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Abstract. Endoscopy enables high resolution visualization of tissue tex-
ture and is a critical step in many clinical workflows, including diagnosis
and radiation therapy treatment planning for cancers in the nasophar-
ynx. However, an endoscopic video does not provide explicit 3D spatial
information, making it difficult to use in tumor localization, and it is
inefficient to review. We introduce a pipeline for automatically recon-
structing a textured 3D surface model, which we call an endoscopogram,
from multiple 2D endoscopic video frames. Our pipeline first reconstructs
a partial 3D surface model for each input individual 2D frame. In the
next step (which is the focus of this paper), we generate a single high-
quality 3D surface model using a groupwise registration approach that
fuses multiple, partially overlapping, incomplete, and deformed surface
models together. We generate endoscopograms from synthetic, phantom,
and patient data and show that our registration approach can account for
tissue deformations and reconstruction inconsistency across endoscopic
video frames.

1 Introduction

Modern radiation therapy treatment planning relies on imaging modalities like
CT for tumor localization. For throat cancer, an additional kind of medical
imaging, called endoscopy, is also taken at treatment planning time. Endoscopic
videos provide direct optical visualization of the pharyngeal surface and provide
information, such as a tumor’s texture and superficial (mucosal) spread, that is
not available on CT due to CT’s relatively low contrast and resolution. However,
the use of endoscopy for treatment planning is significantly limited by the fact
that (1) the 2D frames from the endoscopic video do not explicitly provide 3D
spatial information, such as the tumor’s 3D location; (2) reviewing the video
is time-consuming; and (3) the optical views do not provide the full geometric
conformation of the throat.

In this paper, we introduce a pipeline for reconstructing a 3D textured surface
model of the throat, which we call an endoscopogram, from 2D video frames.
The model provides (1) more complete 3D pharyngeal geometry; (2) efficient
visualization; and (3) the opportunity to register endoscopy data with the CT,
thereby enabling transfer of the tumor contours and texture into the CT space.



State-of-the-art monocular endoscopic reconstruction techniques have been
applied in applications like colonoscopy inspection [1], laparoscopic surgery [2]
and orthopedic surgeries [3]. However, most existing methods cannot simulta-
neously deal with the following three challenges: (1) non-Lambertian surfaces;
(2) non-rigid deformation of tissues across frames; and (3) poorly known shape
or motion priors. Our proposed pipeline deals with these problems using (1)
a Shape-from-Motion-and-Shading (SfMS) method [4] incorporating a new re-
flectance model for generating single-frame-based partial reconstructions; and
(2) a novel geometry fusion algorithm for non-rigid fusion of multiple partial
reconstructions. Since our pipeline does not assume any prior knowledge on en-
vironments, motion and shapes, it can be readily generalized to other endoscopic
applications in addition to our nasopharyngoscopy reconstruction problem.

In this paper we focus on the geometry fusion step mentioned above. The
challenge here is that all individual reconstructions are only partially overlapping
due to the constantly changing camera viewpoint, may have missing data (holes)
due to camera occlusion, and may be slightly deformed since the tissue may have
deformed between 2D frame acquisitions. Our main contribution in this paper is
the design of a novel groupwise surface registration algorithm that can deal with
these limitations. An additional contribution is an outlier geometry trimming
algorithm based on robust regression. We generate endoscopograms and validate
our registration algorithm with data from synthetic CT surface deformations and
endoscopic video of a rigid phantom and real patients.

2 Endoscopogram Reconstruction Pipeline

The input to our system (Fig. 1) is a video sequence of hundreds of consecutive
frames {Fi|i = 1...N}. The output is an endoscopogram, which is a textured 3D
surface model derived from the input frames. We first generate for each frame
Fi a reconstruction Ri by the SfMS method. We then fuse multiple single-frame
reconstructions {Ri} into a single geometry R. Finally, we texture R by pulling
color from the original frames {Fi}. We will focus on the geometry fusion step
in Section 3 and briefly introduce the other techniques in the rest of this section.

Shape from Motion and Shading (SfMS). Our novel reconstruction
method [4] has been shown to be efficient in single-camera reconstruction of live
endoscopy data. The method leverages sparse geometry information obtained

Fig. 1. The endoscopogram reconstruction pipeline.



by Structure-from-Motion (SfM), Shape-from-Shading (SfS) estimation, and a
novel reflectance model to characterize non-Lambertian surfaces. In summary, it
iteratively estimates the reflectance model parameters and a SfS reconstruction
surface for each individual frame under sparse SfM constraints derived within a
sliding time window. One drawback of this method is that large tissue deforma-
tion and lighting changes across frames can induce inconsistent individual SfS
reconstructions. Nevertheless, our experiments show that this kind of error can
be well compensated in the subsequent geometry fusion step. In the end, for each
frame Fi, a reconstruction Ri is produced as a triangle mesh and transformed
into the world space using the camera position parameters estimated from SfM.
Mesh faces that are nearly tangent to the camera viewing ray are removed be-
cause they correspond to occluded regions. The end result of this is that the
reconstructions {Ri} have missing patches and different topology and are only
partially overlapping with each other.

Texture Mapping. The goal of texture mapping is to assign a color to each
vertex vk (superscripts refer to vertex index) in the fused geometry R, which
is estimated by the geometry fusion (Section 3) of all the registered individual
frame surfaces {R′

i}. Our idea is to find a corresponding point of vk in a registered
surface R′

i and to trace back its color in the corresponding frame Fi. Since vk

might have correspondences in multiple registered surfaces, we formulate this
procedure as a labeling problem and optimize a Markov Random Field (MRF)
energy function. In general, the objective function prefers pulling color from non-
boundary nearby points in {R′

i}, while encouraging regional label consistency.

3 Geometry Fusion

This section presents the main methodological contributions of this paper: a
novel groupwise surface registration algorithm based on N-body interaction, and
an outlier-geometry trimming algorithm based on robust regression.

Related Work. Given the set of partial reconstructions {Ri}, our goal is to
non-rigidly deform them into a consistent geometric configuration, thus compen-
sating for tissue deformation and minimizing reconstruction inconsistency among
different frames. Current groupwise surface registration methods often rely on
having or iteratively estimating the mean geometry (template) [5]. However, in
our situation, the topology change and partially overlapping data renders initial
template geometry estimation almost impossible. Missing large patches also pose
serious challenges to the currents metric [6] for surface comparison. Template-
free methods have been studied for images [7], but it has not been shown that
such methods can be generalized to surfaces. The joint spectral graph frame-
work [8] can match a group of surfaces without estimating the mean, but these
methods do not explicitly compute deformation fields for geometry fusion.

Zhao et. al. [9] proposed a pairwise surface registration algorithm, Thin Shell
Demons, that can handle topology change and missing data. We have extended
this algorithm into our groupwise situation.



Thin Shell Demons. Thin Shell Demons is a physics-motivated method
that uses geometric virtual forces and a thin shell model to estimate surface
deformation. The so-called forces {f} between two surfaces {R1,R2} are vectors
connecting automatically selected corresponding vertex pairs, i.e. {f(vk) = uk−
vk | vk ∈ R1, u

k ∈ R2} (with some abuse of notation, we use k here to index
correspondences). The algorithm regards the surfaces as elastic thin shells and
produces a non-parametric deformation vector field φ : R1 → R2 by iteratively
minimizing the energy function E(φ) =

∑M
k=1 c(v

k)(φ(vk)− f(vk))2 +Eshell(φ).
The first part penalizes inconsistency between the deformation vector and the
force vector applied on a point and uses a confidence score c to weight the
penalization. The second part minimizes the thin shell deformation energy, which
is defined as the integral of local bending and membrane energy:

Eshell(φ) =

∫
R
λ1W (σmem(p)) + λ2W (σbend(p)), (1)

W (σ) = Y/(1− τ2)((1− τ)tr(σ2) + τtr(σ)2), (2)

where Y and τ are the Young’s modulus and Poisson’s ratio of the shell. σmem
is the tangential Cauchy-Green strain tensor characterizing local stretching. The
bending strain tensor σbend characterizes local curvature change and is computed
as the shape operator change.

3.1 N-body Surface Registration

Our main observation is that the virtual force interaction is still valid among
N partial shells even without the mean geometry. Thus, we propose a group-
wise deformation scenario as an analog to the N-body problem: N surfaces are
deformed under the influence of their mutual forces. This groupwise attraction
can bypass the need of a target mean and still deform all surfaces into a sin-
gle geometric configuration. The deformation of a single surface is independent
and fully determined by the overall forces exerted on it. With the physical thin
shell model, its deformation can be topology-preserving and not influenced by its
partial-ness. With this notion in mind, we now have to define (1) mutual forces
among N partial surfaces; (2) an evolution strategy to deform the N surfaces.

Mutual Forces. In order to derive mutual forces, correspondences should
be credibly computed among N partial surfaces. It has been shown that by us-
ing the geometric descriptor proposed in [10], a set of correspondences can be
effectively computed between partial surfaces. Additionally, in our application,
each surface Ri has an underlying texture image Fi. Thus, we also compute
texture correspondences between two frames by using standard computer vision
techniques. To improve matching accuracy, we compute inlier SIFT correspon-
dences only between frame pairs that are at most T seconds apart. Finally, these
SIFT matchings can be directly transformed to 3D vertex correspondences via
the SfSM reconstruction procedure.

In the end, any given vertex vki ∈ Ri will have Mk
i corresponding vertices

in other surfaces {Rj |j 6= i}, given as vectors {fβ(vki ) = uβ − vki , β = 1...Mk
i },



where uβ is the βth correspondence of vki in some other surface. These corre-
spondences are associated with confidence scores {cβ(vki )} defined by

cβ(vki ) =

{
δ(uβ , vki ) if 〈uβ , vki 〉 is a geometric correspondence,

c̄ if 〈uβ , vki 〉 is a texture correspondence,
(3)

where δ is the geometric feature distance defined in [10]. Since we only consider
inlier SIFT matchings using RANSAC, the confidence score for texture corre-
spondences is a constant c̄. We then define the overall force exerted on vki as the

weighted average: f̄(vki ) =
∑Mk

i

β=1 c
β(vki )fβ(vki )/

∑Mk
i

β=1 c
β(vki ).

Deformation Strategy. With mutual forces defined, we can solve for the
group deformation fields {φi} by optimizing independently for each surface

E(φi) =

Mi∑
k=1

c(vki )(φ(vki )− f̄(vki ))2 + Eshell(φi), (4)

where Mi is the number of vertices that have forces applied. Then, a groupwise
deformation scenario is to evolve the N surfaces by iteratively estimating the
mutual forces {f} and solving for the deformations {φi}. However, a potential
hazard of our algorithm is that without a common target template, the N sur-
faces could oscillate, especially in the early stage when the force magnitudes are
large and tend to overshoot the deformation. To this end, we observe that the
thin shell energy regularization weights λ1, λ2 control the deformation flexibility.
Thus, to avoid oscillation, we design the strategy shown in Algorithm 1.

Algorithm 1 N-body Groupwise Surface Registration

1: Start with large regularization weights: λ1(0), λ2(0)
2: In iteration p, compute {f} from the current N surfaces {Ri(p)}
3: Optimize Eq. 4 independently for each surface to obtain {Ri(p+ 1)}
4: λ1(p+ 1) = σ ∗ λ1(p), λ2(p+ 1) = σ ∗ λ1(p), with σ < 1
5: Go to step 2 until reaching maximum number of iterations.

3.2 Outlier Geometry Trimming

The final step of geometry fusion is to estimate a single geometry R from the
registered surfaces {R′

i} [11]. However, this fusion step can be seriously harmed
by the outlier geometry created by SfMS. Outlier geometries are local surface
parts that are wrongfully estimated by SfMS under bad lighting conditions (in-
sufficient lighting, saturation, or specularity) and are drastically different from
all other surfaces (Fig. 2a). The sub-surfaces do not correspond to any part in
other surfaces and thereby are carried over by the deformation process to {R′

i}.
Our observation is that outlier geometry changes a local surface’s topology

(branching) and violates many differential geometry properties. We know that
the local surface around a point in a smooth 2-manifold can be approximately
presented by a quadratic Monge Patch h : U → R3, where U defines a 2D open
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Fig. 2. (a) 5 overlaying registered surfaces, one of which (pink) has a piece of outlier
geometry (circled) that does not correspond to anything else. (b) Robust quadratic
fitting (red grid) to normalized N (vk). The outlier scores are indicated by the color.
(c) Color-coded W on L. (d) Fused surface after outlier geometry removal.

set in the tangent plane, and h is a quadratic height function. Our idea is that if
we robustly fit a local quadratic surface at a branching place, the surface points
on the wrong branch of outlier geometry will be counted as outliers (Fig. 2b).

We define the 3D point cloud L = {v1, ...vP } of P points as the ensemble of
all vertices in {R′

i}, N (vk) as the set of points in the neighborhood of vk andW
as the set of outlier scores of L. For a given vk, we transform N (vk) by taking
vk as the center of origin and the normal direction of vk as the z-axis. Then,
we use Iteratively Reweighted Least Squares to fit a quadratic polynomial to
the normalized N (vk) (Fig. 2b). The method produces outlier scores for each of
the points in N (vk), which are then accumulated into W (Fig. 2c). We repeat
this robust regression process for all vk in L. Finally, we remove the outlier
branches by thresholding the accumulated scores W, and the remaining largest
point cloud is used to produce the final single geometry R [11] (Fig. 2d).

4 Results

We validate our groupwise registration algorithm by generating and evaluating
endoscopograms from synthetic data, phantom data, and real patient endoscop-
ic videos. We selected algorithm parameters by tuning on a test patient’s data
(separate from the datasets presented here). We set the thin shell elastic param-
eters Y = 2, τ = 0.05, the energy weighting parameters λ1 = λ2 = 1, σ = 0.95,
the frame interval T = 0.5s, and the texture confidence score c̄ = 1.

Synthetic Data. We produced synthetic deformations to 6 patients’ head-
and-neck CT surfaces. Each surface has 3500 vertices and a 2-3cm cross-sectional
diameter, covering from the pharynx down to the vocal cords. We created de-
formations typically seen in real data, such as the stretching of the pharyngeal
wall and the bending of the epiglottis. We generated for each patient 20 par-
tial surfaces by taking depth maps from different camera positions in the CT
space. Only geometric correspondences were used in this test. We measured the
registration error as the average Euclidean distance of all pairs of correspond-
ing vertices after registration (Fig. 3). Our method significantly reduced error
and performed better than a spectral-graph-based method [10], which is another
potential framework for matching partial surfaces without estimating the mean.



Fig. 3. Left to right: error plot of synthetic data for 6 patients; a phantom endoscopic
video frame; the fused geometry with color-coded deviation (in millimeters) from the
ground truth CT.

Phantom Data. To test our method on real-world data in a controlled
environment, we 3D-printed a static phantom model (Fig. 3) from one patient’s
CT data and then collected endoscopic video and high-resolution CT for the
model. We produced SfMS reconstructions for 600 frames in the video, among
which 20 reconstructions were uniformly selected for geometry fusion (using
more surfaces for geometry fusion won’t further increase accuracy, but will be
computationally slower). The SfMS results were downsampled to ∼2500 vertices
and rigidly aligned to the CT space. Since the phantom is rigid, the registration
plays the role of unifying inconsistent SfMS estimation. No outlier geometry
trimming was performed in this test. We define a vertex’s deviation as its distance
to the nearest point in the CT surface. The average deviation of all vertices is
1.24mm for the raw reconstructions and is 0.94mm for the fused geometry,
which shows that the registration can help filter out inaccurate SfMS geometry
estimation. Fig 3 shows that the fused geometry resembles the ground truth CT
surface except in the farther part, where less data was available in the video.

Patient Data. We produced endoscopograms for 8 video sequences (300
frames per sequence) extracted from 4 patient endoscopies. Outlier geometry
trimming was used since lighting conditions were often poor. We computed the
overlap distance (OD) defined in [12], which measures the average surface de-
viation between all pairs of overlapping regions. The average OD of the 8 cas-
es is 1.6±0.13mm before registration, 0.58±0.05mm after registration, and
0.24±0.09mm after outlier geometry trimming. Fig. 4 shows one of the cases.

5 Conclusion

We have described a pipeline for producing an endoscopogram from a video
sequence. We proposed a novel groupwise surface registration algorithm and

Fig. 4. OD plot on the point cloud of 20 surfaces. Left to right: before registration,
after registration, after outlier geometry trimming, the final endoscopogram.



an outlier-geometry trimming algorithm. We have demonstrated via synthetic
and phantom tests that the N-body scenario is robust for registering partially-
overlapping surfaces with missing data. Finally, we produced endoscopograms for
real patient endsocopic videos. A current limitation is that the video sequence is
at most 3-4 seconds long for robust SfM estimation. Future work involves fusing
multiple endoscopograms from different video sequences.
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6. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of
curves and surfaces based on currents. Med. Image Anal. 13(5) (2009) 793–808

7. Balci, S.K., Golland, P., Shenton, M., Wells, W.M.: Free-form b-spline deformation
model for groupwise registration. In: MICCAI. (2007) 23–30

8. Arslan, S., Parisot, S., Rueckert, D.: Joint spectral decomposition for the par-
cellation of the human cerebral cortex using resting-state fMRI. In Ourselin, S.,
Alexander, D.C., Westin, C.F., Cardoso, M.J., eds.: IPMI. Volume 9123 of LNCS.,
Springer International Publishing (2015) 85–97

9. Zhao, Q., Price, J.T., Pizer, S., Niethammer, M., Alterovitz, R., Rosenman, J.:
Surface registration in the presence of topology changes and missing patches. In:
Medical Image Understanding and Analysis. (2015) 8–13

10. Zhao, Q., Pizer, S., Niethammer, M., Rosenman, J.: Geometric-feature-based spec-
tral graph matching in pharyngeal surface registration. In Golland, P., Hata,
N., Barillot, C., Hornegger, J., Howe, R., eds.: MICCAI. Volume 8673 of LNC-
S., Springer International Publishing (2014) 259–266

11. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: SIGGRAPH. (1996) 303–312

12. Huber, D.F., Hebert, M.: Fully automatic registration of multiple 3D data sets.
Image and Vision Computing 21(7) (2003) 637–650


