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Abstract— Steerable needles composed of a highly flexible

material and with a bevel tip offer greater mobility compared to 10 —
rigid needles for minimally invasive medical procedures. ih this —
paper, we apply sampling-based motion planning techniquect 8 ,'frg'sglif‘
explore motion planning for the steerable bevel-tip needlén 3D =]
environments with obstacles. Based on the Rapidly-explang 6 —
Random Trees (RRTs) method, we develop a motion planner \

to quickly build a tree to search the configuration space usig .

a new exploring strategy, which generates new states using
randomly sampled control space instead of the deterministially 2

sampled one used in classic RRTs. Notice the fact that featgb

paths might not be found for any given entry point and target 8
configuration, we also address the feasible entry point plamng 0 s
problem to find feasible entry points in a specified entry zone 55 0

for any given target configuration. To solve this problem,
we developed a motion planning algorithm based on RRTs o _ o
with backchaining, which grow backward from the target to ~ Fig. 1. An approximation of 3D environment of needle ingertifor
explore the configuration space. Finally, simulation resub with ~ Prostate using spherical obstacles.
a approximated realistic prostate needle insertion envirament
demonstrate the performance of the proposed motion planner
Motion planning for bevel-tip steerable needle has been
I. INTRODUCTION studied in the two-dimensional image plane [3], [4]. Plan-

. _ . ~ning motions for steerable needle in 3-D environment is
~ Inserting a needle to deliver treatment or to biopsy tissugore difficult due to the nonholonomic constraint and the
is @ minimally invasive and inexpensive percutaneous premderactuation inherent in the bevel-tip design. Motiothef
cedure that can often be performed on an outpatient basievel-tip needle in a 3D workspace is controlled by only two
Achieving accuracy in the needle tip position is challengin degrees of freedoms at the needle base: insertion along the
due to lack of maneuverability, limited visibility, and isle  needle axis and rotation about the needle axis. Asymmetric
obstructions between the needle entry point and the targgfces on the needle’s beveled tip cause the needle to bend
zone. As an alternative to the traditional rigid symmetricand follow a curved path through the tissue, and the needle
tip needle, collaborators at Johns Hopkins University anp's orientation changes during insertion. The rotatiast n
the University of California, Berkeley are developing a newynly changes the needle tip’s orientation about its axis, bu
class of highly flexible, bevel-tip needles that offer imygd  also navigates the direction of the insertion. More flexible
mobility, enabling them to reach previously inaccessiblgotations have to be made by the needle in order to generate
targets while avoiding sensitive or impenetrable areash suits path in the 3D workspace. This makes motion planning
as the urethra and the penile bulb around the prostate ®¢ the bevel-tip steerable needle in 3D environments more
illustrated in Fig. 1 [1], [2]. complicated.

In this paper, we apply sampling-based motion planning
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RRT-based motion planning techniques in steerable neediearch in complex environments of high dimensions with
motion planning in 3D environments. different constraints [14], [16], [17], [18]. By alternag
between growing two trees (rooted at the start and goal con-
figuration respectively) towards random samples and tosvard
The bevel-tip needle design has been shown to signiéach other, Kuffner et al. developed the bidirectional RRT
icantly affect the needle bending forces during insertio@onnect algorithm to increase the efficiency [19]. Branieky
[5]. Based on this observation, Webster et al. [6], [7], [8]l. extended the RRT-based method to solve motion planning
experimented further and showed that steerable bevel-fipoblems in systems with a hybrid configuration space and
needles follow paths of constant curvature in the directiooonstraints [20]. By using hints obtained from obstacles to
of the bevel tip. They also developed a nonholonomic modelavigate the randomly sampled nodes away from obstacles,
of steerable bevel-tip needle maotion in stiff tissues based Rodriguez et al. developed an obstacle-based RRT method
generalization of the bicycle model and fit model parametets efficiently explore the tree in difficult regions in the
using experiments with tissue phantoms [7]. C-space [21]. These works developed different exploration
Motion planning for steerable needles in a 2D workspacstrategies for RRTs with randomly samplédspace and
has been studied, incorporating the effects of tissue defateterministic control space. Knepper et al. experimentall
mations and motion uncertainty into planning. Modeling thatudied the relationship between path sampling strategy an
bevel-tip needle’s motion in a 2D workspace as a normobile robot performance, and showed that different deter-
reversible Dubins car, Alterovitz et al. formulated the 2Dministic samplings of path sets led to different perfornemnc
steerable needle motion planning problem as a nonlineaf motion planners for mobile robots [22]. In this paper,
optimization problem that uses a simulation of tissue defokve propose an exploration strategy for the RRT with both
mation during needle insertion as a function in the optimizarandomly sampled-space and control space. To the best of
tion [2]. To consider motion uncertainty due to needlelféiss our knowledge, this is the first paper that applies RRT-based
interaction, Alterovitz et al. formulated the motion plamgn  method to the steerable needle motion planning and develops
problem as a Markov Decision Process (MDP) using a unidirectional exploration strategy using a randomly sam
discretization of the space and orientations [3], [4] andagis pled control space. Bidirectional exploration with sandple
the Stochastic Motion Roadmap (SMR), a sampling-basexntrol space will be explored in future work.
approach [9]. Alterovitz et al. also introduced a motion
planner to solve for the optimal insertion location in 2-0), [4 I1l. PROBLEM STATEMENT
a problem we consider in this paper for 3D environments.
With the development of volumetric medical imaging To make the problem well defined, we make the following
techniques, research on steerable needle insertion has bassumptions:
extended to more complex 3D environments. Kallem et all). The bevel-tip needle is rigid, and rotating the needle at
[10] developed a nonlinear controller to stabilize the he'sd the base will not change its position in the workspace.
3D motion on a desired 2D plane for use with 2D imaging).The needle body follows motion of the needle tip, and the
modalities and motion planning algorithms. Park et al. [11{ip’s orientation exactly follows the base’s orientation.
treated the kinematics of the bevel-tip needle as the 3B). The feasible workspace is stiff and defined as a 3D
extension of the standard unicycle model, and proposediboid. No deformation of the workspace and obstacles is
a diffusion-based motion planning method to numericallgonsidered in this paper.
compute a path in the obstacle-free stiff tissue. Abolhgissad). Obstacles are 3D balls with constant radius. Obstacles
et al. [12] proposed a method to minimize the needle’with more complicated shapes will be considered in future
deflection by controlling the needle’s rotation during thework.
insertion, using online measurements through force/momeWith the above assumptions, the steerable needle motion
sensing. By representing the motion of the bevel-tip need@anning problem can be stated as follows.
as a screw motion in a 3D environment, Duindam et al. [13] Problem 1 (Seerable needle mation planning): Given
formulated 3D motion planning of the steerable needle & initial configuration and a target zone, determine a
a dynamical optimization problem with a discretization offeasible path and the corresponding sequence of controls
the control space. We study a similar problem of findindinsertion depths and rotations at the needle base) so that
valid needle paths in 3D environments with obstacles, yé¢he needle tip reaches the target zone from the initial
our approach builds a global roadmap that (probabilidtital configuration while avoiding obstacles and staying inside
explores the entire workspace, whereas the previous algive workspace.
rithm [13] only considered locally optimal paths and mayinput Boundaries of the workspace, parameters of the
fail in more complex environments. bevel-tip needle, locations and radius of the spherical
The Rapidly-exploring Random Tree (RRT) has showmbstacles, an entry configuration of the needle, a target zon
its potential in dealing with motion planning problems forthat the needle is required to reach.
nonholonomc systems [14][15]. It incrementally grows @&treOutput A sequence of discrete controls, with which the
toward the target configuration by searching feasible paths needle steered from the given entry point to reach the target
the configuration space, and provides an efficient and quidone, or a report that no path is found. f
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represented in the body frande as
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When V3, is constant, i.e.p(t) andw(t) are constant, the
configuration of the needle tip relative to the spatial frame

after being pushed for a time intervials

gro(t) = gpo(0)eVFol, )

wheregpo(0) is the initial configuration of the needle frame
relative to the spatial frame, and

x
Fig. 2. Model of the bevel-tip needle. 0 _W(t) 0 0
Vb w(t) 0 —v(t)/r 0 3)
Po 0  w()/r 0 v(t) |’
0 0 0 0

Because of the needle’s nonholonomic constraints and the
structure of the environment, there may not exist feasible,, constan/%,,, the needle motion can also be interpreted

paths reaching the target for all given initial configuraio 55 5 screw motion with constant axis and pitch [23], [13].
Moreover, feasible paths for any given initial configuratio \yhen the entire insertion of the needle is discretized into

may not be found by motion planners developed for Proby; steps with correspondind time segment§ s, - - , Iy},

lem 1_. For this reason, we address the feasible entry poigtq the velocityV8,,(I,,) is fixed in each step, the final

planning problem as follows. configuration of the needle tip can be computed as a product
Problem 2 (Feasible entry point planning): Given a  of exponentials

specified target configuration and an initial zone, deteemin - -

a feasible entry point in the zone and the corresponding gro(T) = gpo(0)e'PoVh ... VeoUn)In, (4)

sequence of controls (insertion depths and rotations at tl\9 M OTION PLANNING FOR STEERABLE NEEDLE USING
needle’s base) so that the needle tip reaches the specified FORWARD RRTS

target from this entry point while avoiding obstacles and _ ) i

staying inside the workspace. The configuration of the needle tip can be represented by
Input Boundaries of the workspace, parameters of théS Position (z,y,z) and Euler angleg¢,6,¢). Since the
bevel-tip needle, locations and radius of the sphericdpsertion task only requires the needle to reach a target pos
obstacles, the target configuration, the entry zone. tion inside the 3D workspace, the configuration space of the
Output A feasible entry point and the correspondingMotion planning is equivalent t&3. Given boundaries of the

sequence of discrete controls, with which the needle rea¥Prkspace{cmin, Tmax|, [ymin, ymax, [zmin, zmax]), locations of
the target region, or a report that no path is found. 4 the obstacles, the needle’s initial configuratign and target
zone Syea, @ tree can be constructed with the classic RRT

IV. KINEMATICS OF THEBEVEL-TIP FLEXIBLE NEEDLE [17].
) ] o . Algorithm 1. (Forward RRT with deterministic control
Consider the bevel-tip needle shown in Fig. 2. Referrlng’pace sampling) Initialize a tree 7 rooted atsig. For a

to the notations in [23], attach a spatial fratﬁet(_) the base randomly sampled collision free Stat@ang in CSiee, We
of the neec,ile and a_body fralm‘sto the geome_tnc cgnter of searchT for the nearest neighbor 6fang denoted bysnear
the need_les bevel-tip, respectively. The configurationhef By applying deterministically sampled control inputsst@ar
needle tip can be represented homogeneously by the 4 Ry o short time increment?, we generate a set of all

4 transformation matrix of the object frame relative to th‘?)ossible New stateSnew. IN Shew, the nearest neighbor of

spatial frame as Sranas denoted byspews is found and added t@. Such an
R exploration is repeated until N Sgoa # @ or the number of
gro = { go pz;o] € SE(3), iteration reaches its limit.

The distance used in the nearest neighbor search can be
whereRpo € SO(3) is the rotation matrix angpo € T(3)  defined in different ways by defining different metrics on the
is the position of frame) relative to framesS. configuration space. To let the RRT grow toward the target

The motion of the needle is fully determined by twozone fast, we apply a biased distribution of the sampling
motions performed at the bevel-tip: insertion with velgcit states iNCSsee. The statesiang is sampled mostly uniformly
v(t) in the z direction and rotation with velocity(¢) along inside the boundaries of the configuration space, except for
the z axis of the body frameO [7], [13]. It has been a higher density inSyoa. If srand collides with any obstacle,
experimentally shown by Webster et al. [8] that the bevel-tiit is discarded and new states are sampled until oS
needles will follow a constantly curved path with curvatures found.

K = % when pushed with zero bevel rotation velocity, i.e. The path of the bevel-tip needle can only follow curved
w = 0. The instantaneous velocity of the needle tip can bpaths with a minimum curvature= 1/r, as shown in Fig. 2.



BUILD_RRT (s, Sgoa) resolution leads to a fast exploration with less informatio

1. T = Toit(sinit) on the connectivity and structure of the free space. Instead
2. while 7 N Sgoar = 0 of using the deterministic discretization of the contrchsg,

3. Srand — RANDOM_STATE() we sample a set of control inputs uniformly in the control
g- ENDT — EXTEND(7, srand) space, using CONTRQBAMPLING(), within a predefined

range[vmin, Ymax] X [wWmin, wmax,» and apply all sampled control
inputs tosnearfor 6t to generate the set of possible new states

EXTEND(7, Srand) Snew- By doing so, we not only explore the RRT toward all
1. Sreach+— REACHABLE_NEIGHBORS(7, Srand) possible directions with same probability, but also extdrel

2. snear —— NEAREST_NEIGHBOR(Sreach Srand) RRT toward the sampled states by various depth with same
Z' (T“"’”g"év&‘\;g"ge;SN%W-STATE(S"eaﬁ Srand, U) probability. With such an exploration strategy, an RRT can
5 T:add_edge{snen;wsnew, new) be constructed using the following algorithm.

6. RETURNT Algorithm 2: (Forward RRT with random control space

sampling) Initialize the tree7 rooted atsj,it and randomly
sample a collision free state,ng in CSiee. A reachable

f}EﬁCHﬁBLE-}\IEIGHBORS(T? Srand) neighbor search is applied to find a set of stafigge, from

. For alls; € which sang can be reached. After findinghear € 7, which
2. if srand IS reachable froms; . . .
3. adds; to Sreacn is the nearest neighbor ofang, We uniformly s_ample the
4. RETURN Sreach control space and apply all sampled control inputssig

for 6t to generate a set of possible new stafgs,. The
nearest neighbor ofiang in Shew is found asspew and added
to the tree. Such exploration is repeated uftih Sgoal 7

]\\I]EVV_S"_[‘,AF,FIE(Sm:_\ar7 Srand, Z/{)
1. Usang — CONTROL_SAMPLING(H)

_ or the number of iteration reaches its limit.
2. FOR allul S Z/Irand . . . .
3. Snew(?) = Snear+ Fneads, ui )0t The scenario of Algorithm 2 is shown in Table. |. By
4. Snew = Ui snew(t) growing the RRT with randomly sampled control inputs,
5. snew < NEAREST_NEIGHBOR(Snew, srana) Algorithm 2 probabilistically makes a trade-off betweee th

6. Unew = Usj such thatSL — Snew

7" RETURN $news tinen complexity and the completeness of the exploration.

TABLE | V1. ENTRY POINT PLANNING FOR STEERABLE NEEDLE
RAPIDLY-EXPLORINGRANDOM TREES BASED PLANNER WITH CONTROL USING RRTS WITH BACKCHAINING
SPACE SAMPLING Configuration of the needle tip following the reversed
trajectory for constant’b,, can be represented as
7b
—Vb,6
gro(t —bt) = gpo(t)e”Vroo. (6)

A path starting from the goal configuration can be described
as a reverse path starting from the entry point with the
negative control space. Given the target configuratiga
and the specified entry zor&ny, Problem 2 can be solved
using the following algorithm.

Algorithm 3 (RRT with backchaining): Initialize the tree
7 rooted atsgoq and randomly sample a collision free state
Srand IN CStree- FOr @anysiang a reachable neighborhodkthachn
is computed. After findingnear € 7, Which is the nearest
neighbor ofsrang We uniformly sample the negative control
space—U and apply all sampled control inputs #Qear for

For this reason, configurations that can be reached by t%.to generate a_set of p_ossnble new stafigg,. The nearest
neighbor ofsiang iN Shew is found asspew and added to the

needle are locally constrained to be inside the volume of a new
crateriform region (see Fig. 3) defined locally by tree. Such exploration is repeated ufffin Senry # @ or the

number of iterations reaches its limit.

P, > \/QT /p2 +p2 —p2—p2 (5) VII. SIMULATION RESULTS

We implement the proposed RRT based motion planning
with (ps, py, p-) the coordinates of a point in body framie  method for the steerable needle insertion in a 3D envi-
Algorithm 1 requires a deterministic sampling of the confonments with obstacles. Since we assume that the nee-
trol space, whose resolution greatly affects the perfoageandle is to be inserted from outside of the tissue, we only
of the planning algorithm.[16]. A higher resolution leadsat consider workspace with positive-axis. The workspace is
more detailed exploration with more complexity, but a lowerdefined to be a cubical region with coordinates5,5) x

Do - o ow e o

Fig. 3. The crateriform reachable region of local needleiomot




Fig. 4. Algorithm 1: (a) The exploration of the basic RRT; #)e feasible
path found by the basic RRTs method.

. ) ) ) Fig. 7. Algorithm 3: (a) Exploration of one RRT with backchiaig; (b)
Fig. 5. Algorithm 2: (a) Exploration of the forward RRTs wittontrol  peasiple path found by the RRT with backchaining.
space sampling; (b) Feasible path found by forward RRTSs edtitrol space

sampling.

with insertion depth iff0.1, 0.5] and rotation angle if0, 27].

(=5,5) x (0,10), and we use six unit-radius sphericaIA” trials successfully found feasible paths. The average
obstacles as shown in Fig. 1, which are centered at tfmwimber of iterations that the RRT with random control space
positions(0, 0,4),(—1.5,0,8.5), (—=2.9,0,7.5), (—=2,0,5.5), sqmplings take to reach the target region is 1339.3, with the
(—0.3,1.4,5.5) and(—0.3, —1.4, 5.5), to approximate obsta- Minimum at 142 and the maximum at 3748. The average
cles around real prostate, such as the urethra, the pefie brPU time used i$21.4 second. Fig. 5(a) shows the feasible
and the pubic arch. The maximal number of iterations iBath found by this motion planner, which finally reached the
10000. Simulations are run on a laptop with Intel Centfino Position at(—0.006,0.011,9.991), and Fig. 5(b) shows the
1.66 MHz, 1 GB memory, and Micros&ttWindows XP® RRT exploration with Algorithm 2 in the free space.
operation system. Second, we consider insertion task in the same environ-

First, we implement Algorithms 1 and 2 to solve Problenfn€nt, and the target configuration is set to(bd.5,0,9.7).
1 for an insertion task from entry poif, 0, 0) with orienta- Since the tar_ge_t is very close to one of the obstacles and
tion (0,0,0) to reach the target zone which is a ball locatedh€ obstacle is in the middle of the way between the entry
at (0,0, 10) with radius0.01. The range of the control inputs POINt and the target zone, it is difficult to find a feasible
are defined by insertion depth j.1,0.5] and rotation angle Path for this task. We first formulate it as Problem 1 and
in [0,2x], and the grid size of control space deterministidMplement Algorithm 2 to solve it. The entry configuration is
sampling is0.1. Totally 10 trials have been done with both With position(0,0,0) and orientation([—7, 3], -3, 5], 0),
Algorithms 1 and 2. With Algorithm 15 trials successfully and the target zone is a ball located(atl.5,0,9.7) with
found feasible paths withii0000 iterations. The average
number of iterations for the RRT to reach the target region

- e ) ; Algorithm 1 2
with deterministic control space samplinglig98.5, with the Number of trials 10 10
minimum at 148 and the maximum ag8500. The average Number of successes 5 10
CPU time used is1851.8 second. Fig. 4(a) shows the Average Number of iterationg 1798.5] 1339.3
exploration of one of the basic RRTs with 2362 iterations, Average CPU time (s) 1851.8| 6214
and Fig. 4(b) shows the feasible path found with this RRT, TABLE I
which finally reached the position &0.021,0.023,9.95). PERFORMANCE OFALGORITHMS 1 AND 2 FOR SOLVINGPROBLEM 1.

With Algorithm 2, control inputs are uniformly sampled
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