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Abstract— We present an optimization-based motion planner
for medical steerable needles that explicitly considers motion
and sensing uncertainty while guiding the needle to a target in
3D anatomy. Motion planning for needle steering is challenging
because the needle is a nonholonomic and underactuated sys-
tem, the needle’s motion may be perturbed during insertion due
to unmodeled needle/tissue interactions, and medical sensing
modalities such as ultrasound imaging and x-ray projection
imaging typically provide only noisy and partial state informa-
tion. To account for these uncertainties, we introduce a motion
planner that computes a trajectory and corresponding linear
controller in the belief space - the space of distributions over the
state space. We formulate the needle steering motion planning
problem as a partially observable Markov decision process
(POMDP) that approximates belief states as Gaussians. We
then compute a locally optimal trajectory and corresponding
controller that minimize in belief space a cost function that
considers avoidance of obstacles, penalties for unsafe control
inputs, and target acquisition accuracy. We apply the motion
planner to simulated scenarios and show that local optimization
in belief space enables us to compute higher quality plans
compared to planning solely in the needle’s state space.

I. INTRODUCTION

Many diagnostic and therapeutic medical procedures re-
quire physicians to accurately insert a needle through soft
tissue to a specific location in the body. Common proce-
dures include biopsies for testing the malignancy of tissues,
ablation for locally killing cancer cells, and radioactive
seed implantation for brachytherapy cancer treatment. Unlike
traditional straight needles, highly flexible bevel-tip needles
can be steered along curved trajectories by taking advantage
of needle bending and the asymmetric forces applied by
the needle tip to the tissue [1]. Steerable needles have the
ability to correct for perturbations that occur during insertion,
thereby increasing accuracy and precision. Steerable needles
also have the ability to maneuver around anatomical obsta-
cles such as bones, blood vessels, and critical nerves to reach
targets inaccessible to traditional straight needles.

Controlling a steerable needle to reach a target while
avoiding obstacles is unintuitive for a human operator, mo-
tivating the need for motion planning algorithms. Motion
planning for needle steering is challenging because the
needle is a nonholonomic system and underactuated, and the
challenge is compounded by uncertainty in both motion and
sensing. As the needle is inserted into tissue, the motion
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(a) Locally optimal solution computed by our method (front view)

(b) Locally optimal solution
(side view)

(c) Initial trajectory (side
view)

Fig. 1. We apply our needle steering motion planner to a simulated
liver biopsy scenario. The objective is to access the tumor (yellow sphere)
while avoiding the hepatic arteries (red), hepatic veins (cyan), portal veins
(pink), and bile ducts (green). The sensor is assumed to be mounted at
front of the workspace, pointing to the x direction (red arrow), and provides
better position estimates of the needle tip when closer to the sensor. (a)
The nominal trajectory and the associated beliefs (3 standard deviations)
of the locally optimal solution computed using our approach. (b) The side
view of the locally optimal solution computed by our method. The locally
optimal solution first guides the needle to the right to move near to the
sensor to obtain higher accuracy sensing and reduce uncertainty. (c) The
initial trajectory computed by an RRT. Steering the needle along the initial
trajectory using an LQG controller results in higher expected uncertainty
and cost compared to using the locally optimal solution computed by our
method.

of the needle is subject to uncertainty due to factors such
as inhomogeneous tissue, needle torsion, actuation errors,
and tissue deformations [1]. Furthermore, in clinical settings
it is typically difficult to precisely sense the pose of the
needle tip. Imaging modalities that could provide complete
and accurate state information, such as MRI and CT, are
either too expensive for many procedures or would emit
too much radiation to the patient if used for continuous
intra-operative state estimation. Sensing modalities such as
ultrasound imaging and x-ray projection imaging are widely



available but provide noisy and/or partial information (e.g.,
poor resolution or only 2D projections).

To fully consider the impact of uncertainty in motion
and sensing, a steerable needle motion planner should not
merely compute a static path through the anatomy but rather
a policy that defines the motion to perform given any current
state information. Although we cannot accurately observe the
needle’s current state, we can instead estimate a distribution
over the set of possible states (i.e., a belief state) based on
available noisy, partial sensor measurements. In this paper,
we introduce a motion planner for steerable needles that
computes a trajectory and corresponding linear controller
optimized directly in belief space.

Motion planning for steerable needles in belief space intro-
duces multiple challenges. The problem of motion planning
over the space of belief states is formally described as
a partially observable Markov decision process (POMDP).
Computing an optimal solution to a POMDP is known to be
computationally complex [2]. In our approach for steerable
needles we compute a feasible trajectory using a sampling-
based motion planner and then (locally) optimize that trajec-
tory in belief space [3]. To enable local optimization in belief
space, we represent the needle dynamics model, defined in
the SE(3) group [4], [5], in a vector form that is compatible
with optimization in belief space. We also create a cost
function compatible with optimization in belief space that
explicitly considers avoidance of anatomical obstacles, penal-
ties for unsafe control inputs, target acquisition accuracy, and
the diversity of sensor models used in medicine.

We apply the motion planner to simulated scenarios and
show that local optimization in belief space enables us to
compute motion plans of higher quality compared to plans
computed solely in the needle’s state space.

II. RELATED WORK

We focus here on bevel-tip needle steering, which is one
of a variety of needle steering mechanisms that has been
developed (e.g., [1], [6]–[9]). When inserted into soft tissue,
bevel-tip steerable needles curve in the direction of the
bevel and follow constant curvature arcs in the tissue [1].
Duty-cycled spinning of a bevel-tip steerable needle during
insertion enables control of the needle along arcs of different
curvatures [10].

Motion planning for steerable needles has been inves-
tigated for a variety of scenarios. Motion planners have
been developed that consider uncertainty for needle steering
through 2D slices of anatomy [11]–[14]. For 3D needle
steering under motion uncertainty (but not sensing uncer-
tainty), Park et al. introduced the path-of-probability (POP)
algorithm [4]. Van den Berg et al. applied to needle steering
the LQG-MP motion planning algorithm [5] that considers
both motion and sensing uncertainty.

For motion planning problems with both motion uncer-
tainty and imperfect sensing (i.e., partial and noisy sensing),
the planning and control problem is usually modeled as a
POMDP problem [15], [16], which has been proved to be
PSPACE complete. Point-based algorithms [17]–[23] have

been developed for problems with discrete state, action,
and/or observation spaces. Methods have been developed
[24]–[26] that generate a large number of candidate paths
in the state space using sampling-based methods, create
controllers for each path, and then evaluate each path and
corresponding controller to select the best one. Methods
have also been developed [3], [27], [28] that approximate
the belief states as Gaussian distributions and compute value
functions in parametric form only in local regions of the
belief space. For non-Gaussian beliefs, local approaches can
be extended by using particle filters [29]. In this paper, we
utilize an iLQG-based belief space planner introduced in [3],
which we customize and apply to needle steering.

III. PROBLEM FORMULATION

We consider bevel-tip steerable needles that curve in the
direction of the bevel when inserted into tissue. The needle’s
motion is controlled by two control inputs: the insertion
speed v(τ) and the rotational speed of the needle shaft ω(τ)
as a function of time τ . The control input vector is hence
u(τ) =

[
v(τ) ω(τ)

]> ∈ R2. Since the needle shaft curves
and follows the needle tip, the motion of the needle can be
modeled by the pose of the needle tip over time. We define
the needle tip pose by x =

[
p r

]>, where p ∈ R3 is the
3D position of the tip and r ∈ R3 is the tip’s orientation
represented using the axis-angle representation [30].

Uncertainty in the needle’s motion can arise due to factors
such as tissue inhomogeneity, tissue deformation, actuation
errors, and needle torsion. Based on [5], we model motion
uncertainty by corrupting the control inputs with an additive
noise sampled from a zero-mean Gaussian distribution as
described in detail in Sec. IV.

As the needle moves through tissue, we assume that sens-
ing modalities such as ultrasound imaging, X-ray imaging, or
electromagnetic tracking can be used to sense the needle tip
pose, but this sensing information may be noisy or partial.
For example, ultrasound may have substantial noise while
X-ray imaging only provides precise position estimates in a
plane. We define the stochastic sensing model as

z(τ) = h(x(τ))+n(τ), n(τ)∼N (0,V (x(τ))) (1)

where z(τ) is the output of the sensor at time τ , h is a
(possibly non-linear) function modeling the sensor, and n(τ)
is the sensor noise at time τ assumed to have a Gaussian
distribution with state-dependent variance V (x(τ)). We note
that the dimension of z might be less than x in the case of
partial sensing. We will introduce several detailed sensing
models in Sec. VI.

A. The Belief Space Planning Problem for Needle Steering

We assume a motion plan is discretized into time steps of
equal, finite time duration ∆∈R+. Hence, the corresponding
time τ for time step t is t∆, where t ∈ N. The stochastic
nature of the needle motion and sensing models means that
it is typically impossible to know the exact pose of the needle
tip. Instead, the robot maintains a belief state, or probability
distribution over all possible states. Formally, the belief state



bt ∈B of the needle is the distribution of the needle state xt at
time t given all past control inputs and sensor measurements:

bt = p[xt |u0, . . . ,ut−1,z1, . . . ,zt ]. (2)

We approximate the distribution of the needle state xt at
any time step t using a Gaussian distribution xt ∼N (x̂t ,Σt),
where x̂t is the mean and Σt is the covariance matrix. We
represent the belief state bt by the Gaussian distribution of
xt .

Given a control input ut and a measurement zt+1, the belief
state is updated using Bayesian filtering:

bt+1 = β (bt ,ut ,zt+1). (3)

The output of the motion planner is a plan that specifies
controls that guide the needle from its start pose x0 to a
goal pose x∗l while avoiding obstacles. Due to uncertainty in
motion and sensing, we compute a plan πt : B→ U that is
defined as a policy over the belief space, i.e., ut = πt(bt) for
t = 0, . . . , l−1 for some finite l.

B. Optimization Objective

Our objective is not only to find a policy that reaches the
goal, but to find a policy that minimizes costs. Formally,
our objective is to compute a policy πt minimizing expected
costs

Ez1,...,zl

[
cl(bl)+

l−1∑
t=0

ct(bt ,ut)

]
, (4)

subject to Eq. (3) for all 0 ≤ t ≤ l − 1. We consider a
parameterized cost function specifically designed for medical
steerable needles.

First, we encode in the cost function the desire to reach
the goal pose with minimal error. To minimize the expected
deviation of the needle tip pose from the goal pose, we define
the cost function at the final time step as

cl(b) = (x̂−x∗l )
>Ql(x̂−x∗l )+ tr[

√
ΣtQl

√
Σt ], (5)

where Ql is a pre-defined positive semi-definite matrix.
Second, we encode in the cost function clinically desirable

properties for a plan that steers a needle to a goal. We define
the local cost function ct as

ct(b,u) = (u−u∗)>Rt(u−u∗)+ tr[
√

ΣtQt
√

Σt ]+ f (b), (6)

where Rt and Qt are positive semi-definite matrices and
u∗ is a user defined nominal control input. As discussed
in the experiments, we set u∗ to penalize overly slow or
fast insertion speeds and twist speeds. The function f (b)
is a cost term that enforces obstacle avoidance during plan
optimization. We use the function f (b) introduced by van
den Berg et al. [3]. It returns +∞ if the state x̂ centered at b
is in collision with an obstacle. Otherwise, the function f (b)
returns a conservative estimate of the probability of collision
of the needle tip with obstacles given the belief state b.

IV. NEEDLE STEERING BELIEF DYNAMICS

To solve the belief space planning problem formulated
above, we first must analytically define the belief state
update in Eq. 3. We approximate the belief dynamics using
an Extended Kalman Filter (EKF), which is applicable to
Gaussian beliefs. We first introduce the needle’s stochastic
dynamics defined in the state space in Sec. IV-A by following
the formulation in [5]. We then vectorize the stochastic
dynamics in Sec. IV-B. Combining the vectorized stochastic
dynamics with the general sensing model defined in Eq.
1, we formulate the stochastic belief dynamics for needle
steering using EKF in Sec. IV-C.

A. Needle Stochastic Dynamics

Following the definitions in [5], let us define the state of

the needle tip as X ∈ SE(3), where X =

[
R p

0> 1

]
, R∈ SO(3)

is the rotation matrix describing the tip’s orientation, and
p = [x,y,z] represents the 3D tip position.

The needle’s base can be axially rotated, which changes
the direction of the bevel tip and hence changes the steering
direction. When the needle is inserted into tissue without
axial rotation, the needle curves with an arc of curvature κ0.
With duty-cycled high-speed axial spinning of the needle
[10], the needle can bend with variable curvature κ ∈ [0,κ0],
where κ0 is the maximum achievable curvature. Continuous
high-speed spinning results in a straight needle trajectory,
while no spinning achieves maximum curvature. By intro-
ducing a high level control input w, which is the angular
velocity applied at the base regardless of the angular velocity
used for duty-cycling, we define a high-level control input
u(τ)=

[
v(τ) w(τ) κ(τ)

]> ∈R3, where τ is the time, v(τ)
is the insertion speed, w(τ) is the rotation speed, and κ(τ)
is the curvature (0≤ κ(τ)≤ κ0). We use this definition of u
from this point forward.

The continuous-time dynamics of the motion of the needle
tip is given as

X ′(τ) = X(τ)U(τ). (7)

The 4×4 matrix U ∈ se(3) from Eq. (7) is represented as:

U(τ) =

[
[w(τ)] v(τ)

0> 0

]
, (8)

where

w(τ) =
[
κ(τ)v(τ) 0 w(τ)

]>
, v(τ) =

[
0 0 v(τ)

]>
,
(9)

and the notation [a] for a vector a ∈ R3 refers to a 3× 3

skew-symmetric matrix [a] =

 0 −a3 a2
a3 0 a1
−a2 a1 0

.

To model motion uncertainty, we follow [5] by corrupting
the control input U by additive noise Ũ sampled from a zero-
mean Gaussian distribution with a covariance matrix M:

Ũ =

[
[w̃] ṽ
0> 0

]
,

[
w̃
ṽ

]
∼N (0,M).

Hence, the stochastic continuous-time dynamics becomes

X ′ = X(U +Ũ). (10)



Assuming the control input U and the additive noise Ũ is
constant for a small time duration ∆ between time t∆ to t∆+
∆, the stochastic discrete-time dynamics can be computed in
closed form as

Xt+1 = Xtexp(∆(Ut +Ũt)), (11)

where Xt+1 = X(t∆+∆) and Xt = X(t∆).

B. Vectorization of the Needle Stochastic Dynamics

Our belief space planning algorithm in Sec. V requires that
we vectorize the stochastic dynamics (Eq. (11)). We do this
by mapping the rotation matrix R in X from the SO(3) group
to the so(3) algebra. In SE(3) we represent the state of the
needle tip by its 3D position and its orientation represented
by a rotation matrix. The SO(3) group and so(3) algebra are
related with each other via the matrix exponential and matrix
logarithm operation: exp : so(3)→ SO(3) and log : SO(3)→
so(3) [30]. We use an operation ∧ : R6→ SE(3) that maps
x =

[
p r

]>, where p ∈R3 is the 3D position of the tip and
r ∈ R3 is the tip’s orientation represented in an axis-angle
coordinate, to X ∈ SE(3) as

x∧ =
[

p
r

]∧
=

[
exp([r]) p

0> 1

]
.

We also use an operation ∨ : SE(3)→ R6 to map X to x:

X∨ =
[

R p
0> 1

]∨
=

[
p

〈log(R)〉

]
,

where 〈S〉 maps a skew-symmetric matrix S to a 3D vector,
which is exactly the inverse operation of [a]. Now, we are
ready to define a vectorized stochastic dynamics. Given xt =[
pt rt

]> and ut =
[
vt ,wt ,κt

]>, the vectorized stochastic
dynamics f : R6×R3×R6→ R6 is

xt+1 = f(xt ,ut ,mt) = ((xt)
∧exp(∆(Ut +Ũt)))

∨, (12)

where Ut is derived from ut following Eqs. (9) and (8), mt =[
w̃t ṽt

]> ∼N (0,M), and Ũt is derived from mt following
Eq. (8).

C. Needle Belief Dynamics

With the vectorized stochastic dynamics in Eq. (12)
and the stochastic sensing model in Sec. III, we derive
the stochastic belief dynamics. The general Bayesian filter
in Eq. (3) depends on the measurement zt+1. Since the
measurement is unknown in advance, the belief dynamics
becomes stochastic. Following the derivation in [3], we use
the Extended Kalman Filter (EKF) and derive the belief
dynamics assuming zt+1 is random:

x̂t+1 = f(xt ,ut ,0)+wt , wt ∼N (0,KtHtTt),

Σt+1 = Tt −KtHtTt ,
(13)

where

Tt = AtΣtA>t +VtMV>t , At =
∂ f
∂x

[x̂t ,ut ,0],

Vt =
∂ f
∂m

[x̂t ,ut ,0], Ht =
∂h
∂x

[f(x̂t ,ut ,0)],

Kt = TtH>t (HtTtH>t +V (f(x̂t ,ut ,0))).

Since we assume xt ∼ N (x̂t ,Σt), we can write bt =[
x̂t

vec(
√

Σt)

]
, which is a vector that consists of the mean

x̂t and the columns of
√

Σt . In a vector version, the above
stochastic belief dynamics can be written as

bt+1 = g(bt ,ut)+W (bt ,ut)ξt , ξt ∼N (0, I6×6), (14)

where
W (xt ,ut) =

[√
KtHtTt

0

]
. (15)

Eq. 14 is a stochastic version of Eq. 3 since the observation
zt+1 is treated as a random variable.

V. NEEDLE STEERING BELIEF SPACE PLANNING

We use an iterative optimization-based approach for belief
space planning [3]. The belief space planner requires as input
the stochastic dynamics of the needle, the stochastic sensing
model, the environment scenario (e.g., the needle’s initial
state, the goal state, and obstacle geometry), and a user-
defined cost function as described in Sec. III. The output
is a locally optimal control policy that minimizes the cost
function. Given the computed control policy, we can compute
a collision-free nominal trajectory by shooting the control
policy from the initial state. More importantly, we can use
the control policy for closed-loop execution with sensor
feedback.

A. Computing Costs

A general approach for solving the POMDP problem is
value iteration. We define the cost-to-go function vt : B→
R, which takes the belief state b at time step t as input
and computes the minimum expected future cost that will
be accrued between time step t and time step l if the robot
starts at b at time step t. Value iteration starts at time step l
by setting vl(b) = cl(b), and iteratively computes the cost-
to-go functions and control policy by moving backward in
time using

vt(bt) = min
ut

(ct(bt ,ut)+Ezt [vt+1(β (bt ,ut ,zt))]), (16)

πt(bt) = argmin
ut

(ct(bt ,ut)+Ezt [vt+1(β (bt ,ut ,zt))]). (17)

B. Computing a Locally Optimal Solution to the POMDP

The optimization starts from a feasible (e.g., collision
free, dynamically feasible) plan, which can be computed
using a sampling-based motion planner (e.g., RRT [31]). We
require that the initial plan inserts the needle during rota-
tions; the local optimization cannot directly handle motion
plans computed by planners that stop insertion to axially
rotate the needle (e.g., [32]). The initial plan is defined in
the robot’s state space, so we compute the corresponding
nominal trajectory in belief space by shooting the controls
from the initial plan using Eq. 14 with zero noise.

The local optimization then begins iterating. Given
a nominal trajectory defined in the belief space
[bk

0,u
k
0, ...,b

k
l−1,u

k
l−1,b

k
t ] at the k’th iteration, the iLQG-

based method from [3] first linearizes the belief dynamics
and quadratizes the local cost function around the trajectory.



With the linearized dynamics and the quadratized cost
function, value iteration start from the last time step l and
recursively computes the cost-to-go functions following the
Bellman Equation in Eq. (16). The cost-to-go functions vt
for 0 ≤ t ≤ l become quadratic in terms of the belief state
and control input. Minimizing the cost-to-go vt with respect
to ut , we compute a linear control policy in the form of

uk+1
t −uk

t = Lt(bk+1
t −bk

t )+ It , (18)

for the (k+1)’th iteration.
By shooting the control policy from the initial belief,

we can compute a new nominal trajectory. To ensure the
iterative procedure converges to a locally optimal solution,
we augment the iterative procedure with line search. Specif-
ically, the new computed sequence of controls ut will be
adjusted by the line search if it leads to a higher expected
total cost. If the new computed trajectory at the (k+ 1)’th
iteration is in collision with obstacles (ct returns +∞ in this
case), the line search will adjust the controls by pulling
the trajectory closer to the nominal trajectory from the k’th
iteration until a collision free trajectory is found. Hence, if
the initial trajectory is collision free, this approach guarantees
a collision free nominal trajectory upon convergence.

Upon convergence, the result is a locally optimal control
policy with respect to the objective function. This iLQG-
based iterative approach performs in a similar manner to a
Newton method. However, we do not achieve a second-order
convergence rate since we linearize the dynamics and do
not explicitly compute the Hessian matrix of the objective
function. We refer readers to [3] for more details.

VI. EVALUATION

We demonstrate our approach in simulation for steerable
needles navigating in 3D environments with obstacles. We
tested our C++ implementation on a 3.7 GHz Intel i7 PC.

We define the cost functions ct(b,u) and cl(b) in a manner
that quantifies costs associated with medical needle steering.
We set Rl = 800I, Rt = I, and Qt = 10I. We also set u∗ =
[v∗,0,ακ0]

>, where v∗= 1 cm/s, κ0 = 2.5 cm−1, and α = 0.5
in our experiments. This penalizes insertion speeds that are
faster or slower than a user-specified ideal insertion speed
v∗. It also penalizes curvatures that are too large (close to
the kinematic limits of the device) and too small (requiring
high-rate duty cycling, which may cause tissue damage).

We evaluate plans using several criteria relevant to needle
steering. The first is probability of collision with obstacles.
The second is target error, which is Euclidean distance
between the target and the needle’s tip position at the end
of the insertion. The third is the average curvature deviation,
which is the average deviation from the desired curvature
ακ0 along a plan (

∑l−1
t=0 ‖κt − ακ0‖). We also consider

average rotation speed excluding duty cycling ( 1
l
∑l−1

t=0 |wt |)
and average insertion speed ( 1

l
∑l−1

t=0 vt ) over the duration of
the needle insertion.

A. Cylindrical Obstacles Scenario
We first consider a cubic environment with two perpen-

dicular cylindrical obstacles as shown in Fig. 2. During

(a) Initial trajectory (b) Locally optimal solution
computed by our method

(c) Simulated closed-loop executions (d) Best solution from LQG-MP

Fig. 2. The cylindrical obstacles scenario has two perpendicular cylindrical
obstacles (magenta) in a cubic environment in which the faces of the cube
are also obstacles. The red sphere represents the goal state. The green
sphere represents the insertion position of the needle. (a) An initial trajectory
computed using RRT. (b) The nominal trajectory and the associated beliefs
(3 standard deviations shown by wireframe ellipses) of the locally optimal
solution computed using our approach. (c) Twenty simulated executions of
closed-loop execution using the computed control policy where the needle’s
state at each stage is shown by a small green sphere. (d) The solution
computed by LQG-MP and the associated estimated beliefs.

execution, we assume that the (x,y,z) position of the needle
can be sensed by a sensor (e.g., 3D ultrasound) that is
mounted at the top of the cubic workspace. The sensor
provides a more accurate measurement when the needle tip
is closer to the top of the workspace. This gives us the
following sensing model:

zt = pt +nt , nt ∼N (0,((yt − ŷ)2 + γ)cI3×3), (19)

where pt is the 3D position of the tip at any time step t,
γ ∈ R+, c ∈ R+, and ŷ is the position of the sensor on the
y-axis. When the tip of the needle is closer to the top of the
workspace, the variance of the noise becomes smaller.

Fig. 2 shows the results of our method. We computed an
initial trajectory, shown in Fig. 2(a), using RRT. The nominal
trajectory of the locally optimal solution computed by our
motion planner, together with the associated beliefs, are
shown in Fig. 2(b). The locally optimal solution first guides
the needle toward the top of the workspace to better localize
the needle and then approaches the goal state. Compared
to the initial trajectory computed by RRT, we see for the
solution computed by our method that (1) the three-standard-
deviation ellipses do not collide with any obstacles and
(2) the uncertainty at the final time step is much smaller,
which results in a smaller expected deviation to the goal.
Note that the optimized plan is only locally optimal, in



Our Method LQG-MP RRT+LQG
Probability of collision 0% 0% 44%

Target error (cm) 0.08±0.02 0.2±0.004 0.3±0.007
Avg. curvature deviation (cm−1) 0.55±6e-4 0.66±8e-5 0.68±7e-5

Avg. rotation speed (rad/s) 0.45±0.1 1.6±7e-5 1.74±2e-4
Avg. insertion speed (cm/s) 0.948±2e-4 0.78±0.002 0.82±0.001

Computation time (s) 26.91 857 0.847

TABLE I
PERFORMANCE OF OUR METHOD, LQG-MP, AND LQG CONTROL ON A

RRT SOLUTION ON THE CYLINDRICAL OBSTACLES SCENARIO. MEANS

AND STANDARD DEVIATIONS SHOWN FOR 2ND-5TH ROWS.

the sense that it is in the same homotopic class as the
initial trajectory. Fig. 2(c) shows 20 simulated closed-loop
executions of the control policy computed by our method.
Fig. 2(d) shows the best solution found by LQG-MP [5].
The LQG-MP solution is substantially different from the
locally optimal solution computed by our approach. The
objective of LQG-MP is to minimize a cost function that
is correlated with probability of collision. LQG-MP selects
a solution in which the needle moves far away from the
obstacles to decrease the probability of the collisions. On
the other hand, the locally optimal solution from our method
achieves a low probability of collision by decreasing the
uncertainty along the trajectory, which encourages the needle
to move through regions with more accurate sensing. Hence,
the locally optimal solution computed by our approach has
smaller uncertainty along the entire trajectory and it does
not have to steer the needle as far away from the obstacles.
Our approach aims to keep uncertainty low along the entire
trajectory and simultaneously penalizes control efforts that
deviate from a specified quantity.

We also compared the qualities of the plan generated
by our approach in Fig. 2(b) and the plan from LQG-MP
in Fig. 2(d). For both plans, we simulated 1,000 closed-
loop executions of their control policy and show the results
in Table I. The simulated executions of both plans never
collided with obstacles. However, due to the lack of local
optimization, the average deviation to the target is higher
for LQG-MP than for our approach. This is because our
approach explicitly optimizes the expected deviation to the
target. Similarly, compared to LQG-MP, our optimization-
based approach yields a lower average curvature deviation
and rotation and insertion speeds closer to the ideal specifica-
tions. In terms of computation time, our approach requires 26
seconds to achieve the locally optimal solution shown in Fig.
2(b). For LQG-MP, in our current implementation we use a
general RRT motion planner to generate 1,000 feasible plans,
which takes 847 seconds. We also executed the initial plan in
Fig. 2(a) with LQG feedback control, of which the statistics
are reported in the third column (RRT+LQG). Although this
approach is computationally fast, the probability of collision
in 1,000 simulated executions was high (44%). We also
executed the initial plan in an open-loop manner without
a controller for 1,000 simulated runs. Each of these runs
resulted in failure, which illustrates the significant impact of
uncertainty in this scenario.

(a) Initial trajectory (b) Locally optimal solution
computed by our method

Fig. 3. The objective is to steer the needle from a start pose outside the
liver to a clinical target inside the liver while avoiding critical vasculature
and ducts. We assume the sensing model is an X-ray imager pointing in
the x direction (red arrow), which provides a 2D measurement of the tip’s y
and z position. (a) An initial trajectory computed using RRT. (b) A locally
optimal solution computed using our method.

B. 3D Liver Biopsy Scenario

We next consider in simulation the scenario of steering a
needle through liver tissue to reach a target for biopsy for
cancer diagnosis while avoiding critical vasculature (see Fig.
1). Similar to the sensor model in Eq. (19), we assume the
tip position measurement is more accurate when the needle
tip is closer to the sensor, although here the sensor is placed
pointing in the x direction (red axis in Fig. 1).

The locally optimal solution computed by our method,
shown in Fig. 1(a,b), first steers the needle to the right
to obtain more accurate sensor measurements. This reduces
uncertainty compared to the initial trajectory, shown in Fig.
1(c). We simulated closed-loop executions of the computed
control policy 1,000 times. The probability of collision
was 0.6%. The target error was 0.17±0.03 cm. We also
computed an LQG controller for the RRT initial trajectory
and simulated closed-loop execution of the controller 1,000
times. The resulting probability of collision was 59.9% and
the target error averaged 0.26±0.005 cm.

We also evaluated our motion planner using a different
sensing model in which the sensor (e.g., an X-ray projection
imager) can only sense the y and z position of the needle tip,
resulting in the following sensing model:

zt =
[
yt zt

]T
+nt , nt ∼N (0,N), (20)

where N is a constant. This sensing model results in smaller
uncertainty in the y and z direction but larger uncertainty
along the x direction. Fig. 3 shows an initial trajectory
computed by RRT as well as the locally optimal solution
computed using our method for this sensing model. The
plan computed by our method (Fig. 3(b)) steers the needle
far away from the hepatic veins (cyan) and then passes
above the portal veins (pink). We ran LQG control on the
initial trajectory for 1,000 simulated executions, resulting in
a 48.7% probability of collision and a 0.29±0.02 cm average
target error. We also ran the locally optimal control policy
computed using our approach for 1,000 simulations, resulting
in a 0.4% probability of collision and a 0.18±0.05 cm
average target error.



VII. CONCLUSION

We introduced an optimization-based motion planner for
needle steering that explicitly considers uncertainty in the
needle’s motion and sensing of system state. Our method
formulates the problem of needle steering under uncertainty
as a POMDP and computes (locally) optimal trajectories and
control policies in belief space. To enable optimization in
belief space, we first represent the needle dynamics model
defined in the SE(3) group in a vector form and then create
cost functions compatible with belief space optimization
that explicitly consider the avoidance of obstacles, target
acquisition accuracy, penalties for unsafe control inputs, and
the diversity of medical sensor modalities.

To the best of our knowledge, this is the first approach
that locally optimizes steerable needle motion plans in belief
space. In future work we plan to address some of the
limitations of our POMDP formulation. We currently assume
the beliefs can be reasonably approximated as Gaussian
distributions, as is commonly done in many applications.
Due to the steerable needle’s kinematics, the distribution
of the tip position in Cartesian coordinates in many cases
would be better modeled using a banana-shaped distribution
[33]. In future work we plan to use the matrix exponential
map introduced in [33], which will introduce new challenges
for estimating probability of collision with obstacles. We
also plan to integrate our approach with a physical system
and evaluate system performance in biological tissues using
ultrasound and X-ray projection images.
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