRICS. C1 STANDS FOR Ps > 0.99 AND

C2 STANDS FOR Ps > 0.9.

finds the shortest path, it passes too close to the obstacles
(clearance equals to 0.02 mm) to achieve a reasonable prob-
ability of success. On the other hand, our method using the
shortest path subject to a chance constraint generates plans
that enforce a minimum probability of success requirement.
For a less restrictive chance constraint (C2), we find a shorter
path but with smaller probability of success. Compared to
maximizing clearance, our method indeed not only finds a
shorter path, but also achieves higher probability of success.
This is because the cost metric of maximizing clearance does
not explicitly consider the likelihood of reaching the goal.
Our method can compute short paths while still maintaining
high probability of success.

VII. CONCLUSION

In this paper, we introduced a motion planner to guide
a spherical paramagnetic microparticle to a target while
avoiding obstacles. The motion planner computes a path
and a corresponding controller for the electromagnets’ cur-
rents. Our motion planner explicitly considers uncertainty in
the microparticle’s motion; we formalized and utilized cost
metrics that consider the probability that the microparticle
avoids obstacle collisions and reaches the target. To enable
effective consideration of uncertainty, our cost metrics relied
on a stochastic model of the uncertainty in motion and
sensing. The stochastic model was learned from experiments
conducted in a 3D 8-electromagnet microparticle testbed.

We applied the motion planner in a simulated 3D en-
vironment with static obstacles and demonstrated that the
computed plans are more likely to result in task success than
plans based on traditional metrics such as shortest path or
maximum clearance. In future work, we plan to integrate the
motion planner with a 3D paramagnetic microparticle system
to further evaluate algorithm performance. We also plan to
investigate extending the motion planner to properly handle
environments with moving obstacles.
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